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One-dimensional arrays of small-capacitance Josephson junctions exhibit a current-voltage curve that is
characterized by a zero-current state for bias voltage below a threshold voltageVt . The threshold voltages can
be modulated with an external magnetic fieldB, which tunes effective Josephson coupling between adjacent
electrodes of the array. The dependance ofVt on B is well explained by a model whereVt is the injection
voltage for a Cooper-pair charge soliton.@S0163-1829~96!52634-2#

The Coulomb blockade of Cooper-pair tunneling
~CBCPT!, which exists in small-capacitance superconduct-
ing tunnel junctions, can be regarded as the quantum me-
chanical complement of the Josephson effect.1–3 In this ar-
ticle we demonstrate the CBCPT in one-dimensional arrays
of Josephson junctions. We give an explanation which re-
quires one to go beyond the zero-dimensional, lumped ele-
ment approximations embodied in the ‘‘orthodox theory’’ of
the single junction.3 Electrodynamic considerations of a se-
ries network of junctions, result in a description of current
flow in terms of the Cooper-pair charge soliton, which is a
relativistically invariant model of an extended charge quan-
tum ~2e! in one dimension.4–6

A small-capacitance Josephson junction can have a Cou-
lomb energy,EQ5Q2/(2C), which is comparable to the Jo-
sephson coupling energy,UJ5EJcos(f). The charge
Q5CV is given by the potential difference,V, across the
junction, andf is the difference across the junction of the
quantum mechanical phase describing the coherent state of
the charge density. The junction Hamiltonian is that of a
particle in a periodic potential, so that the Schro¨dinger equa-
tion will have Bloch wave solutions.3 Thus, we can define a
quasicharge,q, as the wave number of the plane wave part of
the wave function~in analogy to the crystal momentum of
electrons in a periodic potential!.

Restricting ourselves to the lowest energy band,E0(q),
the junction current and voltage are then related to the qua-
sicharge by a set of relations which are complementary to the
Josephson relations

dE0

dq
5V5Vc saw~q!, ~1a!

I5
dq

dt
. ~1b!

The junction voltage is a 2e periodic function of the quasi-
charge,q, which we note by an amplitude,Vc , multiplied by
2e periodic function, saw(q), having an amplitude of 1.
Both Vc and saw(q) are derived from properties of the
Mathieu functions, and both depend on the ratioEJ /EC ,
where EC5e2/(2C).3,7 For EJ /EC.1, the shape is sinu-
soidal, saw(q).sin(pq/e), and the amplitude,Vc , decreases

to zero exponentially in the ratioAEJ /EC. For EJ /EC,1,
the shape is saw-tooth-like, withVc.e/C, @see Fig. 2~b! of
Ref. 7#.

Measurement of the quasicharge requires that the imped-
ance seen by the single junction be greater than the resistance
quantum RQ5h/(4e2)56.45 kV. Experiments on single
junctions biased with special high resistance leads8 have
demonstrated the CBCPT, thus confirming this general theo-
retical picture based on the idea of a definite quasicharge. In
this article, we present experiments on 1D series arrays of
small-capacitance Josephson junctions, where the CBCPT
can be observedwithouta special high impedance source of
charge. Several experiments have demonstrated the CBCPT
in 2D arrays,9–11 and the Coulomb blockade for single elec-
trons has been studied in 1D arrays.12 However, Cooper-pair
tunneling has only been examined in very short 1D arrays.13

In a long one-dimensional array, an interesting analysis
based on sine-Gordon solitons is possible, and quantitative
comparison with theory can be made.

Consider first a uniform one-dimensional series array of
junctions. The current along the array,I (x,t), and the poten-
tial of the electrodes,V(x,t), are functions of the spatial
coordinatex along the array. In the continuum limit, the
current and voltage are related by a set of differential equa-
tions

]xV52 l 0] tI2vcsaw~q!, ~2a!

]xI52c0] tV, ~2b!

wherel 05L0 /Dx andc05C0 /Dx are the distributed induc-
tance and capacitance to the ground conductor, and
vc5Vc /Dx is a critical electric field. With the exception of
the vcsaw(q) term, these equations are the TEM transmis-
sion line equations describing electromagnetic waves. Com-
bining Eq.~2! with Eq. ~1b! and introducing a dimensionless
quasichargex5pq/e ~so that the saw function is periodic on
the intervalxP$0,2p%), we arrive at,

~1/c2! ] ttx2]xxx1 ~1/lS
2! saw~x!50, ~3!

where the lengthlS5A2e/(2pc0vc), andc51/Ac0l 0 is the
electromagnetic wave velocity. This equation admits soliton
solutions which are Lorentz invariant. In the limit
EJ /EC.1, saw(x).sin(x) and Eq.~3! is the sine-Gordon
equation, with well-known soliton solutions.14 In the oppo-
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site limit,EJ /EC,1, a soliton solution4 describes a potential
distribution which decays exponentially from a point, with
characteristic lengthlS . In either limit, the potential distri-
bution with spatial extent 2lS is the result of a localized
charge quantum (2e) in the array. As EJ /EC→0,
Vc→e/C, and lS;DxAC/C0, which is the electrostatic
screening length of the charge quantum localized to one elec-
trode. AsEJ /EC→`, lS→` due to the delocalization of
charge. An equation similar to Eq.~3! has been derived
within the context of single electron tunneling,4 where its
validity has been questioned.15 The existence of Eq.~3! for
Cooper pairs was mentioned in Refs. 4, 5, and 15, and ex-
amined in Ref. 6.

There is a direct analogy with the system considered here
and the one-dimensional parallel array of Josephson junc-
tions ~dual system!, where one can derive a sine-Gordon
equation for the Josephson phase variablef(x,t).16 In that
case the ‘‘kink’’ solution forf(x) describes the distributed
supercurrent which gives rise to a magnetic flux soliton as-
sociated with a vortex. In our case of the series one-
dimensional array, the ‘‘kink’’ solution forx(x) describes
thex component of the electric field~in the tunnel barriers of
a discrete array!, and the electrostatic potential~of the elec-
trodes in a discrete array! associated with one excess Cooper
pair sitting at the center of the kink. The way in which
charge and flux quantization are treated on equal footing in
these two classical~but complementary! models is intuitively
appealing.

Several series arrays of small-capacitance Josephson junc-
tions have been fabricated and measured. The junctions were
made of Al, with AlOx tunnel barriers, and were formed by
the usual shadow evaporation technique.17,18 The array dis-
cussed here hadN5255 junctions in series. The connection
between nearest-neighbor electrodes was actually two junc-
tions in parallel, forming a dc-SQUID~superconducting
quantum interference device!. This geometry allowed tuning
of the Josephson coupling between nearest neighbors with an
external magnetic field.

A scanning electron microscopy~SEM! micrograph of
part of the array is shown in Fig. 1~a!, and an equivalent
circuit is shown in Fig. 1~b!. Due to a misalignment of the
angle used for evaporation of the top electrode, alternating
loops in the array have equal area. The effect of this lattice
with a basis of two loop sizes, is clearly seen in the magnetic
field dependence of the measured current-voltage~I -V!
curve, where two distinct periods of oscillation with mag-
netic field are observed.

The array was symmetrically biased through two 1 MV
current measurement resistors, so that the potentials at the
edges of the array were above and below the ground poten-
tial by equal amounts. The ground plane was located
250 mm below the array. Figure 2 shows theI -V character-
istic of the array measured atT,50 mK, for several mag-
netic fields between zero and the first minimum inEJ . We
see a distinct threshold voltage for the onset of current
through the array, which increases asEJ is suppressed with
the magnetic field. This Coulomb blockade feature was
smeared at higher temperature, and fully disappeared for
T.700 mK'EC /kB .

The threshold voltage is plotted versus the magnetic field
in Fig. 3. Peaks inVt are seen at magnetic fields correspond-

ing to (n11)/2 flux quanta,F05h/2e, in one of the two
loop areas. From the measured periodicity ofVt with mag-
netic field, we could accurately determine the loop areas
A150.18 mm2 andA250.13 mm2. The areas correspond to
loops defined by current paths through the center of the su-
perconducting electrodes, as would be the case when the
magnetic field is either penetrating into, or expelled from the
bulk electrodes.

By design, the ratioA1 /A2 is equal to the ratio of the
tunnel junction areas of the two dissimilar SQUID’s. This
ratio, together with the measured normal state resistance of
the entire array (2.17 MV) allows one to determine the two
normal state resistances between nearest-neighbor electrodes
RN159.8 kV, andRN257.2 kV. Here all numbers refer to
the two parallel junctions of a loop, as one effective junction
connecting nearest neighbors. We calculate the Josephson
coupling energiesEJ1

0 566 meV andEJ2
0 589 meV, where

EJ5(RQ /RN)(D0/2), and D05200 meV is the supercon-
ducting energy gap of our Al electrodes. From previous ex-
perience with these junctions we know the specific capaci-
tance is roughly 45 fF/mm2 which, together with a rough
measurement of the junction area from the SEM micrograph
givesEC1559 meV andEC2544 meV for the two nearest-
neighbor charging energies.

For voltagesV.Vt the current must be associated with
Cooper-pair tunneling because it can be completely sup-
pressed asEJ is suppressed to zero~see Fig. 2!. Nonetheless,
this current is not completely coherent as there is some finite
voltage drop across the array, and thus dissipation in the
array. For the moment, we will ignore dissipation and ex-
plain the threshold voltage as the voltage required to inject a
Cooper-pair charge soliton into the array.

The dynamic equation~3!, with the addition of some
damping terms, would allow one to calculate theI -V curve
of the array. The boundary conditions are given by the volt-
ages measured at either end of the array,V(x50)5Va/2,
V(x5L)52Va/2, which are independent of time due to the

FIG. 1. ~a! A SEM micrograph of a section of the array of
SQUID’s showing the alternating loop areas; and~b! the equivalent
circuit showing one side of the symmetric bias arrangement.
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large capacitance of the leads,CL@C0. However, in this
paper we wish to limit our discussion to the static case, or the
stationary equation where the time derivative is zero. Here
we consider an array of lengthL@lS , and approximate
saw(x).sin(x) ~valid for EJ /EC.1). Analysis of the sta-
tionary sine-Gordon equation shows that solutions exist for
Va less than a threshold voltage,

Vt52lSvc5~4/Ap!A~e/C0! Vc. ~4!

The solutions forVa,Vt describe the tail of a Cooper-pair
charge soliton penetrating into the array. ForVa.Vt , soli-
tons and antisolitons are injected into opposite ends of the
array. The current flow is described by a moving train of
uniformly spaced solitons and antisolitons.

Extrapolating to the limitEJ /EC→0 whereVc5e/C, we
can compare Eq.~4! with the result of an electrostatic analy-
sis of a discrete capacitor array.12,15We find that the thresh-
old voltage given by Eq.~4! underestimatesVt by a factor of
2/Ap51.13. This 13% discrepancy is due to the approxima-
tion Vcsaw(x).Vcsin(x) where theEJ /EC dependence of
only the amplitude was properly accounted for. A full solu-
tion to Eq. ~3! would account for this discrepancy. Thus,
when there is no tunneling, the model recovers electrostatics.

In order to compare the experiment with theory, we need
to account for the basis of two dissimilar junctions in series.
This is easily done by coarse graining the system such that
2Dx→Dx8. In this case the effective critical voltage is sim-
ply Vc85Vc11Vc2, which is valid because the capacitance
C0!C1C2 /(C11C2). The critical voltagesVc1 and Vc2,
which depend onEJ1 /EC1 andEJ2 /EC2 , respectively, can
be tuned with magnetic field, where

EJ1~B!5EJ1
0 ucos~2pBA1 /F0!uA12~B/BC!2, ~5!

and similarly forEJ2(B). The cosine term accounts for the
SQUID modulation. We find that we do not need to account
for any dissimilarity in the two parallel junctions forming the

SQUID loop. The square-root term accounts for the suppres-
sion ofD0 by the penetrating magnetic field.

Figure 3 shows the measured threshold voltage versus the
magnetic field, and a calculated curve. The theoretical curve
required numerical analysis of the Mathieu equation so that
one can calculateVc1 and Vc2 for given values of
EJ1(B)/EC1 and EJ2(B)/EC2.

7 To achieve the calculated
curve shown in Fig. 3 we found it necessary to adjust the
zero field Josephson coupling energiesEJ1

0 andEJ2
0 each by

a factor of 4.4 larger than the amount calculated fromRN .
The charging energiesEC1 and EC2 have each been de-
creased by 15% to account for the effect of the quasiparticle
tunneling, which leads to an enhancement of the capacitance
by an amountdC53p\/(32D0RN).

19,20 The factor e/C0
was fixed to 9.9 mV, where the capacitanceC0 was calcu-
lated by dividing the capacitance of a strip,
Ca5ee f fL/@2ln(8L/w)#, having the array dimensions
(L551mm,w51 mm! by the effective number of junctions
(N/25127.5). The effective dielectric constantee f f54.4
was determined from other measurements on this type of
substrate.21

The discrepancy between the experimental and calculated
curves near the peaks is in part due to the approximation,
saw(x).sin(x), which underestimatesVt by 13% when
EJ /EC,1, near the peaks. There is also experimental error
in the measuredVt , which was determined by taking the
voltage atI50.5pA, the noise level for the measurement.
This method was ambiguous only for one or two points at the
peaks inVt , where the current was suppressed to a minimum
and no sharp threshold could be identified.

Apart from the peaks, the theoretical curve fits the data
extremely well at low magnetic fields. This fit required ad-
justing only one parameter;EJ1

0 andEJ2
0 were multiplied by

a factor of 4.4, their ratio being fixed. Without this factor we
find that the calculation does not give small enoughVt near
the minimum. Part of this factor might be accounted for by
decreasingEC1 and EC2, and at the same time increasing

FIG. 2. TheI -V characteristic of the array for several magnetic
fields. A distinct threshold voltage is seen, which depends on mag-
netic field.

FIG. 3. The threshold voltage is shown versus magnetic field.
The calculated curve explains the measured threshold voltage as
being the injection voltage for a Cooper-pair charge soliton.
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e/C0. Indeed, there is greater experimental uncertainty in
EC , which was estimated from the junction areas, thanEJ

0

which was calculated fromRN . Another factor responsible
for reducingVt is the effect of next-nearest-neighbor and
higher capacitances, which cannot be entirely neglected in
our case because the distance to the ground plane was larger
than the array length. The effects of dissipation by quasipar-
ticle tunneling and movement of background charge could
also further reduce the observed threshold voltage. Nonuni-
formity of the background potential, which is not included in
our model, could also lead to modified soliton dynamics and
threshold voltage. Further experiments with arrays of various
lengths could sort these effects out.

At higher magnetic fields, the calculated curve misses the
experimental data by increasing degree. The critical field
used in the calculation wasBc5630 G, where the measured
Vt goes to zero. The simple form of the magnetic field sup-
pression of the superconducting energy gap is valid only in
the limit that the London penetration depthlL , is much
larger than the width of the superconducting electrodes,
which may not be valid for these samples. The rapid de-
crease of the measured threshold voltage above 500 G is due
to onset of strong single electron tunneling. The junctions
haveRN'RQ , and thus there is only a very weak Coulomb
blockade in the normal state.

Finally, we should discuss how our observations relate to
experiments on two small-capacitance Josephson junctions
in series, which have demonstrated how thecritical current
can be modulated with and external electric field.13,22 Theo-
retical treatment of this effect23,24 assumes the Josephson
phase across the system to be a classical quantity~i.e., hav-

ing a definite value!. The measurement of a critical current is
consistent with this assumption, which is explained as result-
ing from the low impedance of the electrodynamic environ-
ment,Ze!RQ . In contrast with these experiments, we have
found that when many junctions are connected in series to
form a one-dimensional array, acritical voltagecan be ob-
served, even whenEJ>EC . Furthermore, this critical volt-
age can be modulated with an external magnetic field. Such
an observation implies quantum behavior of the Josephson
phase, or a definite value of the quasicharge, which is the
assumption used in developing the classical electrodynamic
model applied here.

In conclusion, our experiments demonstrate the Coulomb
blockade of Cooper-pair tunneling in 1D series arrays of Jo-
sephson junctions. Our analysis of the data is based on a
continuum picture, where the electrodynamics of the excess
localized Cooper pair is governed by a nonlinear wave equa-
tion which has soliton solutions. A stationary solution to this
equation allows us to compare the measured and calculated
threshold voltage as the Josephson coupling energy is tuned
with a magnetic field. This simple theoretical model agrees
well with the data if the ratio of the Josephson coupling
energy to the charging energy is enhanced by a factor of 4.4.

We would like to acknowledge helpful conversations with
E. Ben Jacob, Z. Hermon, G. Scho¨n, K. K. Likharev, T.
Claeson, M. Jonson, R. Shekhter, S. Girvin, and especially
A. B. Zorin, who provided us with the results of his calcu-
lation prior to publication. This work was supported by the
Swedish NFR, TFR, the Swedish Nanometer Laboratory,
and the Wallenberg Foundation.

1P. W. Anderson, inLectures on the Many Body Problem, edited
by E. R. Caianiello~Academic, New York, 1964!, Vol. 2, pp.
113–135.

2A. Widom, G. Megaloudis, T. D. Clark, and R. J. Prance, J. Phys.
A 15, 1561~1982!.

3K. K. Likharev and A. B. Zorin, J. Low Temp. Phys.59, 347
~1985!.

4E. Ben-Jacob, K. Mullen, and M. Amman, Phys. Lett. A135, 390
~1989!.

5D. V. Averin and K. K. Likharev, inMesoscopic Phenomena in
Solids, Vol. 30 ofModern Problems in Condensed Matter Sci-
ences, edited by B. L. Altshuler, P. A. Lee, and R. A. Webb
~North-Holland, Amsterdam, 1991!, Chap. 6, pp. 173–272.

6Z. Hermon, E. Ben-Jacob, and G. Scho¨n, Phys. Rev. B54, 1234
~1996!.

7A. B. Zorin, Phys. Rev. Lett.76, 4408~1996!.
8D. B. Havilandet al., Z. Phys. B85, 339 ~1991!.
9L. J. Geerligset al., Phys. Rev. Lett.63, 326 ~1989!.
10C. D. Chen, P. Delsing, D. B. Haviland, and T. Claeson,Low

Dimensional Properties of Solids,proceedings of the Nobel Ju-
bilee Symposium, Gothenburg, Sweden~Physica Scripta T42,
Swedish Royal Academy of Sciences, World Scientific, Sin-
gapore, 1992!.

11P. Delsinget al., Phys. Rev. B50, 3959~1994!.
12P. Delsing, inSingle Charge Tunneling, Coulomb Blockade Phe-

nomena in Nanostructures, Vol. 294 ofNATO ASI Series, edited
by H. Grabert and M. H. Devoret~Plenum, New York, 1992!,
Chap. 7, pp. 249–274.

13L. J. Geerligs, V. F. Anderegg, J. Romijn, and J. E. Mooij, Phys.
Rev. Lett.65, 377 ~1990!.

14J Rubenstein, J. Math. Phys.11, 258 ~1970!.
15N. S. Bakhvalov, G. S. Kazacha, K. K. Likharev, and S. I. Ser-

dyukova, Sov. Phys. JETP68, 581 ~1989!.
16K. K. Likharev, Dynamics of Josephson Junctions and Circuits,

1st ed.~Gordon and Breach, Philadelphia, 1986!.
17J. Niemeyer, PTB-Mitt.84, 251 ~1974!.
18G. J. Dolan, Appl. Phys. Lett.31, 337 ~1977!.
19V. Ambegaokar, U. Eckern, and G. Scho¨n, Phys. Rev. Lett.48,

1745 ~1982!.
20R. A. Ferrell, Physica C152, 10 ~1988!.
21P. Wahlgren, P. Delsing, and D. Haviland, Phys. Rev. B52, 2293

~1995!
22P. Joyezet al., Phys. Rev. Lett.72, 2458~1994!.
23K. A. Matveevet al., Phys. Rev. Lett.70, 2940~1993!.
24P. Joyez, Ph.D. thesis, Universite´ de Paris 6, 1995, text in En-

glish.

R6860 54DAVID B. HAVILAND AND PER DELSING


