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A scaling theory of vortex motion in Bose-glass superconductors with currents parallel to the common
direction of the magnetic field and columnar defects is presented. Above the Bose-glass transition, the longi-

tudinal dc resistivityr uu(T);(T2TBG)
n8z8 vanishes much faster than the corresponding transverse resistivity

r'(T);(T2TBG)
n8(z822), thus reversingthe usual anisotropy of electrical transport in the normal state of

layered superconductors. In the presence of a currentJ at an angleuJ with the common field and columnar
defect axis, the electric field angleuE approachesp/2 as T→TBG

1 Scaling also predicts the behavior of
penetration depths for the ac currents asT→TBG

2 and implies ajump discontinuityat TBG in the superfluid
density describing transport parallel to the columns.@S0163-1829~96!51234-8#

Recently there have been many efforts to understand the
nature of vortex states and dissipation in disordered high-
temperature superconductors.1 These efforts have led to
predictions2,3 that the linear resistivity does in fact vanish at
a finite transition temperature to a glassy vortex state, in
contrast to the traditional Anderson-Kim picture which al-
ways admits small but finite linear resistivity. There is now
general agreement on the possibility of a vortex state with
vanishing linear resistivity, and the theory continues in a
state of active development.

Pinning in superconductors comes in the form of point
disorder such as oxygen vacancies and interstitials as well as
correlated disorder such as screw dislocations, twin planes,
and artificially introduced columnar defects. It was originally
proposed2 that pointlike disorder would lead to a vortex glass
phase, while the theory in the presence of columnar defects
~correlated disorder! predicted an anisotropic ‘‘Bose-glass’’
phase,3 so called because of an analogy with the theory of
bosons in superfluids on disordered substrates.4 Although the
general phenomena of divergent pinning barriers for vanish-
ing currents underlies both the vortex glass and the Bose-
glass theories, the two theories can and have been qualita-
tively distinguished experimentally via their predictions for
the transverse fieldH' response,3 i.e., tilting of the applied
magnetic field. While the vortex glass hypothesis predicts
isotropic response functions that are nonsingular asH'→0,
Bose-glass theory predicts a transverse Meissner effect, with
a divergent tilt modulusc44 and a cusplike phase boundary in
theT-H' phase diagram.3 More recently the very existence
of the three-dimensional vortex glass phase has been called
into question, by computer simulations with finite screening5

and by experiments that find a first-order transition in the
detwinned samples6 removing the natural source of corre-
lated disorder. Moreover, experiments that use electron irra-
diation to inject point centers in sufficient quantities to de-
stroy this first-order transition find no evidence for a sharp
phase transition with universal exponents.7 Nevertheless, es-
tablishing whether the correlated or point disorder controls
the low-temperature physics in a given sample remains an
open and important question.8

Most experimental work on glassy vortex states has fo-
cussed on current transport perpendicular to the magnetic
field and in the case of Bose glass, perpendicular to the co-
lumnar defect axis. An exception is the work by Seowet al.,9

which measures electrical transport parallel to the field direc-
tion in Bi 2Sr2CaCu2O8 single crystals, irradiated with
heavy ions to produce columnar defects, also along the field
direction. In this note we analyze the dissipation in the Bose
glass superconductor, generalizing the scaling theory to in-
clude both longitudinal and transverse currents. Thus, mea-
surements in the simultaneous presence of both longitudinal
and transverse currents also provide a clearqualitativedis-
tinction between the vortex-glass and Bose-glass scenarios.
When the theory is applied to ac conductivity belowTBG,
we find finite penetration depths parallel and perpendicular
to the columns. Scaling predicts adiscontinuous jumpto zero
of the condensate superfluid density describing transport par-
allel to the columns asT→TBG

2

We assume point disorder can be neglected at high tem-
peratures and consider a currentJ at a finite angleuJ with
the uu axis defined by the columnar defects and the magnetic
field B. Following the usual assumption of a scaling theory
that near a continuous transition the diverging correlation
length is the only important length scale we determine the
temperature dependence and the relation between all the
physical quantities and in particular the IV characteris-
tics. Near a Bose-glass transition dominated by columnar
defects there are two divergent correlation lengths

l';uT2TBGu2n8 and l uu;uT2TBGu2n uu8 and a correlation

time t; l'
z8;uT2TBGu2z8n8, where within the Bose-glass

phase l' and l uu measure the corresponding localization
lengths of the vortex lines. Following Ref. 3 dimensional
analysis allows us to relate physical quantities to these cor-
relations lengths. In three dimensions the free energy density
scales asf;1/(l'

2 l uu). Analogously gauge invariance of the
Ginzburg-Landau theory implies that the fluctuating vector
potential scales according to
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A';
1

l'~T!
, ~1a!

Auu;
1

l uu~T!
. ~1b!

The definitions of the currentJ5] f /]A and the electric field
E52]A/]t and Eqs.~1! allow us also to expressJ andE in
terms of correlations lengths and time,

J';
1

l'l uu
, ~2a!

Juu;
1

l'
2 ~2b!

and

E';
1

l'
11z8

, ~3a!

Euu;
1

l uul'
z8
, ~3b!

where the relation between the correlation time and length

t; l'
z8 was used. Given the above dependences ofE and J

we can construct a relation between them, the IV curve, by
equating the appropriate dimensionless quantities. Upon first
considering separately currents parallel and perpendicular to
the field direction, we have

E'l'
11z8;F6

' ~ l'l iJ'fo /cT!, ~4a!

Euul il'
z8;F6

i ~ l'
2Jifo /cT!, ~4b!

wheref052p\c/2e is the flux quantum and we have set
kB51. The dimensionless arguments of the scaling functions
F6

' and F6
i are the ratios of the work done by the corre-

sponding current to depin the vortex line from the columnar
defect to the thermal energy. The difference in the arguments
can be understood microscopically. For a transverse current
J' dissipation arises due the vortex line depinning, which
proceeds via a vortex loop of a typical areal'3 l i lying in
thez2r' plane. In contrast, for a longitudinal currentJi the
dissipation is due to depinning of vortex helices whose pro-
jections span a typical areal'

2 lying in the r' plane.
The scaling functions aboveF1 and belowF2 the tran-

sition are very different. ForT.TBG we expect linear resis-
tivities E'5r'J' and Ei5r iJi characteristic of a normal
metal. It follows that the positive branches of these scaling
functions must vanish linearly,F1(x);x, i.e.,

r'; l i / l'
z8 , ~5a!

r i;1/~ l'
z822l i!. ~5b!

There is excellent theoretical4,3 and numerical10,11 evidence
that vortices in the liquid phase~i.e., the ‘‘superfluid’’ state
of the bosons! ‘‘diffuse’’ as they wander along the average
field direction. This implies an important relation between
the localization lengths near Bose-glass3 transition

l i'(TB2/c11fo
2) l'

2 wherec11'B2/8p (B@Hc1) is the bulk
modulus of the vortex liquid. Using these relations together
with the temperature dependence ofl' in Eqs.~5! we find,

r'~T!;uT2TBGun8~z822!, ~6a!

r i~T!;uT2TBGun8z8. ~6b!

Close to the transition,r i!r' , which is opposite to the
usual normal-state resistivity anisotropy in layered supercon-
ductors.

Consider a currentJ at an angleuJ with theB field and
columnar defect axis. There is now a matrix relatingE to
J,

FE'

Ei
G'Fr' 0

0 r i
G FJ'

Ji
G , ~7!

where the off-diagonal elements are zero if we neglect the
very small and poorly understood Hall effect. The electric
field E ~in this single parameter scaling theory! will be at a
temperature-dependent angleuE(T)5tan21(E' /Ei), given
by

tan~uE!}tan~uJ!/~T2TBG!2n8, ~8!

where tan(uJ)5J' /Ji . Equation~8! predicts that nearTBG
the angleuE for Bose-glass superconductor has a universal
temperature dependence controlled by the Bose-glass trans-
verse localization length exponentn8, estimated to
be n8'1.10,11 Besides providing a direct measurement
of n8, Eq. ~8! predicts the electric-field direction
uE(T→TBG

1 )'p/22(T2TBG)
2n8cot(uJ)→p/2, for any cur-

rent direction uJÞ0, independent of microscopic details
such as the intrinsic resistivity anisotropy of the normal state.
Because vortex-glass dissipation is isotropic~aside from the
intrinsic material anisotropy! the corresponding expression
for vortex glass predicts auE that is asymptotically tempera-
ture independent asT→TVG and depends continuously on
the direction of the currentuJ .

The significantly faster vanishing of longitudinal resistiv-
ity, predicted by Eq.~6! as T→TBG has already been ob-
served in recent experiments by Seowet al.,9 which finds
n8z858.561.6, consistent with other estimates ofn851
~Refs. 10 and 11! andz856.060.5.11 However, as is evident
from Eq. ~8!, an additional check on the Bose-glass theory
can be made by testing to see if limT→T

BG
1 uE(T)5p/2 for

any uJÞ0. Equivalently, the measurement of the vanishing
ratio r i(T)/r'(T) asT→TBG allows a direct determination
of n8.

The scaling Eq.~4! predicts nonlinear IV characteristics
at the Bose-glass transition,T5TBG.

2,3 The requirement that
there is a well defined IV characteristics demands that the
divergent correlation lengths cancel on both sides of these
equations, which can only be satisfied by a specific power-
law behavior ofF'(x) andF i(x) asx→`, leading to

E'~J'!;J'
~11z8!/3 , ~9a!

Ei~Ji!;Ji
~21z8!/2 . ~9b!
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The longitudinal dissipation is thus weaker and more nonlin-
ear than the transverse one.

Below the Bose-glass transition the dissipation is highly
nonlinear and is characterized by potential barriers that di-
verge in the limit of vanishing current,

E'~J'!;e2~J'
0 /J'!m', ~10a!

Ei~Ji!;e2~Ji
0/Ji !

m i, ~10b!

wherem'→1/3 asJ'→0 in bulk samples3 and the calcula-
tion in Sec. II E of Ref. 3~b! suggests thatm i51.

The scaling theory can be further generalized to a finite
frequencyv by an addition to the scaling functions in Eqs.

~4! of another dimensionless variablev l'
z8 At finite fre-

quency there is linear dissipation at all finite temperatures
characterized by linear conductivities2,12,13

s'~v,T!; l'
z822f6

' ~v l'
z8!, ~11a!

s i~v,T!; l'
z8 f6

i ~v l'
z8!. ~11b!

Requiring that the conductivities are finiteat the Bose-glass
transition, the scaling theory together with the Kramers-
Kronig relation lead to

s'~v,TBG!;S 1

2 iv D 122/z8
, ~12a!

s i~v,TBG!;
1

2 iv
, ~12b!

predicting a universal phase lag between current and voltage,
which in the case ofs i is p/2, independent of critical expo-
nents. ForT,TBG, s',i;ns

',i/(2 iv), implying scaling for
the superfluid number densities describing charge transport
by Cooper pairs perpendicular and parallel to the columns,

ns
';1/l i;1/l'

2 , ~13a!

ns
i; l i / l'

25 const., ~13b!

asT→TBG
2 consistent with the corresponding Josephson re-

lations for superfluid densities in an anisotropic supercon-
ductor.

More precisely, forns
i we expect the relationship

limT→T
BG
2 ns

i~T!5 limT→T
BG
2
mT

\2

l i~T!

l'
2 ~T!

5 const, ~14!

where we takem to be the mass of a Cooper pair, and
l i(T) and l'(T) are defined in the usual way in terms of the
decay of the transverse BCS order parameter correlation
function.14 We have assumed in the spirit of scaling that
l i(T) and l'(T) are the only diverging length scales near
TBG. The lengthsl i(T) and l'(T) must then diverge as

T→TBG
2 in the same way as the corresponding correlation

lengths above TBG. Since limT→T
BG
1 l i(T)/ l'

2 (T)

'TBGB
2/c11f0

25 const., required by finiteness of the boson
compressibility c11 ~vortex line compression modulus! at
TBG,

3,4 we are led to Eq.~14!. In the likely event that for
short-range interaction both superfluid densities vanish in the
vortex liquid state forT.TBG, our analysis therefore im-
plies a striking result: In contrast tons

' which vanishes
smoothly asT→TBG

2 ~similar to a conventional superconduc-
tor!, ns

i has ajump discontinuityat T5TBG analogous to a
stiffness of a system at a Kosterlitz-Thouless transition. The
ns

i jump discontinuity is consistent with Eq.~12b!, predicting
thats i’s v dependences at and belowTBG are identical.

Using the above results for the ac conductivities together
with Maxwell’s equations, we find the effective penetration
lengthsl eff;1/Avus(v)u ~Ref. 2! for the ac currentsJ' and
Ji ~for v→0) to bel̃';Al i; l' and l̃i; l'

2 / l i5 const., re-
spectively. Whilel̃' diverges asT→TBG

2 l̃i remains finite at
the transition and discontinuously jumps to infinity for
T.TBG.

The scaling theory for longitudinal currents can be further
generalized to include the response to the transverse mag-
netic field H' , previously analyzed forJ' in Ref. 3. For
simplicity assuming purely longitudinal current,Ei from Eq.
~4! becomes

Euul il'
z8;F6

i ~ l'
2Jifo /cT, H'l'l i /f0!. ~15!

which by arguments similar to those above predicts a cusp-
like phase boundary in theT-H' plane between the Bose
glass wherer i@H',H'

c (T)#50 and the vortex liquid phase
with r i@H'.H'

c (T)#.0. This boundary, given by

H'
c ~T!;6uT2TBGu3n8, ~16!

is consistently identical to the phase boundary obtained
based on the criterion of the vanishing of the transverse re-
sistivity r'(T), as must be the case if there is a single tran-
sition to the Bose-glass phase.

Equation ~15! can also be used to predict howr i(H')
vanishes asH'→0, with T5TBG,

r i~T5TBG,H'!;uH'uz8/3. ~17!

This result is to be contrasted with the more slowly
vanishing transverse linear resistivityr'(T5TBG,H')
;uH'u(z822)/3 found in Ref. 3.
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