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Longitudinal current dissipation in Bose-glass superconductors
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A scaling theory of vortex motion in Bose-glass superconductors with currents parallel to the common
direction of the magnetic field and columnar defects is presented. Above the Bose-glass transition, the longi-
tudinal dc resistivitypH(T)~(T—TBG)”'Z' vanishes much faster than the corresponding transverse resistivity
pl(T)~(T7TBG)”'(Z"2), thusreversingthe usual anisotropy of electrical transport in the normal state of
layered superconductors. In the presence of a cudreitan angled; with the common field and columnar
defect axis, the electric field anglé- approachesr/2 as T— T, Scaling also predicts the behavior of
penetration depths for the ac currentsTas Tg; and implies gump discontinuityat Tgg in the superfluid
density describing transport parallel to the colun{i$0163-18206)51234-9

Recently there have been many efforts to understand the Most experimental work on glassy vortex states has fo-
nature of vortex states and dissipation in disordered higheussed on current transport perpendicular to the magnetic
temperature superconductdrsThese efforts have led to field and in the case of Bose glass, perpendicular to the co-
predictioné? that the linear resistivity does in fact vanish at |ymnar defect axis. An exception is the work by Seetal,®
a finite transition temperature to a glassy vortex state, iRyhich measures electrical transport parallel to the field direc-

contrast to the traditional Anderson-Kim picture which al- .. ; : : . : .
ways admits small but finite linear resistivity. There is nowtIon in Bi,Sr,CaC,04g single crystals, irradiated with

general agreement on the possibility of a vortex state witH“?aVY ons to _produce columnar defect_s, _alsq alc_Jng the field
direction. In this note we analyze the dissipation in the Bose

vanishing linear resistivity, and the theory continues in & &5 - -
state of active development. glass superconductor, generalizing the scaling theory to in-
Pinning in superconductors comes in the form of pointclude both longitudinal and transverse currents. Thus, mea-
disorder such as oxygen vacancies and interstitials as well @irements in the simultaneous presence of both longitudinal
correlated disorder such as screw dislocations, twin planesnd transverse currents also provide a clpaalitative dis-
and artificially introduced columnar defects. It was originally tinction between the vortex-glass and Bose-glass scenarios.
proposeathat pointlike disorder would lead to a vortex glass when the theory is applied to ac conductivity beldg,
phase, while the theory in the presence of cglumnar dEffCWe find finite penetration depths parallel and perpendicular
(correlated disordermredicted an anisotropic “Bose-glass fto the columns. Scaling predictsi&continuous jumgo zero

hase’ so called because of an analogy with the theory o : : o
Eosons in superfluids on disordered suggtréMOugh they of the condensate superfluid density describing transport par-
nallel to the columns a3 —Tgg

general phenomena of divergent pinning barriers for vanis = )
ing currents underlies both the vortex glass and the Bose- We assume point disorder can be neglected at high tem-
glass theories, the two theories can and have been qualit@eratures and consider a currenait a finite angleg; with
tively distinguished experimentally via their predictions for the|| axis defined by the columnar defects and the magnetic
the transverse fielth, responsé,i.e., tilting of the applied field B. Following the usual assumption of a scaling theory
magnetic field. While the vortex glass hypothesis predictshat near a continuous transition the diverging correlation
isotropic response functions that are nonsingulaHas~0,  length is the only important length scale we determine the
Bose-glass theory predicts a transverse Meissner effect, wiemperature dependence and the relation between all the
a divergent tilt modulus 4, and a cusplike phase boundary in physical quantities and in particular the IV characteris-
the T-H, phase diagramMore recently the very existence tics. Near a Bose-glass transition dominated by columnar

of the three-dimensional vortex glass phase has been callgfbfects there are two divergent correlation lengths
into question, by computer simulations with finite screening _ ! .
|, ~|T—Tggl and | |~|T—Tgg| "Il and a correlation

and by experiments that find a first-order transition in the' - 3 L

detwinned samplésremoving the natural source of corre- time 7~I7 ~|T—Tgg| *”, where within the Bose-glass
lated disorder. Moreover, experiments that use electron irraphasel, and I measure the corresponding localization
diation to inject point centers in sufficient quantities to de-lengths of the vortex lines. Following Ref. 3 dimensional
stroy this first-order transition find no evidence for a sharpanalysis allows us to relate physical quantities to these cor-
phase transition with universal exponehtsevertheless, es- relations lengths. In three dimensions the free energy density
tablishing whether the correlated or point disorder controlscales as‘~1/(|fl‘|). Analogously gauge invariance of the
the low-temperature physics in a given sample remains afinzburg-Landau theory implies that the fluctuating vector
open and important questién. potential scales according to
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The definitions of the currert=df/JA and the electric field
E=—0A/dt and Eqs(1) allow us also to expressandE in
terms of correlations lengths and time,

1
Ji~ (29)

Ll

1
JH~E (2b)

and

1

ELNIlTZH (3a)
1
1
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where the relation between the correlation time and lengt
T~If was used. Given the above dependencek aind J
we can construct a relation between them, the IV curve, b
equating the appropriate dimensionless quantities. Upon fir
considering separately currents parallel and perpendicular
the field direction, we have

E 1T ~FL(I 13, golcT), (4a)

Eyljl% ~FlL(123)¢,/cT), (4b)
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l|~(TB%c11¢2)|2 wherecy;~B?/8m (B>H,y) is the bulk
modulus of the vortex liquid. Using these relations together
with the temperature dependencel ofin Egs. (5) we find,

pL(T)~|T—Tgg" ¥ 2, (68

p(T)~|T—Tgg "% (6b)

Close to the transitionpj<p, , which is oppositeto the
usual normal-state resistivity anisotropy in layered supercon-
ductors.
Consider a currend at an angled; with the B field and
columnar defect axis. There is now a matrix relatifgo
p. O

‘Jv
{ 0 p

where the off-diagonal elements are zero if we neglect the
very small and poorly understood Hall effect. The electric
field E (in this single parameter scaling thepryill be at a
temperature-dependent anm(T)ztanfl(El/E”), given

by

E,
E|

J
J|

@)

h tan( fg) = tan 6,)/(T—Tge) 2", (8)

where tan@,)=J, /J). Equation(8) predicts that nealgg

¥he angled for Bose-glass superconductor has a universal
%mperature dependence controlled by the Bose-glass trans-
t\9erse localization length exponené’, estimated to

be »'~11%11 Besides providing a direct measurement
of v, Eq. (8 predicts the electric-field direction
Oe(T—The)~ m/2— (T—Tgg)?” cot(fy)— /2, for any cur-
rent direction 6;#0, independent of microscopic details
such as the intrinsic resistivity anisotropy of the normal state.

where ¢o=27hc/2e is the flux quantum and we have set Because vortex-glass dissipation is isotrofaside from the
kg=1. The dimensionless arguments of the scaling functionéntrinsic material anisotropythe corresponding expression
FL andFl are the ratios of the work done by the corre- for vortex glass predicts 8¢ that is asymptotically tempera-
sponding current to depin the vortex line from the columnarture independent a§— Ty and depends continuously on
defect to the thermal energy. The difference in the argumentée direction of the current; .

can be understood microscopically. For a transverse current The significantly faster vanishing of longitudinal resistiv-
J, dissipation arises due the vortex line depinning, whichity, predicted by Eq.(6) as T—Tgg has already been ob-

proceeds via a vortex loop of a typical argax|; lying in
thez—r, plane. In contrast, for a longitudinal currehtthe

served in recent experiments by Seetval.® which finds
v'z' =8.5+ 1.6, consistent with other estimates of=1

dissipation is due to depinning of vortex helices whose pro{Refs. 10 and Ijlandz’ =6.0+ 0.5 However, as is evident

jections span a typical aréé lying in ther, plane.
The scaling functions above, and belowF _ the tran-
sition are very different. Fof >Tgg we expect linear resis-

from Eq. (8), an additional check on the Bose-glass theory
can be made by testing to see if l;im-,-gGGE(T)=Tr/2 for

any 6;# 0. Equivalently, the measurement of the vanishing

tivities E, =p,J, and E;=pJ; characteristic of a normal ratio p|(T)/p, (T) asT— Tgg allows a direct determination

metal. It follows that the positive branches of these scalingmf »’.

functions must vanish linearl . (x)~x, i.e., The scaling Eq(4) predicts nonlinear IV characteristics
at the Bose-glass transitioli= Tgg .23 The requirement that

pL~I”/IZ', (5a there is a well defined IV characteristics demands that the
divergent correlation lengths cancel on both sides of these
puwl/(|i’*2|”)_ (5b)  equations, which can only be satisfied by a specific power-

law behavior ofF*(x) andFl(x) asx—o, leading to
There is excellent theoretiéal and numericaf'! evidence

that vortices in the liquid phasge., the “superfluid” state E,(J )NJ(1+2’)/3 (9a)
of the bosons“diffuse” as they wander along the average L + '

field direction. This implies an important relation between 2422

the localization lengths near Bose-gfasdransition Ej(3~J : (9b)
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The Iongitudinal dissipation is thus weaker and more nonlin-T_;rB—G in the same way as the Corresponding correlation

ear than the transverse one. . lengths above Tgg. Since lim_ 7+ || (T)/IZ(T)
Below the Bose-glass transition the dissipation is highly 5 2 . .. BG
nonlinear and is characterized by potential barriers that di~ 186B~/C11¢p= const., required by finiteness of the boson
verge in the limit of vanishing current, compressibility c,; (vortex line compression modulust
Tec.>* we are led to Eq(14). In the likely event that for
o short-range interaction both superfluid densities vanish in the
E,(J,)~e W™ (109  vortex liquid state forT>Tgg, our analysis therefore im-
plies a striking result: In contrast ta; which vanishes
(%) smoothly asT — T (similar to a conventional superconduc-
Ej(Ip~e =, (10D tor), nl has ajump discontinuityat T=Tgzg analogous to a
whereu, —1/3 asJ, —0 in bulk sample$and the calcula- Stiffness of a system at a Kosterlitz-Thouless transition. The
tion in Sec. Il E of Ref. 8) suggests thaty=1. nljump discontinuity is consistent with EL2b), predicting
The scaling theory can be further generalized to a finitg¢hat o)’'s » dependences at and beldw are identical.
frequencyw by an addition to the scaling functions in Eqs.  Using the above results for the ac conductivities together
(4) of another dimensionless variabtelf At finite fre-  With Maxwell's equations, we find the effective penetration
quency there is linear dissipation at all finite temperatured€Ngthsk er~1/Vw[a(w)| (Ref. 2 for the ac currentd, and
characterized by linear conductivitfe$ Jj (for ©—0) to be, ~Ij~I, and\~I%/I;= const, re-
spectively. Whilex, diverges a§ — Tgg A\ remains finite at
the transition and discontinuously jumps to infinity for

o, (0, T)~17 2t (wl?), (118 o7
The scaling theory for longitudinal currents can be further
cr||(w,T)~Ij'f”i(wlj'). (11b generalized to include the response to the transverse mag-

netic field H, , previously analyzed fod, in Ref. 3. For
Requiring that the conductivities are finiae the Bose-glass  simplicity assuming purely longitudinal curreriy from Eqg.
transition, the scaling theory together with the Kramers-(4) becomes

Kronig relation lead to

1 |12 B2 ~FL(23¢o/cT, HL Ll j/do). (19
cn(w,TBG%(*) , (123
Tle which by arguments similar to those above predicts a cusp-
like phase boundary in th&-H, plane between the Bose
1 glass WherepH[HL<Hj(T)]=0 and the vortex liquid phase
c’H(“"TBG)NW' (120 with pj[H,>H{(T)]>0. This boundary, given by

predicting a universal phase lag between current and voltage,
which in the case o0& is w/2, independent of critical expo-
nents. FOIT<Tgg, ol'H~n§'”/(—iw), implying scaling for

the superfluid number densities describing charge transport

. : IS consistently identical to the phase boundary obtained
by Cooper pairs perpendicular and parallel to the COIumns’based on the criterion of the vanishing of the transverse re-

sistivity p, (T), as must be the case if there is a single tran-
ng ~ 1/ \\Nl/lf , (138 sition to the Bose-glass phase.
Equation (15) can also be used to predict hgw(H )
vanishes a$l, —0, with T=Tgg,

HS(T)~+|T—Tagl®", (16)

ni~1;/12 = const., (13b

asT—Tgg consistent with the corresponding Josephson re- )
lations for superfluid densities in an anisotropic supercon- p||(T=T56,HL)~|HL|Z i3 (17
ductor.
More precisely, foml we expect the relationship This result is to be contrasted with the more slowly
vanishing transverse linear resistivitp, (T=Tgg,H )
_ H _ mT 1,(T) ~|H,|® ~2B found in Ref. 3.
I|mTHTanS(T)=I|mTHTgG?l—ﬁ= const, (14
+ We are grateful to the authors of Ref. 9 for a copy of their
where we takem to be the mass of a Cooper pair, and work prior to publication. D.R.N. acknowledges financial
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decay of the transverse BCS order parameter correlatioMlRSEC program through Grant No. DMR-9400396 and
function!* We have assumed in the spirit of scaling thatthrough Grant No. DMR-9417047. L.R. was supported by
[)(T) andl,(T) are the only diverging length scales nearthe National Science Foundation through Grant No. DMR-
Tgs. The lengthsl(T) and |, (T) must then diverge as 9625111.
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