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An effective electronic Hamiltonian for transition-metal oxide compounds is presented. For Mn oxides, the
Hamiltonian contains spin-2 ‘‘spins’’ and spin-3/2 ‘‘holes’’ as degrees of freedom. The model is constructed
from the Kondo-lattice Hamiltonian for mobileeg electrons and localizedt2g spins, in the limit of a large
Hund’s coupling. The effective electron-bond-hopping amplitude fluctuates in sign as the total spin of the bond
changes. In the large spin limit, the hopping amplitude for electrons aligned with the core ions is complex and
a Berry phase is accumulated when these electrons move in loops. The model is compared with the standard
double-exchange Hamiltonian. Both have ferromagnetic ground states at finite hole density and low tempera-
tures, but their critical temperatures could be substantially different due to the frustration effects induced by the
Berry phase.@S0163-1829~96!51634-6#

The discovery of giant magnetoresistance effects in ferro-
magnetic metallic oxides R12x Xx MnO3 ~where
R5La,Pr,Nd; X5Sr,Ca,Ba,Pb) has triggered renewed atten-
tion into these compounds.1 A decrease in resistivity of four
orders of magnitude has been observed in thin films of
Nd0.7Sr0.3MnO3 at fields of;8 T.2 The phase diagram of
La12xCaxMnO3 is very rich with ferromagnetic~metal and
insulator! phases, as well as regions where charge ordering is
observed.3 The magnetic and electronic properties of these
manganese oxides are believed to arise, at least in part, from
the strong coupling between correlated itinerant electrons
and localized spins, both of 3d character. The Mn31 ions
have three electrons in thet2g state forming a localS53/2
spin, and one electron in theeg state which hops between
nearest-neighbor Mn ions, with double occupancy sup-
pressed by Coulombic repulsion. The widely used Hamil-
tonian to describe manganese oxides is4

H52t (
^mn&s

~cms
† cns1H.c.!2JH(

n
sn•Sn , ~1!

where the first term is theeg electron transfer between
nearest-neighbor Mn-ions at sitesm,n, while the second term
is the ferromagnetic Hund coupling between theS53/2 lo-
calized spin Sn and the mobile electron with spinsn
(JH.0). A Coulombic repulsion to suppress double occu-
pancy in the itinerant band is implicit. The on-site Hund
coupling energy is larger than the conduction bandwidth fa-
voring the alignment of the itinerant and localized spins. For
Mn31, the resulting spin is 2, while for Mn41 ~vacanteg
state! the spin is 3/2.

Since the study of Hamiltonian Eq.~1! is a formidable
task, simplifications have been introduced to analyze its
properties. A familiar approach is the use of the double-
exchange Hamiltonian,4–9where theeg electrons move in the
background of classical spinsSn

cl that approximate theS
53/2 almost localizedt2g electrons. The conduction electron
effective hopping between sitesm and n used in previous

work is tmn
eff 5tA11(Sm

cl
•Sn

cl/S2), whereS is the magnitude of
the classical spin.4,6 Using this model, the ferromagnetic
critical temperature,Tc , was recently estimated.9 Since the
result was much larger than experimentally observed, the
need for nonelectronic interactions to describe Mn oxides
was remarked.9,10

The purpose of this paper is to reexamine the largeJH
limit of model Eq. ~1!. We derive an effective Hamiltonian
for Mn oxides which is valid for the quantum mechanical
case ofS52 Mn31 ions. Actually, the Hamiltonian is dis-
cussed for an arbitrary spinS. The ideas followed in this
paper are a generalization of the calculation recently pre-
sented for NiO compounds, where ‘‘holes’’ doped into aS
51 background carryS51/2 and they move following non-
trivial hopping processes.11 At largeS, the model described
here contains a complex effective coupling for electrons
whose spin is aligned with the core spins. These electrons
acquire a phase when they move in closed loops, an effect
not taken into account in previous literature for Mn oxides.
Although the double-exchange model is not recovered at
largeS, the presence of a ferromagnetic phase at low tem-
peratures is likely even in the revised model and most of the
differences between double-exchange and the model will oc-
cur at finite temperatures.

In the limit JH→`, it is natural to restrict the Hilbert
space corresponding to a given site to spin eigenstates
with the maximum allowed spinS8, and projection
m852S8, . . . ,S8, compatible with the number of electrons
at that site. Thus, the ions are in a state either withS85S, if
the eg level is occupied, or ofS85S21/2, if there is noeg
electron. The corresponding degrees of freedom will be re-
ferred to as ‘‘spins’’ and ‘‘holes,’’ respectively. They are
coupled by standard nearest-neighbor Heisenberg interac-
tions, plus ‘‘hopping’’ terms for the movement of holes, re-
specting the largeJH approximation. The site states will be
denoted byuS8,m8&n . For charge-transfer compounds, the
absence of aneg electron can be considered as caused by the
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Zhang-Rice singlet formation between oxygen andd
electrons.11 Thus, our results are not restricted to Mott-
Hubbard compounds but are valid for transition metals in
general in arbitrary dimensions, and contain as a special case
the well-knownt-J model widely used for cuprates.

The hopping amplitudetmn for nearest-neighbor sitesm
and n certainly depends on the values of the spin at both
sites, as well as on their projections. Let us assume that at
site m we have a spinS85S, while at siten there is a
S85S21/2 hole. The eigenstates of themn bond can be
labelled by the total bond spin,ST , and its projection,MT ,
and they admit an expansion in the basis compatible with
JH→` as

uST ,MT̃& i

5 (
mm8

uS,m&mUS2
1

2
,m8L

n

CSS,S2
1

2
,m,m8,ST ,MTD ,

~2!

where C are Clebsch-Gordan~CG! coefficients, andm
(m8) runs from2S to 1S @2(S2 1

2) to 1(S2 1
2)]. Let us

consider Eq.~2! as theinitial state, i.e., the one before the
hopping occurs. Thefinal state uST ,MT̃& f , where the hole
has moved fromn to m, admits the same decomposition but
with the site indices permuted. Since the hopping Hamil-
tonianHt @first term in Eq.~1!# is a scalar, the matrix element
necessary to evaluate the effective hopping amplitude is

t~ST ,MT!5 f^STMT̃uHTuSTMT̃& i . ~3!

Using the Wigner-Eckart theorem and after long, but
straightforward, CG algebra it can be shown that

t~ST ,MT!5t
ST11/2

2S
~21!2S2ST21/2. ~4!

The amplitude of this hopping, i.e.ut(ST ,MT)u, is in agree-
ment with the well-known results used by Zener,5 Anderson
and Hasegawa,4 and de Gennes6 to introduce the double-
exchange model. Actually, it can be easily shown that for
any value of the spin the following operatorial equality
holds:

ST11/2

2S
5

1

A2
A11

1

2S
1
Sm•Sn
S2

, ~5!

whereSm ,Sn are spin operators that can act on a spin or a
hole. However, note the presence of a nontrivial
ST-dependent sign in the effective hopping Eq.~4!.12We will
argue here that the presence of this sign is crucial for a
proper quantum mechanical treatment of the largeJH limit of
Eq. ~1!.

To better understand this nontrivial sign, consider, e.g.,
the special case of Eq.~1! where the localized degree of
freedom has spin 1/2. Thus, at the linkmn used in Eqs.
~2!–~4!, and working at largeJH , the problem reduces to
two electrons forming a spinS851 in one site, interacting
with one electron~i.e., aS851/2 hole! at the other site. Let
us verify Eq.~4! for some special cases using Eq.~1!: ~1! If
ST53/2 and MT53/2, moving the eg electron across
the mn bond produces a matrix element 1, in agreement

with Eq. ~4!; ~2! Suppose now thatST51/2 andMT51/2.
Using CG coefficients, the initial state before the hopping
occurs can be written asu1/2,1/2̃& i5(1/A3)u1/2,1/2&mu1,0&n
2(A2/3)u1/2,21/2&mu1,1&n , in the basis where at sitem
there is aS51/2 hole and atn aS51 spin. Applying explic-
itly the hopping HamiltonianHt we obtainHtu1/2,1/2̃& i
52(t/2)u1/2,1/2̃& f2(tA3/2)u0,0&mu1/2,1/2&n . The last
term is not favored by the strong Hund’s coupling, and thus
the matrix element relevant for the low energy effective
Hamiltonian is simply f^1/2,1/2̃uHtu1/2,1/2̃i&52t/2. The
amplitude has the expected absolute valueut(ST ,MT)u com-
patible with the double-exchange model. However, the ma-
trix element is actuallynegative, compatible with our result
Eq. ~4!. The negative sign originates inu1/2,1/2̃& i , where in
order to make a total spin-1/2 combination out of individual
spins 1/2 and 1, amplitudes of different signs are needed.
While such effects are natural in quantum mechanical pro-
cesses involving state overlaps, they are not included in the
double-exchange model. These signs are important to prop-
erly reproduce the physics of model Eq.~1! at largeJH even
close to a ferromagnetic configuration since just small devia-
tions from a fully polarized link can involve a change in the
sign of the hopping. If the sign is included, the hopping
amplitude mean value vanishes at large spinS, while it is
finite in the double exchange approximation.

While theST basis Eq.~2! is useful to find the hopping
amplitudes, the effective Hamiltonian for the complete lat-
tice has a more intuitive form in the basis of spin eigenstates
at each site. Using Eq.~5! we can write an effective hopping
Hamiltonian as a polynomial

Heff52t(
^mn&

PmnQS~y!, ~6!

wherePmn is an operator that permutes the states at sites
m andn, y5Sm•Sn /S(S21/2), andSm ,Sn acts either on the
localized spin or the hole~actual spinsS andS21/2, respec-
tively!, as explained before.QS(y) is spin-Sdependent and it
can be found iteratively starting from the lowest spin case
using the relation

QS~y!52aSQS21/2@bS~21~2S21!y!/~2S11!#

1@11aSQS21/2~bS!#

3 )
l51

2S21
S@2S111~2S21!y#2 l 2

4S22 l 2
, ~7!

where we usedQ1/2(y)51, aS5(2S21)/2S, and bS
5S(2S11)/@(S21)(2S21)#. For S51, this implies
Q1(y)5(11y)/2 which correctly reproduces the Hamil-
tonian recently derived for doped Y2BaNiO5 compounds.

11 If
only the absolute value of the matrix elements Eq.~3! would
have been used, thenQ1(y) becomes instead (51y)/6. This
apparently small difference is nevertheless of much rel-
evance: in the properQS51(y) polynomial, the hopping
u1/2,21/2&mu1,1&n→ u1,1&mu1/2,21/2&n has zero amplitude,
compatible with Hamiltonian Eq.~1!, where the spin projec-
tion at each site can only change in units of 1/2, after one
eg electron moves. However, if the hopping amplitudes signs
are neglected, such unphysical processes become incorrectly
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allowed. Such hidden sum rules of the Kondo-lattice model
are also illustrated when the effective Hamiltonian acts over
an arbitrary link state. The result is

HeffuS,m&muS21/2,m8&n

52t@A~S,m,m8!uS21/2,m11/2&muS,m821/2&n

1B~S,m,m8!uS21/2,m21/2&muS,m811/2&n],

where A(S,m,m8)5A(S2m811/2)(S2m)/2S and
B(S,m,m8)5A(S1m811/2)(S1m)/2S, clarifying the hop-
ping processes that are allowed.

For the particular case ofS52, which would be appli-
cable toR12xXxMnO3, the polynomial becomes

QS52~y!5212
5

4
y1

7

4
y21

3

2
y3. ~8!

Thus, we propose Eqs.~6! and ~8! as the effective Hamil-
tonian for Mn-oxides in the largeJH limit.13 It is the gener-
alization to Mn oxides of thet-J model for Cu oxides. Ours
is a fully quantum mechanical model for spin 2 Mn31 that
takes into account the proper signs of the effective hopping
amplitudes. Unlike the double-exchange model, there are no
classical spins in our effective model. However, note that for
a small exchangeJ among the spins~in our approach there is
always an implicit Heisenberg coupling between ions! and a
small hole density, model Eq.~8! favors a ferromagnetic
ground state to improve the hole kinetic energy, as the
double-exchange model does. Recent many-body numerical
results applied to the case ofS51 in one dimension11 have
indeed detected a robust ferromagnetic state at zero tempera-
ture for a wide range of densities.14

To gain further intuition about the relevance of the signs
in the effective hopping Eq.~4!, we studied the Kondo-like
Hamiltonian Eq.~1! for the special case where at large Hund
coupling the localized spins are classical. Note that it is not
well justified to apply this limit to manganites, since the
neglected spin flip processes have amplitude 1/A2S @see Eq.
~5!# which is not small forS52. Nevertheless, to establish a
connection with the double-exchange model it is necessary
to work at largeS. In this limit, it is convenient to rotate the
eg electrons such that their spin quantization axis is parallel
to the core spins.9 Since the Hund’s coupling is large, in the
rotated basis only the ‘‘spin-up’’ component of the hopping
matters, and the nontrivial effects of the core spins appear in
the modulation of the hopping. In this limit the Hamiltonian
becomes

H52(
Šlm‹

~ t lmdl
†dm1H.c!, ~9!

where dn5cos(un/2)cn↑1 isin(un/2)exp(ifn)cn↓ are rotated
electron operators with spin up, and the hopping amplitude is
a complex number given by

t lm5cosS u l
2 D cosS um

2 D1sinS u l
2 D sinS um

2 Dexp@ i ~fm2f l!#.

~10!

When electrons move with this nontrivial hopping they ef-
fectively collect a phase. Alternatively, the problem can be

rephrased as that of electrons moving with hoppingut lmu in
the presence of a nonuniform gauge fieldeiAlm which is the
phase of the hopping.15 This phase can have important inter-
ference consequences for closed loops. It is likely that the
eg electron mobility in Mn oxides will be reduced due to this
quantum mechanical effect. Actually, the double-exchange
model is recovered from Eqs.~9! and ~10! only if the abso-
lute value oft lm is considered since the following identity
holds:

ut lmu5A(11cos~u l!cos~um!1sin~u l!sin~um!cos~fm2f l!)/2

5cos~u lm/2!,

whereu lm is the angle between the core spins atl andm.16

To illustrate the importance of keeping the complex na-
ture of the hopping amplitude we have studied numerically
Hamiltonian Eq.~9! with both t lm andut lmu for the particular
cases of 1 and 2 electrons moving on a 232 plaquette~4
sites on a square!. Here in principle we need eight angles to
characterize a core spin configuration, but three of them cor-
respond to a rigid rotation of the whole system. Then, to
study this problem only five angles are needed. The four
~six! eigenvalues of Eq.~9! corresponding to one~two! par-
ticles can be found exactly for an arbitrary set of angles, and
we average over about two million randomly selected core
spin configurations. Using this procedure we calculated the
spectral density, i.e., the normalized probability distribution
for the eigenvalues. The results are shown in Figs. 1~a! and
1~b!. For the case where the proper hopping Eq.~10! is used,
a large accumulation of weight appears at low energy@Fig.
1~a!# where the spectral density grows sublinearly. On the
other hand, when only the absolute value of the hopping is
used in Fig. 1~b!, the spectral density grows only linearly. To
the extent that the results for the square plaquette are quali-
tatively representative of the bulk limit and other dimen-
sions, the low-energy accumulation of states could destabi-
lize the ferromagnetic ground state at relatively low
temperatures in model Eq.~9! with a complex hopping
amplitude.17 This is reasonable since the phase of the hop-

FIG. 1. Spectral densityr(E) of nonvanishing energies vs en-
ergyE ~in units of t! in the largeS limit of model Eq.~9! working
on a 232 plaquette with two electrons. The result is an average
over two million core spin angle configurations:~a! using the proper
hopping amplitude Eq.~10!; ~b! using ut lmu ~double exchange!.
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ping amplitude produces an effective random magnetic field,
which could induce low-energy modes and even localization
effects in the bulk18 in the phase competing with ferromag-
netism atT.Tc . Recent work in one-dimensional NiO mod-
els has indeed shown that the bandwidth of one hole at half
filling is much reduced moving from a Cu background~spin
1/2! to a Ni background~spin 1!.11 In other words, while
both model Eqs.~9! and ~10! for classical core spins and
model Eq.~8! for theS52 systems favor the presence of a
ferromagnetic state in the ground state~zero temperature!,
they will likely differ with the double-exchange model in the
value ofTc . Texture states of low energy may have such a
large degeneracy that the ferromagnetic state could be rap-
idly destabilized with temperature.19 Thus, contrary to Ref. 9
we believe that the Kondo-like model Eq.~1! may still de-
scribe basic aspects of the physics of the Mn oxides. This
issue deserves further work.

Summarizing, we have derived a one band electronic
model for the Mn oxides valid in the limit of a large Hund’s

coupling. The model is the analog of thet-J model used for
Cu oxides and of a recently introduced model for NiO
chains.11 A generalization for arbitrary spinS is given. At
largeS, the electrons move effectively with a complex hop-
ping amplitude. Our Hamiltonian differs in a fundamental
way from the double-exchange model in that the electrons
can now acquire nontrivial phases on closed loops, favoring
interference, localization, and a small ferromagneticTc . We
believe that future theoretical work for Mn oxides should use
the proper complex hopping amplitude Eq.~9! rather than
the double-exchange model, or, even better, use the finiteS
model Eqs.~6! and ~8! proposed in this paper.

We thank A. Moreo, N. Bonesteel, E. Miranda, and P.
Wurth for discussions. E.D. is supported by Grant No. NSF-
DMR-9520776. E.M.-H. was supported in part through
‘‘Sonderforschungsbereich 341, Deutsche Forschungsge-
meinschaft.’’ We thank the National High Magnetic Field
Lab for additional support.

1S. Jinet al., Science264, 413 ~1994!, and references therein.
2G. C. Xionget al., Appl. Phys. Lett.66, 1427~1995!.
3P. Schifferet al. ~unpublished!.
4P. W. Anderson and H. Hasegawa, Phys. Rev.100, 675 ~1955!.
5C. Zener, Phys. Rev.82, 403 ~1951!.
6P. G. de Gennes, Phys. Rev.118, 141 ~1960!.
7N. Furukawa, J. Phys. Soc. Jpn.63, 3214~1994!; ~unpublished!.
8J. Inoue and S. Maekawa, Phys. Rev. Lett.74, 3407~1995!.
9A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev.
Lett. 74, 5144~1995!.

10H. Y. Hwanget al., Phys. Rev. Lett.75, 914 ~1995!.
11E. Dagotto, J. Riera, A. Sandvik, and A. Moreo, Phys. Rev. Lett.

76, 1731~1996!.
12This sign is not contained in the Hamiltonian matrix~A6! in the

Appendix of Ref. 4.
13The polynomial for spin 3/2 is QS53/2(y)52

1
2

1
3
4 y1

3
4 y2. Expressions forS.2 can be easily obtained from

the recursive formula Eq.~7!.
14J. Riera and E. Dagotto~unpublished!.
15In the context of theU5` Hubbard model in two dimensions, B.

Doucot and R. Rammal, Phys. Rev. B41, 9617 ~1990!, have
discussed effects somewhat similar to those found here but ad-
dressing the possible instability of the Nagaoka phase in one
band models.

16Hints that the classical limitS→` may not be smooth were dis-
cussed in, J. Zaanen, A. M. Oles, and P. Horsch, Phys. Rev. B
46, 5798~1992!.

17Note, however, that the spin waves are not effected by the Berry
phase.

18C. Pryor and A. Zee, Phys. Rev. B46, 3116~1992!; S.-C. Zhang
and D. Arovas, Phys. Rev. Lett.72, 1886~1994!, and references
therein.

19Recent neutron scattering data appear to support this scenario@J.
Lynn et al. ~unpublished!.#
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