
Superconductor-insulator transition in a disordered electronic system

Nandini Trivedi
Materials Science Division 223, Argonne National Laboratory, Argonne, Illinois 60439

and Theoretical Physics Group, Tata Institute of Fundamental Research, Bombay 400005, India*

Richard T. Scalettar
Department of Physics, University of California, Davis, California 95616

Mohit Randeria
Materials Science Division 223, Argonne National Laboratory, Argonne, Illinois 60439

and Theoretical Physics Group, Tata Institute of Fundamental Research, Bombay 400005, India*
~Received 24 May 1996!

We study an electronic model of a two-dimensionals-wave superconductor in a random potential using
quantum Monte Carlo simulations. The superfluid density and the strength of the delta function in the optical
conductivity are found to vanish beyond a critical disorder. We calculate the temperature-dependent resistivity
rdc(T) for a highly disordered interacting Fermi system. Using this we identify the nonsuperconducting state
as an insulator.@S0163-1829~96!51830-8#

The problem of the effect of strong disorder on supercon-
ductivity and of the resulting superconductor~SC!-
insulator~I! transition in low-dimensional systems has been
studied experimentally for a number of years.1 Theoretically,
the problem is challenging because of the complicated inter-
play between interactions and disorder.2 Within mean-field
theory,3 superconductivity persists essentially all the way to
the site localized limit due to an inadequate description of
the disorder-induced fluctuations of the local order param-
eter. Much of the recent theoretical effort has focused on the
dirty boson problem4 which is expected to capture the essen-
tial physics of these fluctuations. The boson models which
are argued to describe universal properties in the vicinity of
the SC-I transition are also more amenable to analytical4 and
numerical5,6 studies. However, if one is interested in charac-
terizing the phases, and testing the universality of the con-
ductance at the transition, one has to go back to a description
in terms of the electronic degrees of freedom.

As a first step in this direction we use quantum Monte
Carlo ~QMC! simulations to study the simplest fermionic
problem—the attractive Hubbard model with onsite
disorder—which can have superconducting, insulating, and
~possibly! metallic phases. Our main results are the follow-
ing.

~1! At low temperatures, we calculate the superfluid stiff-
nessDs , a measure of the Meissner effect, and the charge
stiffnessD, related to the infinite conductivity. We find that
Ds5D, and that both decrease with increasing disorderV.
Beyond a criticalVc the system becomes nonsuperconduct-
ing.

~2! We use a simple analytic continuation method to ex-
tract theT-dependent dc resistivityrdc(T) from QMC data.
This method is argued to be valid for disordered systems,
and independent checks on its validity are presented.

~3! We find that forV.Vc the system shows insulating
behavior withdrdc/dT,0.

~4! The resistivity as a function ofT andV is also used to
independently estimate the critical disorderVc , which is in
good agreement with that obtained fromDs .

~5! Our results are consistent with a direct SC-I transition
in two dimensions~2D!, without an intervening metallic
phase.

Our model is defined by the Hamiltonian
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We set t51 and measure all energies in units oft. Here
cis is a fermion destruction operator at sitei with spin s,
nis5cis

† cis , and the chemical potentialm fixes the average
density ^n&. The site energiesv i are independent random
variables with a uniform distribution over@2V,V#. The lat-
tice sum ^ i j & is over near neighbor sites on a two-
dimensional square lattice. Note that this model focuses on
the localization induced by the disorder; it does not, how-
ever, incorporate the disorder-dependence of the effective
electron-electron interaction.2

QMC simulations have played an important role in the
study of model~1! in the absence of disorder (V50): in
elucidating its phase diagram7 and its anomalous normal
state behavior.8 Here we use the same QMC technique,9 to
study the disordered case, which is still free of the the ferm-
ion sign problem.

We shall focus on various quantities obtained from the
current-current correlation functionL.10 The ~paramagnetic
piece of the! current operator is defined as

j x~ lt!5eHtS i t(
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The impurity averagedLxx is then given by

Lxx~q; ivn!5(
l
E
0

b

dt^ j x~ l,t! j x~0,0!&eiq• le2 ivnt, ~3!

wherevn52np/b, and^•••& denotes a thermal average at a
temperatureT5b21 for a given realization of disorderand
an average over an ensemble of such realizations.

Gauge invariance requires that the longitudinal part of
L satisfy the equality10,11

LL[ lim
qx→0

Lxx~qx ,qy50;ivn50!52Kx , ~4!

whereKx5^2t(s(cl1 x̂,s
† c

l,s
1cl,s

† c
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)&, the kinetic en-

ergy in thex direction, represents the diamagnetic part of the
response. We have verified this equality as a nontrivial check
on our numerics; see Fig. 1~a!.

The superfluid stiffnessDs is obtained from the transverse
current-current correlation function10,11

LT[ lim
qy→0

Lxx~qx50,qy ; ivn50!,

Ds5p@2Kx2LT#. ~5!

Results12 for LT, LL, and2Kx are plotted in Fig. 1~a! for
U524, T50.10, and̂ n&50.875 as a function ofV. LT is
estimated by using a linear extrapolation of the two smallest
qy values. In Fig. 1~b! we plotDs , which decreases mono-
tonically with disorder. There is a critical valueVc beyond
which Ds50 and the system becomes nonsuperconducting.
Note thatDs andD ~to be defined below! were measured at
T low enough that measurements of^ci↓ci↑cj↑

† cj↓
† & confirm

that the pairing correlations are well formed across the entire
lattice.

We now turn to the conductivity Res(v)
5Dd(v)1s reg(v). The first term represents the infinite dc
conductivity of a superconductor, with the charge stiffness
~Ref. 10! D5p@2Kx2 limv→0ReLxx(q50;v1 i01)#. The
regular part of the conductivity is given bys reg(v)
5ImL(q50;v)/v, where L(q;v1 i01)5ReL(q;v)
1 i ImL(q;v), omitting thexx subscripts for simplicity. To
study the dc limit we will use two independent methods. We
first use the Matsubara correlation function

D~vn!5p@2Kx2Lxx~q50,ivn!#, ~6!

shown in Fig. 2. From the spectral representation for
L( ivn) and the sum rule*0

`dv Res(v)5p(2Kx)/2 we ob-
tain

D~vn!5D12vn
2E

0

`

dv s reg~v!/@v21vn
2#. ~7!

It follows thatD(vn) increases monotonically withn from
D(vn→0)5D to D(vn→`)5p(2Kx) ~not shown in Fig.
2 but verified in the data!.

From the extrapolationD(vn→0) we get a nonvanishing
D, and hence infinite dc conductivity for low disorder

FIG. 1. ~a! The kinetic energy,2Kx , and transverse and longi-
tudinal current-current correlation functions,LT andLL, are shown
as a function of disorderV. LL tracks2Kx as required by gauge
invariance. The difference betweenLT and2Kx signals a nonzero
superfluid density@see Eq.~5!#. ~b! The superfluid densityDs and
charge stiffnessD ~a measure of infinite dc conductivity! as a func-
tion of disorderV. Ds5D for all V.

FIG. 2. D(vn) as a function ofn5vn/2pT.0, for fixed
T50.1 and various disorder strengths. The extrapolated value
D(vn→0) is shown as a solid symbol atn50. For smallV this
extrapolation yields a nonzeroD indicating a SC. For the metallic
systemV53.25(.Vc) we obtainsdc from the slope at smalln; see
text.
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(V,Vc) superconducting systems; see Fig. 2. TheV depen-
dence ofD is shown in Fig. 1~b!, and within the accuracy of
our numerics, we find thatD5Ds for all disorder strengths.
For V.Vc , we findD50. Note that, in contrast to nonran-
dom systems~Ref. 10!, D atT50 cannot be used to charac-
terize the nonsuperconducting state forV>Vc since neither
dirty metals nor insulators have ad function ins(v).

We must therefore find a way to extract the
T-dependent resistivity to distinguish a metal from an insu-
lator. From the fluctuation-dissipation theorem we obtain

Lxx~q;t!5E
2`

1`dv

p

exp~2vt!

@12exp~2bv!#
ImLxx~q;v!, ~8!

for 0<t<b. To obtain ImL from L(q;t), which is com-
puted in the QMC, requires a numerical inversion of the
Laplace transform. We instead use a technique8 valid for
T!V, whereV is the scale on which ImL deviates from its
low frequency behavior (ImL.vsdc). ProvidedT!V, Eq.
~8! simplifies to

Lxx~q50;t5b/2!5psdc/b
2, ~9!

which yields the dc conductivity. We note that this simplifi-
cation maynot be valid for nonrandom systems: e.g., for a
Fermi liquid the scaleV.1/te2e;N(0)T2 so one can never
satisfyT!V at low T. However, for the highly disordered
state that we study, we expect the scaleV to be set by the
disorderV and to beT independent, so that Eq.~9! is valid.
We will present below additional consistency checks of this
approximation.

In Fig. 3~a! we plot the dc resistivityrdc51/sdc as a
function of temperature for various degrees of disorder. We
use units wheree25\51 so that the quantum of resistivity
rQ5h/(4e2)5p/2. For small disorder we see thatrdc de-
creases with loweringT; with increasing disorder theT de-
pendence is altered qualitatively: for largeV we see that
drdc/dT,0, strongly suggestive of insulating behavior
(rdc5` at T50).

To see where this transition takes place it is useful to
replot the data of Fig. 3~a! asrdc as a function of the disorder
strengthV for different temperatures. This is done in Fig.
3~b!; from the crossing point of the various curves we esti-
mate the critical disorderVc separating the SC from the in-
sulator. We note that our results forrdc(T) @andD(vn) dis-
cussed below# for uUu53,4,6 are consistent with a direct
SC-I transition in 2D, without an intermediate metallic
phase.13

The curves in Fig. 3 are remarkably similar to those found
in the experimental literature,1 and represent the first QMC
calculations of the T-dependent resistivity in a disordered,
interacting fermi system.

In the SC state the form of Res(v) changes due to the
appearance ofDd(v) below Tc , and Eq.~9! is not appli-
cable. Thus it cannot be used to see that the low disorder
systems in Fig. 3~a! do indeed go superconducting at lower
temperatures. To see the SC behavior explicitly, we recall
the D(vn) analysis presented above, which works best at
low T since it involves anvn→0 extrapolation. As seen
from the results of Figs. 1~b! and 2 the low disorder systems
(V,3) clearly show a nonzeroD indicative of infinite dc
conductivity.

As an independent check on the results of Eq.~9! we
estimate the conductivity of the metal~with V5Vc), sepa-
rating the SC from the insulator, from the smallvn behavior
of D(vn). The metal has a finite dc conductivity
Res(v→0)5sdc, which leads toD(vn)5psdcuvnu for
vn→0, using Eq.~7!. Thus the slope ofD(vn) at small
vn may be used to estimate the conductivity; see Fig. 2
where the best linear fit to the points atn51,2,3 is shown.
The value of rdc5sdc

21 obtained using this method, at
T50.10 forV53.25(.Vc), is shown in Fig. 3~a!. This low
T estimate is in excellent agreement with the results of Eq.
~9! at higher temperatures.

It is also worth emphasizing the consistency of results
obtained from different observables. The criticalVc may be
estimated in several independent ways. Low temperature es-
timates ofVc obtained from the vanishing ofDs ~Ref. 14!
and ofD are clearly identical@see Fig. 1~b!#. In addition,
D(vn) is consistent with metallic behavior, i.e., a linear
approach to the origin, only forV.Vc ; the SC systems
have a nonzero interceptD and the insulators do not ap-
proach the origin linearly. Another estimate ofVc comes
from the higher temperature crossing plots@see Fig. 3~b!#.

FIG. 3. ~a! dc resistivity, obtained from Eq.~9!, as a function of
temperature, with disorder strengthV51 ~lowest curve!, 1.5, 2, 2.5,
3, 3.25, 3.5, 4, 4.5, and 5~top curve!. The point atT50.10, for
V53.25.Vc , is obtained fromD(vn); see Fig. 2.~b! rdc as a
function of disorderV for various temperaturesT. Representative
error bars are shown.
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On the 838 systems studied, we find excellent agreement
between these methods. For instance, foruUu53, Vc53.5
60.7 ~from Ds) and Vc53.860.5 ~from rdc); while for
uUu54, Vc53.260.7 ~from Ds) and Vc53.560.5 ~from
rdc).

We can also estimate the resistance atVc using Eq.~9!
and independently from the slope ofD(vn), both of which
give very similar results. We findr(Vc)/rQ54.161.3 ~for
uUu53); 5.261.5 ~for uUu54); and 8.362.0 ~for uUu56).
The finite lattice estimate ofr(Vc) appears to depend on the
strength of the attractive interactionuUu ~as a function of
which one expects a crossover from a fermionic to a bosonic
regime in this model; for the nonrandom models, see Ref. 8!.
The dirty boson model predicts15 that r(Vc) is universal,
while the experiments1 show sample and material depen-
dence, with some indications1~d! that the fermionic quasipar-
ticles are responsible for the nonuniversality of this quantity.

A finite-size scaling analysis of QMC data can clearly

answer the question of universality ofr(Vc), and is currently
being pursued. What we have shown here is that reliable
low-temperature calculations in a disordered, interacting
fermion model are feasible in the vicinity of a quantum criti-
cal point, and one can determine experimentally interesting
quantities such as the superfluid density andT-dependent dc
resistivity.
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