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The temperature dependence of the uniform susceptibility and the ground-state energy of antiferromagnetic
Heisenberg ladders with up to six legs has been calculated, using the Monte Carlo loop algorithm. The
susceptibilities of even-leg ladders show spin gaps while those of odd-leg ladders remain finite in the zero-
temperature limit. For small ratios of intra- to interleg couplings, odd-leg ladders can be mapped at low
temperatures to single chains. For equal couplings, the logarithmic corrections at low temperatures increase
markedly with the number of legs.@S0163-1829~96!50630-2#

Recently, antiferromagnetic Heisenberg spin-1/2 ladder
systems have attracted much interest, following the discov-
ery of a finite spin gap in the two-leg ladder.1 Later investi-
gations showed that the crossover from the single Heisen-
berg chain to the two-dimensional~2D! antiferromagnetic
square lattice, obtained by assembling chains to form ‘‘lad-
ders’’ of increasing width, is far from smooth.2 Heisenberg
ladders with an even number of legs~chains!, nl , show a
completely different behavior than odd-leg ladders. While
even-leg ladders have a spin gap and short range correla-
tions, odd-leg ladders have no gap and power-law correla-
tions. Based on density matrix renormalization group
~DMRG! studies, Whiteet al.3 gave an explanation of this
fundamental difference in the framework of the resonant va-
lence bond~RVB! picture.4 These theoretical predictions
have been verified experimentally, in materials such as
(VO!2P2O7 ~Ref. 5! and the homologous series of cuprates
Srn21Cun11O2n ,

6 which contain weakly coupled arrays of
ladders.

Previous numerical studies, using exact diagonalization,1,7

the quantum Monte Carlo~QMC! world line algorithm,8 or
the quantum transfer matrix method9 were restricted to small
systems or could not be applied at low temperatures. Using
the new QMC loop algorithm,10 we overcome these limita-
tions and are able to investigate the systematical dependency
of the physical behavior onnl , including very low tempera-
tures and five- and six-leg ladders. We study the mapping of
the three- and five-leg ladders to single chains. In the low-
temperature regime, for small ratios of intra- to interleg cou-
pling, odd-leg ladders can be mapped to nearest-neighbor
chains, while for equal couplings an effective model with
longer range interactions is needed. In the zero-temperature
limit, we find that the susceptibility per rung of the odd-leg
ladders remains approximately constant independently of
nl . This means that in this limit, the susceptibility per site
goes to zero for both even- and odd-leg ladders asnl in-
creases, in contrast to the finite value of the susceptibility per
site for the 2D lattice.

In this paper we consider ladders withnl legs
(nl51,2, . . . ,6) of length L. The Hamiltonian of such
spin-1/2 systems

H5J(
↔

SiW •SjW1J'(
l

SiW •SjW ~1!

is defined onL3nl lattices. The sum marked by↔ (l) runs
over nearest neighbors along the legs~rungs!. We assumed
periodic boundary conditions in the longitudinal direction of
the ladder.J andJ' are positive, corresponding to antiferro-
magnetic coupling.

Using the QMC loop algorithm with improved estimators,
we have calculated the temperature dependence of the uni-
form susceptibilityx and the internal energyE. The QMC
loop algorithm was first developed by Evertzet al.10 for the
six-vertex model, but can also be applied to quantum spin
systems.11,12The QMC loop algorithm is an improved world
line algorithm. The updates are global and no longer local as
in the conventional Metropolis world line algorithm. This
has the great advantage that the autocorrelation times are
reduced by several orders of magnitude. It was thus possible
to simulate very long ladders to very low temperatures. We
considered systems up to 10036 sites and reached tempera-
tures down toT5J/50 without major problems. All results
are extrapolated to a Trotter time intervalDt→0. The appli-
cation of improved estimators~see, e.g., Ref. 12!, further
reduces the variance of the measured observables dramati-
cally.

In Table I the ground-state energies of the different lad-
ders in the isotropic case (J5J') are presented. The ener-
gies were obtained as follows: considering ladders of lengths
L, we first extrapolate toT→0. For the odd-leg ladders we
use the form

EL~T!5EL~0!1aT2, ~2!

whereEL(T) is the internal energy of the ladder of length
L. This form is motivated by the infinite single chain, which
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in a low-temperature field theory can be described by a mass-
less boson. It has to be kept in mind that, due to the finite
length, also the odd-leg ladders have a small gap in the ex-
citation spectrum, which is up to logarithmic corrections
equal topv/L, wherev is the spin velocity. Therefore Eq.
~2! is only valid forpv/L!T!J. In this temperature range
our numerical data agree well with Eq.~2! for the finite
single chains, as well as for the three- and five-leg ladders.
The even-leg ladders, on the other hand, have spin gaps even
in the infinite system. The internal energy forT well below
the spin gapD is determined by the thermal occupation of
the lowest lying S51 magnon band with a quadratic
dispersion near the zone boundary minimum. For the
extrapolation T→0 we therefore use the form
EL(T)5EL(0)1b(T3/212DT1/2)exp(2D/T). In a second
step the ground-state energiesEL(0) for the finite systems
are extrapolated to the bulk limitEL5`(0), fitting EL(0) to a
polynomial in 1/L. However, the finite size corrections are
negligibly small forL>100.

In Fig. 1 we show the susceptibility per rung ofnl spins,
x(T), for the ladders with 1<nl<6 in the isotropic case
J5J' . We always consider ladders long enough such that
finite size corrections are negligible. ForT.J the results
agree well with a third order high-T expansion. At low tem-
peratures, we observe the predicted behavior. Ladders with
evennl show an exponential drop of the susceptibility indi-
cating a gap in the excitation spectrum. For largernl , the
drop sets in at smallerT and is steeper. The gapDnl

de-

creases substantially with increasingnl . For oddnl on the
other hand,x(T) remains finite also atT!J, as in the single
chain.

Ladders with evennl were already investigated in
detail.3,9,15 For temperaturesT!D the susceptibility for the
two-leg ladder is determined by the thermal occupation of
S51 magnon band with a quadratic dispersion near the zone
boundary minimum9:

x~T!}T21/2e2D/T, T!D. ~3!

Provided a quadratic dispersion for the lowest lying magnon
branch in the excitation spectrum near its minimum is as-
sumed, Eq.~3! also holds for the four- and six-leg ladder.
We estimateDnl

by fitting the numerical QMC data for low

temperatures and find in the isotropic caseD250.51(1)J for
nl52, D450.17(1)J for nl54, and D650.05(1)J for
nl56. The valueD2 obtained for the two-leg ladder is in
perfect agreement with former results.3,8,9On the other hand,
the spin gap obtained by Whiteet al.,3 using DMRG meth-
ods for the four-leg ladderD450.190J is slightly larger than
our value.

The decrease of the spin gap with increasingnl can be
explained by delocalization of RVB singlets not only along
but more and more also across the ladder. The decrease of
the spin gap, however, is much faster thanDnl

}1/nl , sug-

gested in Ref. 3. The spin gap for the six-leg ladderD6 is
already a factor 10 smaller thanD2, suggesting rather an
exponential decrease ofDnl

with increasingnl .
The susceptibility per rung of the odd-leg ladders remains

finite in the low-temperature limit and tends to a zero-
temperature value approximately independent ofnl @see Fig.
1~b!#. This indicates that the odd-leg ladders belong to the
same universality class as the single chain.

The single chain can be described in a low-temperature
field theory by thek51 Wess-Zumino-Witten nonlinears
model or equivalently by a free, massless boson, with a

TABLE I. Ground-state energies per site for the different lad-
ders in the isotropic case. For the single chain we have perfect
agreement with the analytical result142 ln2 from the Bethe ansatz
~Ref. 13!. Furthermore, the result for the two-leg ladder coincides
with the ground-state energy calculated by Barneset al.,8 using
Lanczos techniques. With increasing width the results approach to
the ground-state energy per site of the infinite 2D square lattice,
which was calculated by various methods. For an overview see Ref.
14. The reference value given here was recently obtained by Wiese
and Ying ~Ref. 12! using the QMC loop algorithm.

Number of legs
Obtained ground-
state energy Reference value

1 20.4432~1! 20.44315 . . . ~Ref. 13!
2 20.5780~2! 20.578~Ref. 8!
3 20.6006~3!

4 20.6187~3!

5 20.6278~4!

6 20.635~1!

2D lattice 20.6693~1! ~Ref. 12!

FIG. 1. Susceptibility as a function of the temperature for the
single chain and the Heisenberg ladders with up to six legs. At high
temperatures the result agree well with a third order high-
temperature expansion. The low-temperature region is shown in~b!
in a larger scale. To distinguish the curves some data points are
marked by symbols. The error bars are smaller than the symbols.
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~spin! velocity v5pJ/2. Based on this modelx(T50) and
the leadingT dependences ofx have been calculated16,17

with the leading marginally irrelevant operator. Two-loop
renormalization of the marginal coupling leads to

x~T!5
1

2pv
1

1

4pv F 1

ln~T0 /T!
2
ln„ln~T0 /T!11/2…

2ln2~T0 /T! G
1O„~ lnT!23

…, ~4!

where T0 is the cut off temperature. The susceptibility
approaches its asymptotic zero-temperature value
x(0)5(2pv)215(Jp2)21 with infinite slope. The field
theoretical results can be compared to the exact Bethe ansatz
data16 and one finds that Eq.~4! holds to within 1% for
T,0.1J. These results are shown in Fig. 2 together with our
QMC data for low temperatures.

We turn now to the three- and five-leg ladders. In the limit
J/J'50 each eigenfunction is a direct product of one-rung
states whose lowest lying multiplet is a spin doublet. The
ground state of the whole system is therefore 2L-fold degen-
erate. A finite value ofJ lifts this degeneracy. In this
2L-dimensional subspaceM we can define an effective
HamiltonianHeff which includes all intraleg interactions. To
first order inJ/J' we obtain18

Heff
~1!5Jeff(

j50

`

SW j , tot•SW j11, tot, ~5!

whereSW j ,tot is the total spin of thej th rung andJeff5J for the
three-leg ladder, respectivelyJeff51.017J for the five-leg
ladder.Heff

(1) has just the form of the Hamiltonian of the
single chain with an effective couplingJeff and we can map
the low lying energy states of the three- and five-leg ladder
to those of the single chain. In the following we will concen-
trate on the three-leg ladder:

The susceptibility of the single chainx1(T/J) scales with
1/J. It follows that for a three-leg ladder with smallJ/J' and
at low temperature, where only the above mentioned low
lying states inM are relevant, the susceptibility per rung
x3 scales with 1/Jeff and has the same functional dependence

on T/Jeff asx1(T/J), according to Eq.~5!. This can be seen
in Fig. 3, where we showJx3 for different ratiosJ/J' as a
function of T/J. For smallJ/J' the susceptibility per rung
x3 multiplied by J is very close toJx1 until a crossover
temperature, which depends onJ/J' . Above this tempera-
ture, the susceptibility of the three-leg ladder is larger, due to
the presence of additional states in the three-leg ladder which
are not included in the 2L-dimensional subspaceM. These
additional states have a finite gapD̃. The susceptibility of the
three-leg ladder then reads

x35x1~Jeff!1x̃, ~6!

wherex̃ is the contribution of the additional states. From our
QMC data we find Jeff'J for all small J/J' and
D4(J/J')&D̃&D2(J/J').

In the isotropic caseJ5J' , the gapD̃ in units of J is
indeed smaller than for smallJ/J' but remains finite
(D4&D̃&D2). For T!D̃ we can neglect the contributionx̃
of the additional states. ComparingJx3 to Jx1 for T!D̃, we
see that their slopes are completely different, but their zero-
temperature values are more or less equal~see inset of Fig. 3
or Fig. 2!. Therefore, noJeff can be found to fulfill Eq.~6!
and we conclude that in this case the simple model, dis-
cussed above@Eq. ~6!#, no longer applies.

Instead, asJ/J'→1 also next-nearest neighbor and longer
range interactions between rung spins become important in
the effective HamiltonianHeff . Since these additional inter-
actions respect the SU~2! and translational symmetry, Eq.~4!
still applies for some values ofv andT0, according to Ref.
16. Therefore, for very smallT the susceptibility of the
three-leg ladder can be described by Eq.~4! also in the iso-
tropic case~see Fig. 2!.

FIG. 2. Renormalization group improved field theory~solid
lines! @Eq. ~4!# for different cutoff temperaturesT0 versus Bethe
ansatz data~Ref. 16! and QMC results forx(T) at low temperature.
The error bars are smaller than the symbols.

FIG. 3. Susceptibility per rung of the three-leg ladderx3

~dashed lines! for different ratiosJ/J' and of the single chainx1 in
function of the temperature. The inset shows the low-temperature
region in a larger scale. To distinguish the curves some data points
are marked by symbols. The error bars are smaller than the sym-
bols.
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The spin velocity in the isotropic three-leg ladderv3
seems to be close to that of the single chainv1. This can be
seen by two facts. First, both of the susceptibilities per rung
seem to extrapolate to the same zero-temperature value. Sec-
ondly, White et al.3 determined the spin gap of the finite
single chain and the finite three-leg ladder in function of
1/L. The slopes of these curves as 1/L→0, pv1, andpv3,
agree, at least within 5%. Assumingv15v3, we get a rough
estimate of the cutoff temperatureT0 in the isotropic three-
leg ladder from our numerical data. The value is much
smaller than in the single chain~see Fig. 2!. We conclude
therefore, that the effective interactions between the spinons
in the three-leg ladder are much stronger than those in the
single chain.

We conclude that the odd-leg ladders belong to
the same universality class as the single chain and can be
described in the zero-temperature limit by ak51 Wess-
Zumino-Witten nonlinears model with a spin velocityvnl.
These velocities seem to have more or less the same value
for all nl . With increasingnl , however, we move further
away from the conformal point and the logarithmic correc-

tions, due to the leading marginally irrelevant operator, in-
crease markedly.

Finally, we want to point out that also for the odd-leg
ladders as well as for the even-leg ladders theT→0 behavior
sets in at lower temperature asnl increases and that the zero-
temperature value of the susceptibility per sitexnl

~site!(0) for

the odd-leg ladders decreases with increasingnl . Since the
odd-leg ladders seem to have more or less the same zero-
temperature value of the susceptibility per rung, it follows
that xnl

~site!(0)}1/nl . For nl→` the zero-temperature value

xnl
~site!(0) therefore goes to zero for oddnl as well as for even

nl . The susceptibility per site of a 2D square lattice, how-
ever, is finite forT50. This is a further example that the
crossover from the single chain to the 2D lattice is not a
smooth one.
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