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Susceptibility and low-temperature thermodynamics of spin; Heisenberg ladders
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The temperature dependence of the uniform susceptibility and the ground-state energy of antiferromagnetic
Heisenberg ladders with up to six legs has been calculated, using the Monte Carlo loop algorithm. The
susceptibilities of even-leg ladders show spin gaps while those of odd-leg ladders remain finite in the zero-
temperature limit. For small ratios of intra- to interleg couplings, odd-leg ladders can be mapped at low
temperatures to single chains. For equal couplings, the logarithmic corrections at low temperatures increase
markedly with the number of legfS0163-18206)50630-7

Recently, antiferromagnetic Heisenberg spin-1/2 ladder In this paper we consider ladders with, legs
systems have attracted much interest, following the discovén,=1,2,...,6) of lengthL. The Hamiltonian of such
ery of a finite spin gap in the two-leg laddeLater investi-  spin-1/2 systems
gations showed that the crossover from the single Heisen-
berg chain to the two-dimension&D) antiferromagnetic _ & & & &
square lattice, obtained by assembling chains to form “lad- H ‘]g S SJ+JL; S5 @
ders” of increasing width, is far from smoothHeisenberg

ladders with an even number of le¢gshaing, n,, show a is defined orL X n, lattices. The sum marked by () runs

completely different behavior than odd-leg ladders. While®Ver n.earest neighbors'along' the Idgmgs). We a;sumed
eriodic boundary conditions in the longitudinal direction of

even-leg ladders have a spin gap and short range correl ladderJ andJ " di i
tions, odd-leg ladders have no gap and power-law correla)'€ 'adderJ anaJ, are positive, corresponding to antiferro-

tions. Based on density matrix renormalization groupm""Ugn.et'ctrclOupll\'/lnél'I lqorith ith i d estimat
(DMRG) studies, Whiteet al3® gave an explanation of this sing the Q oop aigorithm with Improved estimalors,

fundamental difference in the framework of the resonant va¥’® have calculated the temperature dependence of the uni-

lence bond(RVB) picture? These theoretical predictions ©™ sluscgﬁtibilityxfgnddthe lintergatl energl. -Irlr(‘ﬁ QI\;I]C
have been verified experimentally, in materials such ad0OP algorithm was first developed by Evestal " for the
(VO),P,0, (Ref. 5 and the homologous series of cupratesSX-Vertex model, but can also be applied to quantum spin

1,12 : ; H
St._1CU,.10,,,6 which contain weakly coupled arrays of s_ystemsl._ The QMC loop algorithm is an improved world
ladders. line algorithm. The updates are global and no longer local as

Previous numerical studies, using exact diagonalizétion in the conventional Metropolis world line a'gofi‘hm: This
the quantum Monte Carl(nQMé) world line algorithmé or " has the great advantage that the autocorrelation times are

the quantum transfer matrix methoatere restricted to small reduced by several orders of magnitude. It was thus possible

systems or could not be applied at low temperatures. UsinéD sw_nulate very long ladders to very low temperatures. We
the new QMC loop algorithnt® we overcome these limita- onsidered systems up 10 106 sites and reached tempera-
tions and are able to investigate the systematical dependenw es downlton: Jf SOTW'thOUI. major p\rzgflergs;rﬁxll reSLIJ.ItS
of the physical behavior on,, including very low tempera- are extrapolated to a Trotter time interar—0. The appli-

tures and five- and six-leg ladders. We study the mapping of2tion of improved estimatorésee, e.g., Ref. 12 further

the three- and five-leg ladders to single chains. In the lowfeduces the variance of the measured observables dramati-

temperature regime, for small ratios of intra- to interle cou—ca"y' . .
P g g In Table | the ground-state energies of the different lad-

ling, odd-leg ladd b dt t-neighb . . .
ping, 0dc-ieg 'adders can be mapped fo hearest-neig Oers in the isotropic casel€J,) are presented. The ener-

chains, while for equal couplings an effective model with ™" ) - S
longer range interactions is needed. In the zero-temperatuﬂales were obtained as follows: considering ladders of lengths
L, we first extrapolate td—0. For the odd-leg ladders we

limit, we find that the susceptibility per rung of the odd-leg
ladders remains approximately constant independently ofS€ the form

n,;. This means that in this limit, the susceptibility per site E. (T)=E, (0)+aT? 2
goes to zero for both even- and odd-leg laddersnam- LTM=E(0) ' @
creases, in contrast to the finite value of the susceptibility pewhere E (T) is the internal energy of the ladder of length
site for the 2D lattice. L. This form is motivated by the infinite single chain, which
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TABLE I. Ground-state energies per site for the different lad- . .
ders in the isotropic case. For the single chain we have perfect 0.8 O singlechain A 4-leg ladder 1

agreement with the analytical res&lt—an from the Bethe ansatz (8 O 21legladder  x 5-eg ladder
—+ 3-leg ladder < 6-leg ladder

(Ref. 13. Furthermore, the result for the two-leg ladder coincides | "5 7 high-T expansion
with the ground-state energy calculated by Bareesl.? using 0.6 ]
Lanczos techniques. With increasing width the results approach to 2
the ground-state energy per site of the infinite 2D square lattice, § P g
which was calculated by various methods. For an overview see Ref. 2 0.4 P
14. The reference value given here was recently obtained by Wiese =
and Ying(Ref. 12 using the QMC loop algorithm. 02
Obtained ground-
Number of legs state energy Reference value 0.0 : . .
1 —0.44321) —0.4435 ... (Ref. 13 04
2 —0.578@2) —0.578(Ref. 8 )
3 —0.60063) :
4 —0.618%3) 03}
5 —0.62784) o
6 ~0.6351) 5
2D lattice —0.66931) (Ref. 12 E’_ 02t
bad
01}
in a low-temperature field theory can be described by a mass-
less boson. It has to be kept in mind that, due to the finite

length, also the odd-leg ladders have a small gap in the ex- 0.0 '

citation spectrum, which is up to logarithmic corrections 0.0 0.1 0.2 03 04
equal tomrv/L, wherev is the spin velocity. Therefore Eg. T/

(2) is only valid for 7v/L<<T<J. In this temperature range
our numerical data agree well with EQ) for the finite
single chains, as well as for the three- and five-leg ladders’
The even-leg ladders, on the other hand, have spin gaps ev
in the infinite system. The internal energy forwell below
the spin gapA is determined by the thermal occupation of
the lowest lying S=1 magnon band with a quadratic
dispersion near the zone boundary minimum. For theprovided a quadratic dispersion for the lowest lying magnon
extrapolaton T—O we therefore use the form pranch in the excitation spectrum near its minimum is as-
EL(T)=E_(0)+b(T¥*+2AT"9)exp(~A/T). In a second sumed, Eq(3) also holds for the four- and six-leg ladder.
step the ground-state energigg(0) for the finite systems we estimateA,, by fitting the numerical QMC data for low

are extrapolated to the bulk limt, -..(0), fitting E, (0) to a temperatures and find in the isotropic casg=0.51(1)J for
polynomial in 1L. However, the finite size corrections are n=2, A,=0.17(1Y for n,=4, and Ag=0.05(1)) for
”eg"g"F"y small forL=100. o ) n,=6. The valueA, obtained for the two-leg ladder is in
In Fig. 1 we show the susceptibility per rungmfspins,  herfect agreement with former resuf&® On the other hand,
x(T), for the ladders Wl_th £n;<6 in the isotropic case nq spin gap obtained by Whit al,? using DMRG meth-
J=J, . We always consider ladders long enough such thafys for the four-leg laddek ,=0.190J is slightly larger than
finite size corrections are negligible. Far>J the results ¢ value.
agree well with a third order higﬂ_T-expansion_. At low tem- _ The decrease of the spin gap with increasingcan be
peratures, we observe the predicted behavior. Ladders wilfysjained by delocalization of RVB singlets not only along
evenn; show an exponential drop of the susceptibility indi- p;t more and more also across the ladder. The decrease of
cating a gap in the excitation spectrum. For largey the e spin gap, however, is much faster thb,q,ocllm, sug-
drop sets in at smalleT and is steeper. The gap, de- . . . ;

, . , I gested in Ref. 3. The spin gap for the six-leg laddegris
creases substantially with increasing For oddn, on the already a factor 10 smaller thah,, suggesting rather an
other handyx(T) remains finite also af<J, as in the single exponential decrease @f, with increasingn, .
chain. !

Ladders with evenn, were already investigated in
detail>°° For temperature§ <A the susceptibility for the
two-leg ladder is determined by the thermal occupation o
S=1 magnon band with a quadratic dispersion near the zon
boundary minimurit

FIG. 1. Susceptibility as a function of the temperature for the
ingle chain and the Heisenberg ladders with up to six legs. At high
peratures the result agree well with a third order high-
temperature expansion. The low-temperature region is shob) in
in a larger scale. To distinguish the curves some data points are
marked by symbols. The error bars are smaller than the symbols.

The susceptibility per rung of the odd-leg ladders remains
finite in the low-temperature limit and tends to a zero-
ftemperature value approximately independem,dfsee Fig.
1(b)]. This indicates that the odd-leg ladders belong to the
Same universality class as the single chain.

The single chain can be described in a low-temperature
field theory by thek=1 Wess-Zumino-Witten nonlinear
x(TxT Y228 T<A, (3  model or equivalently by a free, massless boson, with a
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The error bars are smaller than the symbols. T/J
(spir) velocity v =J/2. Based on this modgl(T=0) and FIG. 3. Susceptibility per rung of the three-leg laddes

: 17
the leadingT dependences of have been calculated (dashed linesfor different ratiosJ/J, and of the single chai; in
with the leading marginally irrelevant operator. Two-loop fynction of the temperature. The inset shows the low-temperature

renormalization of the marginal coupling leads to region in a larger scale. To distinguish the curves some data points
are marked by symbols. The error bars are smaller than the sym-
- 1 N 1 1 In(In(To/T)+1/2) bols.
XM= 5 Tro | In(To M) 2In%(To/T)

+0((InT) "3 4) on T/Jgx as x1(T/J), according to Eq(5). This can be seen
' in Fig. 3, where we showy; for different ratiosd/J, as a

where T, is the cut off temperature. The susceptibility function of T/J. For smallJ/J, the susceptibility per rung

approaches its asymptotic zero-temperature valugs multiplied by J is very close toJy, until a crossover

x(0)=(27v) " t=(J#?) ! with infinite slope. The field temperature, which depends dhJ, . Above this tempera-

theoretical results can be compared to the exact Bethe ansdtire, the susceptibility of the three-leg ladder is larger, due to

datd® and one finds that Eq4) holds to within 1% for the presence of additional states in the three-leg ladder which

T<0.1J. These results are shown in Fig. 2 together with ourare not included in the L2dimen§ional subspac#!. These

QMC data for low temperatures. additional states have a finite gAp The susceptibility of the
We turn now to the three- and five-leg ladders. In the limitthree-leg ladder then reads

J/J, =0 each eigenfunction is a direct product of one-rung

states whose lowest lying multiplet is a spin doublet. The X3=x1(Jert) + X, (6)

ground state of the whole system is therefotef@d degen- _

erate. A finite value ofJ lifts this degeneracy. In this Wwherey is the contribution of the additional states. From our

2--dimensional subspacét we can define an effecive QMC data_ we find Jgr~J for all small J/J, and

HamiltonianH . which includes all intraleg interactions. To A4(J/J,)<A<A,(J/J,). _

first order inJ/J, we obtairt® In the isotropic casd=J, , the gapA in units of J is

indeed smaller than for small/J, but remains finite

(A4=A=<A,). For T<A we can neglect the contrib~utio",\3|

of the additional states. Comparidg; to Jy, for T<A, we

. see that their slopes are completely different, but their zero-

whereS; (4, is the total spin of thgth rung andleg=J forthe  temperature values are more or less egse¢ inset of Fig. 3

three-leg ladder, respectivelfo=1.017 for the five-leg  or Fig. 2. Therefore, nals can be found to fulfill Eq(6)

ladder. H{}) has just the form of the Hamiltonian of the and we conclude that in this case the simple model, dis-

single chain with an effective coupliniy; and we can map cussed abovgEg. (6)], no longer applies.

the low lying energy states of the three- and five-leg ladder Instead, ag/J, —1 also next-nearest neighbor and longer

to those of the single chain. In the following we will concen- range interactions between rung spins become important in

trate on the three-leg ladder: the effective HamiltoniaH .. Since these additional inter-
The susceptibility of the single chajy (T/J) scales with  actions respect the $P) and translational symmetry, E@)

1/3. It follows that for a three-leg ladder with smdilJ, and  still applies for some values af and T,, according to Ref.

at low temperature, where only the above mentioned lowi6. Therefore, for very smalll the susceptibility of the

lying states inM are relevant, the susceptibility per rung three-leg ladder can be described by E).also in the iso-

x3 scales with 1J.¢ and has the same functional dependencdropic casesee Fig. 2

Hgf):Jeff;O Sj, tot® Sj+1, tot )
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The spin velocity in the isotropic three-leg laddes  tions, due to the leading marginally irrelevant operator, in-
seems to be close to that of the single chajnThis can be ~crease markedly. _
seen by two facts. First, both of the susceptibilities per runj dF'na”% we want to point out that also for the odd-leg
8

seem to extrapolate to the same zero-temperature value. Ségdders as well as for the even-leg laddersThe0 behavior
ondly, White et al® determined the spin gap of the finite sets in at lower temperature asincreases and that the zero-

e . (site)
singie chain and the finite three-leg ladder in function oft€MPerature value of the susceptibility per %$ (0) for
1/L. The slopes of these curves as 0, mv,, andwv;,  the odd-leg ladders decreases with increasingSince the
agree, at least within 5%. Assuming=us, we get a rough odd-leg ladders seem to have more or less the same zero-

estimate of the cutoff temperatufiy in the isotropic three- €MPerature value of the susceptibility per rung, it follows
leg ladder from our numerical data. The value is muchtN@t X (0)<1in;. For nj— the zero-temperature value
smaller than in the single chaisee Fig. 2 We conclude Xn(ls'te)(o) therefore goes to zero for odgas well as for even
therefore, that the effective interactions between the spinong,. The susceptibility per site of a 2D square lattice, how-
in the three-leg ladder are much stronger than those in thever, is finite forT=0. This is a further example that the
single chain. crossover from the single chain to the 2D lattice is not a
We conclude that the odd-leg ladders belong tosmooth one.
the same universality class as the single chain and can be We wish to thank G. Sierra, H.G. Evertz, D." Vi and

desgr|bed N the zgro—temperaturg limit pyk&l Wess- especially T.M. Rice for very instructive and stimulating dis-
Zumino-Witten nonlineaer model with a spin velocity . ¢yssions. The calculations were performed on the Intel Para-
These velocities seem to have more or less the same valg@n of the ETH Zuich. The work was partially supported by
for all n;. With increasingn,, however, we move further the Schweizerischen NationalforiB.F.) and by an ETH in-
away from the conformal point and the logarithmic correc-ternal grant(B.A.).
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