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The electronic properties of the self-assembled InAs/GaAs quantum dots are investigated theoretically. In
our calculation the microscopic distribution of the strain, valence-band mixing, and the shape of the conduction
band of InAs with strain are fully taken into account. New states are brought to light and their status in the
framework of established approximate models of the electronic structure is critically examined.
@S0163-1829~96!50328-0#

Recent studies1–4 have shown that it is possible to attain
three-dimensional ~3D! confinement of charge within
strained islands of InAs that form on the surface of GaAs
during the Stranski-Krastanow growth method. This growth
mode begins with an initial molecular-beam-epitaxy layer
deposition of InAs on a GaAs substrate. After a critical
thickness of 1.7 ML is reached6 islands of InAs with a pyra-
midal geometry form spontaneously and a thin wetting layer
is left under the islands. Fabrication concludes with the cap-
ping of the quantum dot island with a layer of the substrate
material. By this method defect-free quantum dots with sizes
'120 Å can be constructed with no need for processing by
lithography and etching. It has been demonstrated5 that the
island sizes and areal densities can be controlled by varying
growth parameters such as the thickness of the initial two-
dimensional layer deposition, and the growth rate.

The first theoretical study of the electronic properties of
these structures7 used the single-band effective-mass theory
to calculate the energy levels and wave functions in InAs/
GaAs cone-shaped quantum dots. The strain was taken to be
a constant in the InAs material and zero in the surrounding
GaAs barrier. More recently, the single-band theory was ap-
plied to InAs/GaAs dots with a more realistic pyramidal
geometry.8 There the variation of the strain in and around the
InAs island was determined using elastic continuum theory,
in which the atomic nature of the constituent materials was
neglected. Both approaches neglected valence-band mixing,
and the strain dependence of the effective masses.

In this paper we present a calculation of the electronic
structure of InAs/GaAs quantum dots that includes the mi-
croscopic details of the strain and the mixing between the
light-hole ~lh! and heavy-hole~hh! bulk bands, and accounts
for the change in the effective masses due to strain. We
employed a valence force field method9 to determine the
structure and the variation of strain, and a multiband
effective-mass method to calculate the confined levels.

The atomic positions in four strained InAs/GaAs pyrami-
dal quantum dot systems consisting of 23106 atoms~Fig. 1!
have been determined. The dimensions of each dot are given
in Table I. Each pyramid lies on a 1.5-ML InAs layer. The
bulk lattice constant of each structure was made equal to that
of GaAs ~5.65 Å! and their constituent atoms relaxed into a
minimum energy configuration within the framework of the
valence force field model. The potential included five terms
for each material describing bond-bending and bond-

stretching interactions and the couplings between bending
and stretching in adjacent bonds and angles. Force constants
were obtained by fitting to the phonon spectra of InAs and
GaAs. In particular, it was verified that the low-frequency
part of the spectrum was well reproduced and agreed with
the values predicted from the elastic constants of the mate-
rial. This was important as it is primarily the longer-
wavelength variation in strain that is extracted from this part
of the calculation and used in the electronic structure deter-
mination described below. It should of course be noted that
the accuracy of the valence force field model goes beyond
classical elasticity theory and should also give a reasonable
description of relaxation on an atomic scale.

Bulk unit cells in each structure were assigned a strain
tensor on the basis of the displacement of the atoms from
their equilibrium positions. This approach provided values of
the six independent nonzero strain tensor components for
each bulk unit cell except those at the interface. Figure 2~a!
shows the strain tensor componentsexx andezz for structure
4 in Table I plotted with position along thez axis in Fig. 1.
By symmetryeyy5exx . The shear strain components,exy ,
exz , andeyz , are negligible in the dot and barrier although
they could be appreciable at the interface.8

The hydrostatic and biaxial components of the strain, de-
fined as

FIG. 1. Schematic diagram of an InAs pyramidal quantum dot
and InAs wetting layer together with the axes referred to in the text.
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eh5exx1eyy1ezz and eb52ezz2exx2eyy , ~1!

are plotted with position along thez axis in Fig. 2~b! for
structure 4. The hydrostatic strain is compressive in both the
dot and the surrounding barrier material. The biaxial strain,
which can be thought to consist of a hydrostatic strain plus a
uniaxial strain, tends to be negative in the barrier and posi-
tive in the dot.

To calculate the energy levels and electron~or hole! wave
functions we use the multiband effective-mass theory. For
simplicity, we assume that the conduction and valence bands
are decoupled. The general solutions for the electron states
are

cn
c~x,y,z!5ucfn

c~x,y,z!, ~2!

whereuc is a bulk band-edge Bloch function andfn
c is an

envelope function satisfying the simple single-band Schro¨-
dinger equation,

@2 ~\2/2m* ! ¹21V~x,y,z!#f~x,y,z!5Ef~x,y,z!,
~3!

in whichm* is the isotropic effective mass andV(x,y,z) is
the three-dimensional confining potential. Equation~3! is
solved for the eigenvalues and eigenfunctions of the system
by invoking periodic boundary conditions, expandingf in
terms of normalized plane-wave states, and diagonalizing the
resultant matrix. To ensure adequate convergence approxi-
mately 1000 plane-wave states were used in our expansion.
The attraction of this approach is that there is no need to
explicitly match wave functions across a boundary between
the barrier and dot materials; the method is thus easily appli-
cable to an arbitrary confining potential. The boundary con-
ditions are that the states in neighboring quantum dots do not
significantly overlap.

The valence-band states are defined by solutions of the
four-band Schro¨dinger equation, which in bulk semiconduc-
tors has the form

S Hhh 2c 2b 0

2c* H lh 0 b

2b* 0 H lh 2c

0 b* 2c* Hhh

D S f3/2 ,1 3/2

f3/2 ,2 1/2

f3/2 ,1 1/2

f3/2 ,2 3/2

D
5ES f3/2 ,1 3/2

f3/2 ,2 1/2

f3/2 ,1 1/2

f3/2 ,2 3/2

D . ~4!

The elements in the Hamiltonian are given by

Hhh5~2\2/2m0! @~kx
21ky

2!~g11g2!1kz
2~g122g2!#,

H lh5~2\2/2m0! @~kx
21ky

2!~g12g2!1k2
2~g112g2!#,

c5 ~A3\2/2m0! @g2~kx
22ky

2!22ig3kxky#,

b5 ~A3\2/m0! ~kx2 iky!g3kz . ~5!

Here g1 ,g2 ,g3 are the Kohn-Luttinger parameters. In the
case of the quantum dot, the equation becomes

@H1V~x,y,z!#fv~x,y,z!5Efv~x,y,z!, ~6!

where the confining potentialV(x,y,z) is added to the diag-
onal elements of the 434 matrix. Since, for the problem of
3D quantum confinement,kx ,ky ,kz are no longer good quan-
tum numbers, we replace them in Eq.~5! with the operators

TABLE I. Dimensions and fundamental transition energy of the
four structures studied.

Structure B ~Å! H ~Å! C1→V1 ~eV!

1 57 28 1.43
2 79 40 1.33
3 102 51 1.23
4 124 62 1.11

FIG. 2. ~a! Strain tensor componentsexx andezz for structure 4
in Table I plotted along thez axis. ~b! Hydrostatic and biaxial
components of the strain for structure 4 in Table I plotted along the
z axis. ~c! Ground and first excited electron and hole levels~C1,
C2, C3, V1, V2! in structure 4 superimposed upon the electron,
heavy-hole, and light-hole potential profiles.
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kx52 i\ ]/]x , ky52 i\ ]/]y , kz52 i\ ]/]z . ~7!

Equation~6! is solved using an expansion in plane waves,
and the valence-band wave functions are given by

cn
v~x,y,z!5 (

n51

4

unfn
n~x,y,z!, ~8!

whereun are theJ53/2 angular momentum states.
In the dot material, the compressive stress alters the cur-

vature of the bulk bands causing the effective masses to dif-
fer from those of unstrained InAs. In our calculation we used
the effective masses of bulk InAs under the average hydro-
static strain present in the dot material. These values were
obtained by performing semiempirical pseudopotential band-
structure calculations10 for the conduction-band→ valence-
band momentum matrix elements of InAs under pressure. In
the conduction band, these calculations yield a value for the
effective mass of 0.04me compared to the value for un-
strained InAs of 0.023me . The same trend is recovered inab
initio local-density calculations. However, theab initiomass
in InAs is too high and the empirical pseudopotential result
is more representative.

In the absence of strain effects, the confining potential for
an electron~hole! is a square well formed by the difference
in the absolute energy of the conduction~valence! -band
edges in InAs and GaAs given by Ref. 11. In each conven-
tional cubic unit cell, the confining potential for each carrier
type is shifted due to the strain. Since the strain varies from
cell to cell, the confining potentials will also vary from cell
to cell. Furthermore, degeneracies in the valence-band edge

will be lifted due to deviations of the unit cells from cubic
symmetry. For each unit cell, the strain-induced shifts to the
confining potentials are obtained by diagonalizing the 838
strain Hamiltonian matrix in Ref. 12. Hence, the confining
potentials including the effects of strain are piecewise con-
tinuous functions of position.

Figure 2~c! shows the confining potentials for electrons,
heavy holes, and light holes along thez axis for structure 4.
The energies are relative to the unstrained GaAs valence-
band edge. The splitoff band edge is far in energy from the
heavy-hole and light-hole band edges and plays no part in
our calculation. Included in Fig. 2~c! are the ground and first
excited electron and hole energy levels for the quantum dot,
generated by our calculation.

The compressive strain in the barrier shifts the GaAs
conduction-band edge slightly above the unstrained level~at
1.519 eV!. From Fig. 2~c! it is clear that the light-hole band
edge is higher in energy than the heavy-hole band edge in the
barrier, and towards the apex of the pyramid. The heavy-hole
band is the uppermost band at the base of the pyramid. The
direction and magnitude of the splitting of the light- and

FIG. 3. ~a! Electron and~b! hole quantum dot energy levels
displayed as a function of dot base size.

FIG. 4. Plots ofufu2 for structure 4 in Table I through theyz
plane for~a! the ground electron level and~b! the ground hole level.
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heavy-hole bands—in the absence of appreciable shear strain
components—is dependent solely on the magnitude and sign
of the biaxial strain,eb @see Fig. 2~b!#. In those regions of the
structure where the biaxial strain is negative the light-hole
band will be shifted upwards in energy and the heavy-hole
band downwards; in those regions where the biaxial strain is
positive, the heavy-hole band will be uppermost. When the
biaxial strain function is zero, the light- and heavy-hole
bands will be degenerate.

In Fig. 3 we present the electron and hole energy levels as
a function of base diameter given by our method. The elec-
tron ~hole! states are plotted relative to the unstrained con-
duction ~valence! -band edge in GaAs. For dot base diam-
eters smaller than approximately 60 Å we predict no bound-
electron states. This number increases to three for structures
larger than 120 Å. In the valence band there are many con-
fined hole states. This is due to the larger effective mass
associated with these carriers, and to the nature of the light-
hole confinement potential the smoothly varying form of
which leads to a quasicontinuum of tenuously bound states.
Due to theC4v symmetry of the pyramidal dot we would
have expected the first and second excited hole states to be
degenerate. This is true for the electron levels. However, in
the valence band the first and second excited hole levels are
split due to mixing between different bulk states.

In Fig. 4~a! the charge density of theC1 state for struc-
ture 4 is plotted in theyz plane through the pyramid and
wetting layer. The relatively isotropic character of the con-
fining potential for electrons coupled with the small effective
mass results in a state that permeates throughout the dot and
penetrates the sides of the pyramid. Charge does not signifi-
cantly sample the apex or the base corners of the pyramid. In
Fig. 4~b! we show the charge density of theV1 state plotted
in the yz plane. Unlike the ground conduction state, the
ground hole state is confined to the base of the dot due to the
larger effective mass, and the anisotropic nature of the
heavy-hole confining potential.

The calculated energies for theC1→V1 transition in each
structure are given in the fourth column of Table I. The
fundamental transition energy of 1.11 eV for structure 4 is in
excellent agreement with the photoluminescence value of 1.1

eV for a similar-sized structure.4 The energy splitting be-
tween the ground and first excited hole state of 30 meV is in
good agreement with a very recent experimental study13 of
the sublevel structure that measured a difference of'27
meV. However, this work also shows that a larger number of
conduction states than predicted by this study and previous
calculations7,8 contribute effectively to optical spectra. For
example, in our calculation only one excited state exists at a
much higher energy. Furthermore, the observed transition
energies form a sequence resembling that arising from con-
finement in parabolic wells. Our evaluation of the confining
semiclassical potential that determines the electronic struc-
ture in the particle in a box approximation shows that, at
least for dots of ideal or near ideal geometry, the effect of
strain does not lead to confining potentials of parabolic form.
Also, the charge of the states in question is well confined in
the dot so that reexamination of any subtle discrepancies
arising from the possible choice of boundary conditions for
integration of the Schro¨dinger equation cannot help. It would
appear that a fundamentally more sophisticated Hamiltonian
consistent with the confining potentials obtained in our va-
lence force calculation is needed to account for the richness
of the observed spectra.

In summary, we calculated the energy levels and wave
functions of InAs/GaAs self-organized quantum dots of dif-
fering sizes. We took into account the strain modification to
the confinement potential, valence-band mixing, and the
conduction-band mass in the InAs dot and the surrounding
GaAs barrier. We showed that the geometry of the system
coupled with the inhomogeneous strain confines the ground
electron and hole states to the base of the pyramidal dot. The
calculated fundamental transition energy and the valence
sublevel structure agree very well with the available experi-
mental data. However, in the conduction band very recent
experimental studies indicate that many more conduction
states may be involved in the construction of optical spectra
than predicted here.

We should like to thank Professor P. M. Petroff for pro-
viding us with recent experimental results prior to publica-
tion, and to the EPSRC and the Office of Naval Research for
financial support.

1J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre´, and
O. Vatel, Appl. Phys. Lett.64, 196 ~1994!.

2J.-Y. Marzin, J.-M. Ge´rard, A. Izraël, D. Barrier, and G. Bastard,
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