
Localization of a disordered phonon system: Anderson localization of optical phonons
in Al xGa12xAs

P. H. Song
Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

D. S. Kim
Department of Physics, Seoul National University, Seoul 151-742, Korea

~Received 22 December 1995; revised manuscript received 17 April 1996!

Localization properties of an isotopically disordered phonon system are studied by mapping the system to an
electronic tight-binding problem with on-site disorder. When the model parameters are adjusted for the
Al xGa12xAs alloys, it is shown that there existsxc such that forx.xc , all GaAs-like optical-phonon states are
localized while forx,xc , most states are extended except for some near the edges of the GaAs-like branch.
These results are confirmed by an independent numerical investigation of the scaling behavior of the localiza-
tion lengths. Our results reconcile current controversy regarding the nature of GaAs-like optical-phonon eigen-
states in the AlxGa12xAs alloys.@S0163-1829~96!51628-0#

Ever since the famous paper of Anderson,1 the localiza-
tion transition in disordered systems has been one of the
main areas of research. For phonon systems, however, rela-
tively few results are available while a great amount of work
exists for electronic systems. So far, a clear quantitative con-
nection between these two systems is not yet established.

As a related problem in a real situation, the optical-
phonon property in AlxGa12xAs alloys is an important issue
where some controversies exist. The asymmetric Raman pro-
files of the GaAs-like~GL! branch have been fitted on the
assumption of finite@&100 Å# phonon mode correlations2

while a recent paper reports that well-defined GL optical-
phonon dispersions exist for all values ofx.3 These two re-
sults are somewhat inconsistent with each other since a well-
defined dispersion relation itself may imply that the spatial
correlation function of the phonon is infinite in extent. Need-
less to say, the word ‘‘dispersive’’ should be taken with cau-
tion, since the inherent uncertainty ink (Dk) due to alloy
fluctuation results in line broadening and limits the spatial
extent to;1/Dk.4,5

In this paper, a simple model for phonons of a ternary
alloy system is constructed and it is shown that, by an ap-
propriate identification of corresponding parameters, our
phonon model is exactly mapped to an Anderson model gen-
eralized to a diatomic basis lattice. This enables us to study
the localization property of the isotopically disordered pho-
non system by the same method as that used for the Ander-
son model; in the present calculation we use the method
introduced by Licciardello and Economou.6

As for the AlxGa12xAs alloys, the results obtained within
our model calculation present a general localization picture
that reconciles two previously mentioned, seemingly contra-
dictory results. It is shown that abovexc>0.45, all GL
optical-phonon states are localized, which is in agreement
with the assumption of Parayanthal and Pollak.2 For x,xc ,
most states are extended except for some near the edges of
the GL branch, in which case a dispersion relation may still
be a useful description of the eigenstates. Thus in our picture

the previous two seemingly conflicting results remain valid
as two limiting cases depending on whetherx,xc or
x.xc . Our main results are confirmed by an independent
numerical study of the scaling behavior of the localization
lengths.

We consider an alloy of chemical formulaA12xBxC on
the zinc-blende structure. A cation site of the lattice is ran-
domly occupied by anA or a B atom with probability
(12x) or x, respectively. For simplicity, it is assumed that a
displacement from its equilibrium position can be repre-
sented by a scalar quantity and that the elastic interactions
are restricted only to those with nearest-neighbor~nn! sites.
The equations of motion for this system are written as fol-
lows:
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whereMi (mi) andUi (ui) are the mass and the atomic
displacement from equilibrium position of the atom at the
i th cation~anion! site, respectively. The superscripti of the
sum denotes that the summation is over only the nn sites of
the sitei . There is no mass randomness on the anion sites so
that we can setmi ’s all equal to MC . The relations
Ui5Ũ ie

2 ivt and ui5ũie
2 ivt are inserted into Eq.~1! and

each equation is divided byv2. Then we get the equations of
following form:
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~e2E!ũi1V~E!(
j

i
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where we have changed the notations of parameters;
Mi→e i ,MC→e,zK/v2→E andK/v2→V. z54 is the co-
ordination number of the diamond lattice. We find that Eq.
~2! is the eigenvalue equations of the Anderson model gen-
eralized to a diatomic basis lattice. The quantities corre-
sponding to the on-site energies of one sublattice are ran-
domly distributed according to a binary distribution of the
mass of atomA (MA) and the mass of atomB (MB). On the
other hand, it should be noted that since the hopping energy
V is dependent onE, for two distinct values ofE, two cor-
responding Anderson Hamiltonians have hopping energies
different from each other.

Now we adopt the localization criterion introduced by
Licciardello and Economou.6 The single-particle Green’s
function shows different analytic behavior depending on
whether the eigenstate of energyE is an extended state or a
localized one; the imaginary part of the self-energy goes to
zero for a localized state while it remains nonzero for the
extended state whenE approaches the real axis in the com-
plex E plane.7 When the self-energy is expanded into a per-
turbation series with respect to the hopping energy, the lo-
calization function L(E) is obtained as the ensemble-
averaged value of the limiting term of the series. The
numerical value ofL(E) determines the nature of the eigen-
state of energyE; for L(E)>1 (,1), the series for the
self-energy diverges~converges! and the corresponding state
is an extended~a localized! one. A generalization of their
result, which is for a monatomic system, to our diatomic one
gives the localization function as follows:

L~E!5 lim
M→`

FVM11( ~G̃a!1
0~G̃c!2

0,1•••~G̃a!M
0,1, . . . ,M21G1/M.
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The summation is over all indices 1,2,. . . ,M with the re-
strictions corresponding to all self-avoiding paths of order
M starting and ending at the site 0. The quantity
(G̃a(c)) i

0,1, . . . ,i21 is defined by

ln~G̃a~c!! i
0,1, . . . ,i21[^ lnu~Ga~c!! i

0,1, . . . ,i21u&. ~4!

(Ga(c)) i
0,1, . . . ,i21 is the anion~cation! diagonal element of

the Green’s function at sitei for Eq. ~2! with the sites
0,1, . . . ,i21 excluded. TheL(E) given by Eq.~3! is very
complicated for practical calculations. On the other hand, an
estimateL* (E) is found by the following approximations:6

L~E!>VKu~G̃a!1
0~G̃c!2

1u1/2>VKu~Ḡa!1
0~Ḡc!2

1u1/2[L* ~E!,

~5!

where K is the connectivity,8 which is evaluated to be
>2.88 for the diamond lattice. The second approximation of
Eq. ~5! is replacing the Green’s functions defined in Eq.~4!
by those obtained by the coherent potential approximation
~CPA!.6

For ordered cases, i.e.,x50 or x51, L(v) is equal to
1 at the edges and larger than~smaller than! 1 inside~out-
side! the branches. However, due to the approximations in-
volved in Eq.~5!, in general, our estimateL* (v) does not
satisfy these conditions. Therefore a weighting function
W(v,x) is introduced so that the product ofW(v,x) and

L* (v) would be a correct estimate ofL(v) at the edges of
the branches. We may use,9 as a weighting function,

W~v,x!5SAexpF2
~v22z~K/MC1h!/2!2

D2 G11D 21

,

~6!

whereA andD are fitting parameters to satisfy condition~iii !
of Ref. 9 andh[(12x)(K/MA)1x(K/MB).

The results of calculation forK/MB52.41 and
K/MC50.43 withK/MA normalized to 1 are shown in Fig.
1; these numerical values have been obtained by fitting the
optical-phonon spectral ranges of two pure materials of our
model, i.e.,AC andBC, to the reported experimental data of
pure GaAs and pure AlAs, respectively.10,11 In what follows,
numerical values ofv normalized byAK/MA are used. We
interpret the states in the frequency range between 2.0 and
2.39 ~238 and 285 in cm21, respectively! as the GaAs-like
optical-phonon branch and the ones between 3.1 and 3.37
~370 and 404 in cm21, respectively! as the AlAs-like
optical-phonon branch. Asx increases, the states of the GL
optical branch localize because the Al atoms are ‘‘barriers’’
for these excitations while those of the AlAs-like optical
branch localize as (12x) increases. Restricted to the GL
branch, all phonon excitations localize beyondxc>0.45; as
x increases, localization proceeds from the edges and the
boundaries between the extended states and the localized
states move inward until they coalesce atxc .

Variation of xc over some range of the parameters
K/MB andK/MC is shown in Fig. 2. Within such a range of
input parameters, qualitative behaviors of optical-phonon
branches are not different from those of Fig. 1, although the
numerical value ofxc varies.xc is a monotonically decreas-
ing ~increasing! function ofK/MB (K/MC). One can explain
such a behavior intuitively when the variation of the gap size
between the two optical-phonon branches of the pure mate-
rials is considered; the gap size is given as
AzK/MB2Az(11K/MC), which is monotonically increas-
ing ~decreasing! with respect toK/MB (K/MC). As the gap
size increases, the probability that an GL optical-phonon ex-

FIG. 1. The phase diagram drawn in thev-x plane for
Al xGa12xAs. ‘‘L’’ represents the region of localized eigenstates and
‘‘ E’’ the region of extended eigenstates, the solid lines forming the
boundaries between these two regions. The dashed lines represent
the trajectories of phonon branches within the CPA. For the acous-
tic branches the dashed line nearly coincides with the solid line.
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citation can penetrate the site occupied by an Al ion gets
smaller since there is a larger difference between the natural
vibrational frequencies of two species. Therefore GL optical-
phonon excitation localizes more easily, i.e., yields smaller
xc , at a larger gap size.

It should be noted that in Eq.~5! we approximate the
geometric average by the CPA one. Though such procedure
has been shown to yield qualitatively correct results for lo-
calization transition in the three-dimensional~3D! Anderson
model,12 its validity for other general 3D systems is not es-
tablished yet. Therefore, we perform an independent calcu-
lation to confirm our results for the ternary alloy system.

The same form of equations of motion as Eq.~1! is con-
sidered but on the NaCl structure instead of the zinc-blende
structure, for simplicity. The localization length along thez
direction,lM , for a bar-shaped geometry ofM3M3N is
calculated from the following formula:

1

lM~v,x!
52 lim

N→`

1

N
lnuG~1,N;v,x,M !u, ~7!

whereG(1,N;v,x,M ) designates the Green’s function cou-
pling pairs of masses at opposite ends of the bar of length
N. We calculate the Green’s function recursively by the
method of MacKinnon and Kramer13 for M<14. A periodic
boundary condition has been imposed in thex andy direc-
tions and only even numbers ofM have been considered in
our calculation.

In Fig. 3~a!, the results for the logarithm of the renormal-
ized localization length,L(v,x)[lM /M for v5A7>2.65
are presented as a function ofx for several values ofM .
Note that since the coordination number of the NaCl struc-
ture is 6, for the same input parameter values, i.e.,
K/MB52.41 andK/MC50.43, the GaAs-like branch ranges

from v5A6>2.45 tov>2.93. With risingM , L increases
for smaller values ofx while for larger values ofx it keeps
decreasing. This implies that in the macroscopic limit, i.e.,
M→`, the vibrational excitation atv>2.65 goes from an
extended state to a localized state asx increases, e.g., from
0.6 to 0.8. The localization transition is identified as the in-
tersection point of the curves in Fig. 3~a!. For the data set
presented in Fig. 3~a!, the transition concentration is esti-
mated to be 0.6860.01.

Similar procedures for some other values ofv within the
GL branch, i.e., fromv>2.45 tov>2.93, have been per-
formed and the resulting phase diagram is depicted in Fig.
3~b!. The squares represent the data points for the critical
concentrations and the dashed line is a fitting curve to the
data points with the restriction of being zero at the edge of
the branch. Figure 3~b! shows that the qualitative picture we
have obtained by the previous analytic calculations is correct
though the numerical value ofxc50.8560.01, i.e., the con-
centration beyond which the whole excitation of the GL
branch localizes, is somewhat larger. This result is natural
since the coordination number of the NaCL structure, i.e., 6,
is larger than that of the zinc-blende structure, i.e., 4, and the
system with more nn’s will prefer the extended state. Assum-

FIG. 2. Variation ofxc as a function ofK/MB and K/MC .
K/MC50.2 ~L!, 0.3 ~1!, 0.43 ~h!, 0.5 ~3!, and 0.6~n! from
bottom to top.

FIG. 3. ~a! Typical behavior of the renormalized localization
length L as a function ofx for M ranging from 6 to 14. The
intersection point, which is interpreted as the transition point, is
estimated as 0.6860.01 for this data set.~b! The phase diagram
drawn in thev-x plane. The squares represent the data points for
the critical concentrations and the dashed line is a fitting curve to
the data points. ‘‘L’’ represents the region of localized states and
‘‘ E’’ the region of extended states.
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ing simple linear dependence with respect to the coordina-
tion number, we expect that the calculation on the zinc-
blende structure may yieldxc>0.853(4/6)>0.57, close to
xc>0.45 from the previous analytic results.

Therefore, from both the analytic and numerical methods,
we contend that there exists some nontrivialxc such that
whenx.xc all GL optical phonons are localized, justifying
the method of Parayanthal and Pollak.2 On the other hand,
when x,xc , most GL optical phonons are extended while
the states near the edges of the branch are localized. In the
latter case, a dispersion relationv5v(k) may be a useful
description of the eigenstates. However, the phrase ‘‘disper-
sion relation’’ here should be interpreted in a rather different
sense from an ordered system; an eigenstate of energyv is a
superposition ofmany differentBloch states whose distribu-
tions Pv(k) are centered atk but which have some finite

linewidth caused by incoherent scattering from the disor-
dered assembly of sites. This linewidth is given as;1/j if
the eigenstate is localized within a spatial extentj. Therefore
in a disordered system the existence of a dispersion relation
does not necessarily imply that all eigenstates are extended.
One can safely use the terminology of dispersion relation in
a sense qualitatively the same as an ordered system only
when a significant fraction of eigenstates of given branch are
extended.
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