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Hofstadter butterflies for flat bands
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~Received 17 July 1996; revised manuscript received 27 September 1996!

Hofstadter’s diagram~the energy spectrum against the magnetic field in tight-binding systems! is obtained
for the models having flat one-electron band~s! that have originally been proposed for itinerant spin ferromag-
netism. Magnetic fields preserve those flat bands that arise from a topological reason, while dispersions emerge
in a singular manner for the flat bands arising from interference. This implies an anomalous orbital magnetism.
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Hofstadter’s butterfly, or the Landau-quantized ene
spectrum against the magnetic field in periodic systems,
vides an intriguing example of the fractal spectrum in co
densed matter physics. The quantum Hall effect for latt
fermions has also been discussed for these spectra.1 Physi-
cally, the message is that when the magnetic field penetra
the unit cell of a two-dimensional lattice isq/p in units of
flux quantum, we have essentially ap-band system. Accord
ingly the scaling of the integer quantum Hall effect, for i
stance, exhibits a peculiar structure forpÞ1.2

Although the situation might seem essentially the sa
for complex lattices with the unit cell containing several
oms, here we wish to point out that interesting physics d
exist when there existflat ~dispersionless! band~s!. The flat
band, or a macroscopic number of degenerate states, ha
peared in the condensed matter physics from various c
texts.

First one is concerned with the spin magnetism in rep
sively interacting itinerant electrons, as exemplified by
Hubbard model. It has become increasingly clear that o
at, or possibly around, the singular limit of infinite intera
tion and infinitesimal doping from a half-filled band does
ferrimagnetism appear. Lieb3 then pointed out that we ca
realize a ferromagnetism, for arbitrary strength of the Hu
bard U at half-filling, if a bipartite lattice with nearest
neighbor transfers has different numbers,naÞnb , of a and
b sublattice sites in a unit cell. In this situationna2nb flat
band~s! appear, and the ferromagnetism resides on the
bands.

This is in accord with the ‘‘generalized Hund’
coupling,’’4 which dictates that electrons on the Fermi s
face should be fully spin polarized for arbitraryU — a mac-
roscopic number of states lying on the Fermi energy w
then imply a bulk magnetization. A flat band usually aris
when there exist localized eigenstates~or Wannier states!
that are mutually disjointed. Remarkably, this does not ap
to the flat bands considered here: The most compact s
cannot be confined within the unit cell, so that the states h
to overlapwith each other. If oneforcesthe localized states
to be mutually orthogonal to construct true Wannier sta
one ends up with even longer-tailed states. Physically, th
exactly why the spin ferromagnetism emerges when
electron-electron repulsion is turned on: aligned spins
fully exploit Pauli’s principle to avoid repulsions.4,5 This re-
minds us of the fractional quantum Hall system, where
quantum-liquid ground state is fully spin polarized due to
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exchange interaction among the orbitals in a Landau leve
peculiar ‘‘flat band’’ arising itself from magnetic fields
There, orthogonalized Wannier states cannot be constru
either.6

The model is extended by Mielke7 and by Tasaki,8 which
introduce distant-neighbor transfers to prepare flat band~s!,
on which spins align. Since the flat band is a result of
interference among the nearest-neighbor and more dis
transfers, we may call this class the flat band due to inter
ence. By contrast, Lieb’s class may be called the flat b
due to topology, since only the manner in which the sub
tices are interlocked matters.

A class of flat bands has also been conceived in the c
text of ‘‘lateral superstructures’’ that have superperiods
atomic dimensions in lateral directions. These are envisa
to be realized in organicp-electron materials such as th
‘‘long-period graphite’’~with period; of a few tens of Å!,
once alleged to be obtained in an attempt to fabric
fullerenes.9 We can use the group theory10 to classify all the
atomic configurations with a superperiod into semicondu
ing, semimetallic, and metallic classes. A superperiod, s
as super-honeycomb structures,enforces, in some classes
the existence of flat bands on top of dispersive ones, whic
a systematic realization of Lieb’s model.

Now, a natural question is what will happen to the fl
bands when a uniform magnetic field is applied. We can
fact expect intriguing phenomena, such as the orbital m
netism as in the ‘‘ring-current effect’’ in fullerenes.11 In the
present paper we reveal from the Hofstadter butterfly for
flat-band systems that the magnetic field leaves the flat ba
flat, sandwiched between usual Hofstadter butterflies, for
flat bands arising from topology, while the flat band is d
veloped into a butterfly on its own for the flat bands arisi
from interference. These imply that not only the spin ma
netism but the orbital magnetism are intriguing in flat-ba
systems.

For the tight-binding model on complex lattices we co
sider for convenience a rectangular unit cell ofLx3Ly
~which is twice the original unit cell in the case of hone
comb systems!. The strength of the magnetic fieldB applied
perpendicular to the system is characterized
B̃[BLxLy /F05q/p, whereF05h/e is the flux quantum
and the field is called rational whenp,q are integers.

The magnetic field is incorporated in the transfer ene
t i j in the usual manner through the Peierls phase as
R17 296 © 1996 The American Physical Society
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t i j→eif i j t i j , ~1!

f i j52
2p

F0
E
r i

r j
A•dr52

2pB

F0
x̄i jDyi j , ~2!

where the last expression holds for the Landau gauge for
vector potentialA5(0, Bx).

In this gauge the phase appears for the transfer involv
a shift alongx, which repeats itself with a translation of th
unit cells alongx by Ncell , whereNcell is the smallestN that
makesN(q/p)(Dyi j /Ly) an integer for all the bondŝi j &
within or across a unit cell. Thus we can perform a ban
structure calculation regarding the (NcellLx ,Ly) system as a
new unit cell. Its size depends by construction not only
q/p but also on the atomic configuration in the original un

FIG. 1. Hofstadter’s diagram~energy spectrum againstB̃) for
Lieb’s ~a!, Mielke’s ~b!, and Tasaki’s~c! models, whose lattice
structures are attached witht etc. being the transfer. Arrows her
and figures below represent the position of the flat bands
B50. The spectrum are shown here forB̃[q/p with typically
p<30 or 1<q<119 with p5120.
he
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cell of the superstructure~via Dyi j ). Thus the magnetic cel
defined here differs from those appearing in the magn
translation group. The existence of the cell implies that
Brillouin zone will beNcell folded.

Figure 1 displays the Hofstadter butterfly for simple re
izations of Lieb’s, Mielke’s, and Tasaki’s models, all a
sumed to have the square symmetry for simplicity. We c
see that, while each dispersive band splits into magn
minibands, the flat band in Lieb’s case remains flat. By c
trast the interference-originated flat bands develop into pe
liar butterflies asB is increased.

The fact that the topological flat bands can still remain fl
in B is analytically shown. There we have only to solve thr
simultaneous eigenequations for the amplitudes in the
cell @e.g.,cA ,cB ,cC with A,B,C depicted in Fig. 1~a!#. If
we eliminatecB andcC the equation for nontrivial solutions
for cA reduces to the corresponding equation for a sim
square lattice if we translateEsquare into E224. On top of
these there areN-fold degenerateE50 states that have
cA[0, so that we have indeed a flat band with its ene
pinned at the original energy that is actually sandwiched
two butterflies mapped via6(Esquare14)1/2. HereN is the
number of unit cells, and the atomic level is taken to
E50 ~which coincides withEF when half-filled, i.e., one
electron per atom! with t521.

For B50 the most compact ‘‘Wannier state’’~nonor-
thogonal as mentioned! on the flat band is depicted in inse
of Fig. 2. In quantum chemistry for finite molecules, the
states correspond to nonbonding molecular orbitals. Here
have found by inspection that this can be extended toBÞ0
as displayed in Fig. 2. Curiously,B acts to deform the
E50 states into ‘‘elongated ring states’’ alongx ~or y) in
the Landau gauge, whose length equalsp for B̃5q/p due to
the Peierls phase. This sharply contrasts with the us
Bloch-Landau state having the size of the magnetic len
}1/AB.

On the other hand, it is not surprising that the flatness
lost even for an infinitesimalB in Mielke’s or Tasaki’s mod-
els, which rely on an exact tuning of the interference. In t
case an eigenstate turns from a compact one into a Blo
Landau state. We can observe some global symmetries in
butterflies such as the following:~i! a full periodicity is ac-

r

FIG. 2. An example of theE50 ‘‘elongated ring states’’ in the
Landau gauge, whose length equalsp for B̃51/p(51/5 here!. A
circle represents a finite amplitude, while arrows indicate the ph
~which depends on the position of the ring!. The inset~left bottom!
shows a similar plot forB50. This state is recovered forp→` as
a superposition of the elongated ring states.
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complished when the magnetic flux penetrating the sma
loop in the lattice becomesF0 ~which is reminiscent of the
AB effect in the mesoscopic conductance12!, ~ii ! there is a
twofold symmetry aboutB̃51 for Mielke’s model or a mir-
ror symmetry aboutB̃52 for Tasaki’s.

If we more closely look at the way in which the flat ban
develops into a butterfly for Tasaki’s model in Fig. 3, we fi
the following. ForB̃5q/p with p even, we have a series o
Landau bands~Harper-broadened Landau levels in nonpa
bolic bands! that have a zero gap at the position,E0522, of
the original flat band. For an oddp E0 is a midband point.
Usually the anomalous even-odd alternation occurs aro
the electron-hole symmetric point (E50) in Hofstadter’s
butterfly for a bipartite lattice: curiously, this occurs he
aroundE0.

Thus the orbital magnetic moment,M52]ET /]B with
ET being the total energy, becomes anomalous along w
the magnetic susceptibility. A specific effect of the del
function density of states aroundE0 spreading both below
and aboveE0 with B is that the total energydecreaseswhen
the magnetic flux is introduced if we start from a flat ba
less than half-filled. This might lead to an orbital ferroma
netism ~a spontaneous induction of a network of persist

FIG. 3. Typical band structures~projected ontokx or ky axis for
finite numbers ofk’s! are displayed forB̃5q/p with p even
@q/p51/10, ~a!# or p odd @q/p51/5, ~b!# in Tasaki’s model. Note
a change in the vertical scale between~a! and ~b!.
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currents!, although it has been pointed out13 in the context of
the flux phase14 in correlated electrons that a more accura
estimate of energy has to include the diamagnetic shift
the shrinkage of atomic orbitals.

We now turn to superhoneycomb systems, where in
classification by Shima and Aoki a classB0 ~BC) system has
to have, when bipartite, at least three~one! flat band~s! in the
gap of semiconducting~semimetallic! bands. To define the
classes, we can first note that a unit cell in a honeyco
system may be regarded as comprising two atomic clus
~or ‘‘superatoms’’!, where the two do not~caseA) or have to
(B) share an atom. The center of each superatom~a threefold
axis! may ~caseC) or may not~0! coincide with the position
of an atom.

The result for the Hofstadter butterfly~Fig. 4! shows that
the flat bands remain flat forB.0 no matter whether the fla
bands are multiple~BC) or single ~B0) at B50. For the
system depicted in Fig. 4~a! the flat band is sandwiched be
tween the butterfly for the simple honeycomb lattice15 just as
in Fig. 1~a!, where the only difference is that the butterflie
are now mapped via6(Ehoneycomb13)1/2.

The presumed superstructures are surprisingly sta
against the band Jahn-Teller type distortion as seen from
total-energy calculation.16 For actual fabrication, one poss
bility would be to polymerize self-aligned organic molecul
as realized in the van der Waals epitaxy.17 Magnetotransport
in these systems will be also of interest as in thre
dimensional organic materials.18

We thank Koichi Kusakabe, Kazuhiko Kuroki, and Nao
Nagaosa for valuable discussions.

FIG. 4. Hofstadter’s diagram for classB0 ~a! or BC ~b! super-
honeycomb systems.
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