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Dynamical density-density correlations in one-dimensional Mott insulators

Walter Stephan and Karlo Penc*
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~Received 11 September 1996!

The dynamical density-density correlation function is calculated for the one-dimensional, half-filled Hub-
bard model extended with nearest-neighbor repulsion using the La´nczos algorithm for finite-size systems and
analytically for large on-site repulsion compared to hopping amplitudes. At the zone boundary an excitonic
feature exists for any finite nearest-neighbor repulsion and exhausts most of the spectral weight, even for
parameters where no exciton is visible at zero momentum.@S0163-1829~96!52048-5#
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Materials such as SrCuO2 and Sr2CuO3 are believed to
be quite well described by the one-dimensional half-fill
Hubbard model.1 With the current level of experimenta
technology it is possible to measure dielectric respo
~which is directly related to the density response functio!
with good resolution in both momentum and ener
transfer,2,3 which makes it of great interest to understand
response expected from this simplest model of a M
Hubbard insulator. In this paper we present the combi
results of analytic and numerical calculations, which clar
the nature of the dynamical density response function of
Hubbard model including also nearest-neighbor repuls
which is a first step to the inclusion of the long-range Co
lomb interaction. The results presented may serve as a
cation of the appropriateness of the model to particular m
terials once experimental data become available. Prev
work of Mori, Fukuyama, and Imada4 in this direction was
based on an effective low-energy model whose relation
our extended Hubbard model is nontrivial.

The extended Hubbard model is defined as

H52t(
j ,s

~cj11,s
† cj ,s1H.c.!1U1V, ~1!

where U5U( jnj ,↑nj ,↓ is the on-site Coulomb repulsion
V5V( jnjnj11 is the nearest-neighbor repulsion a
ni5ni↑1ni↓ is the density at sitei .

The imaginary part of the density-density correlati
function is given by

N~k,v!5(
f

u^ f unkuGS&u2d~v2Ef1EGS!, ~2!

whereuGS& is the half-filled ground state andu f & denotes a
final state with energyEf and momentumk5Pf . Note that
the optical conductivity is directly related to the densit
density correlation function through the continuity equati
~see, e.g., Ref. 5!,

Res~v!5 lim
k→0

v

4sin2~k/2!
N~k,v!. ~3!

For the case of small charge gap compared to bandw
s(v) has been calculated by Giamarchi and Millis6 using
bosonization, and the largeU case was studied by Gebha
et al.7
540163-1829/96/54~24!/17269~4!/$10.00
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We evaluate Eq.~2! by ~a! direct diagonalization, which
is limited to small clusters;~b! for U@t,V we perform a
canonical transformation of the type introduced by Har
and Lange8 to get a ‘‘tJ’’ like effective model. This model is
then diagonalized for larger system sizes;~c! finally, for the
effective model in the thermodynamic limit an analytic e
pression is obtained using the factorized wave function
Ogata and Shiba.9

a. Exact diagonalization of Hubbard model.Using the
standard La´nczos algorithm, it is straightforward to calcula
N(k,v) for finite size clusters ofL sites. In Fig. 1 we show
a typical plot for relatively largeU and intermediateV.
There are several features to observe: the spectra cons

FIG. 1. N(k,v) of a half-filled twelve site Hubbard model~full
line! for V5t, U/t512, effective model with~dotted line! and
without ~dashed line! t2/U2 corrections in the density operator
The d functions are plotted as Lorentzians of width 0.1t.
R17 269 © 1996 The American Physical Society
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dominant peaks which are distributed over a frequency ra
from approximatelyU2V24t to U2V14t at small mo-
mentum transfer, narrowing to a single peak nearU2V at
the zone boundary. There are also less intense features w
are barely visible in the figure whose weight increas
slightly for smallerU. The number of large peaks at sma
momentum scales linearly with the system size, and is th
fore most naturally interpreted as the finite-size precurso
a continuum absorption. Near the zone boundary, howe
for all accessible system sizes we see only a single p
whenV is finite. We shall see that this is due to the appe
ance of an exciton below the continuum. A further feature
N(k,v) is the asymmetry in the weight distribution: th
spectra are skewed toward lower frequency, which is m
pronounced for either smallerU or greaterV. Our main in-
terest here is the regionV!U, however we note that forV
approachingU/2 the transition to the charge density wa
state10 is directly seen as a drastic softening of the respo
at k5p. Apart from the features presented there is of cou
also the special case ofk50 where the response is simply
delta function at zero frequency.

b. Effective model.In order to understand more clearly th
above observations it is instructive to derive an effect
model in the strong-coupling largeU limit. We closely fol-
low the approach of Harris and Lange,8 however, for details
and notation we refer to Ref. 11. We first define

T̃05Ṽ2t (
i ,d,s

ñi ,s̄ c̃i ,s
† c̃i1d,sñi1d,s̄

2t (
i ,d,s

~12ñi ,s̄ !c̃i ,s
† c̃i1d,s~12ñi1d,s̄ !

TU52t (
i ,d,s

ñi ,s̄ c̃i ,s
† c̃i1d,s~12ñi1d,s̄ !, ~4!

andT̃2U5T̃U
† where the subscript denotes the change in

eigenvalue ofŨ induced, corresponding to the change in t
number of doubly occupied sites, so that

Heff5Ũ1T̃01
1

U
@ T̃U ,T̃2U#1OS t3U2 ,

Vt2

U2 D . ~5!

Here byÕ we denote the canonically transformed operato
The expression forHeff at the operator level is quite lon
and complicated, here we rather give the effect
U21@ T̃U ,T̃2U# applied to the basis states:

uss̄&→~2t2/U !~ us̄s&2uss̄&)

utt̄&→~2t2/U !~ utt̄&1u t̄t&)

utss̄&→~ t2/U !~ us̄st&2uss̄t&)

uss̄t&→~ t2/U !~ uts̄s&2utss̄&)

utt̄s&→2~ t2/U !~ ustt̄&1ust̄t&)

ustt̄&→2~ t2/U !~ utt̄s&1u t̄ts&), ~6!

where s stands for spins andt for empty (e) or doubly
occupied (d) states, and we use the convention where
e
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creation operators for the states are ordered with increa
site index and in case of double occupancy we useci↑

† ci↓
† .

In order to calculate the matrix elements describing
transition to the upper Hubbard band in Eq.~2!, we must
transform the electron density operator appropriately11

ñi ,U5ñi ,U
(1)1ñi ,U

(2)1•••, where the leading term
ñi ,U
(1)5@ T̃U ,ñi ,0#/U reads

ñi ,U
~1!5

t

U (
d561

@ ñi s̄ c̃is
† c̃i1ds~12ñi1d,s̄ !

2ñi1ds̄ c̃i1ds
† c̃is~12ñi ,s̄ !#. ~7!

The next order correctionñ (2) will be considered later.
At half–filling the ground state wave function ofHeff is

simply that of the Heisenberg model, and matrix eleme
are with the states in the upper Hubbard band—i.e., with
states containing exactly one doubly occupied site. Th
^ f uñ j ,U

(1)uGS&5t/U^ f u(s,d( c̃ js
† c̃ j1ds2 c̃ j1ds

† c̃ js)uGS& holds
andN(k,v) simplifies to

N~k,v!5L
t2

U2 4sin
2
k

2 (
f

u^ f u~ c̃1s
† c̃0s2 c̃0s

† c̃1s!uGS&u2

3d~v2Ef1EGS!dk,Pf . ~8!

The density response for this effective model as determi
by exact diagonalization is shown in Fig. 1 as the dash
curve. We can see that the overall behavior follows that
the Hubbard model, however, there are significant deviati
in the distribution of weights near the edges of the spectr
for the not extremely largeU used. This agreement may b
improved by including also the next to leading order corre
tion to the density operator:

ñ j ,U
~2!5

1

U2 @@ T̃U ,T̃0#,ñ j ,0#5
t2

U2 (
s,d

@~122ñ j1d,s̄ !

3~ c̃ j12d,s
† c̃ j ,s2 c̃ j ,s

† c̃ j12d,s!

12~ c̃ j12d,s̄
† c̃ j1d,s

† c̃ j1d,s̄ c̃ j ,s

2 c̃ j ,s̄
† c̃ j1d,s

† c̃ j1d,s̄ c̃ j12d,s!#

1
tV

U2 (
s,d

~ c̃ js
† c̃ j1ds2 c̃ j1ds

† c̃ js!, ~9!

where the final form is correct only when applied to a ha
filled state with no double occupancy. The diagonalizat
result including also these terms in the matrix elements
shown as the dotted line in Fig. 1. The agreement with
Hubbard model results as compared to the first approxi
tion is noticeably improved as regards the skewing of
spectrum.

c. Analytic approach.The operatorc̃1s
† c̃0s2 c̃0s

† c̃1s in
Eq. ~8! removes a spin singlet from the Heisenberg wa
function and aned ‘‘singlet’’ is created:

u↓↑•••&2u↑↓•••&→2~ ude•••&2ued•••&).

The wave function of the final state in the large-U limit can
be written in the product form:9
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u f &5R̂~ uc& ^ ux& ^ uw&), ~10!

whereuc& describesL22 spinless free fermions on anL site
lattice with twisted boundary condition12 ~the holes represen
the e and d), ux& is the squeezed wave function of the r
maining L22 spins with momentumQ52pJ/(L22),
(J50, . . . ,L23) and uw&5(ued&1ude&)/A2. The operator
R̂5( je

ipnj↑nj↓ corrects for the opposite sign of hopping
the d compared toe. Using this wave function, forN(v,k)
we get

N~k,v!5L
t2

U216sin
2
k

2 (
Q,I1

h ,I2
h
FQB01d~v2Ef1EGS!dk,Pf .

~11!

The spin part givesFQ5(u^xQ
L22uF̂uxGS

L &u2, where the op-
eratorF̂ removes a singlet from the first two sites of the sp
wave function and the sum is over all states with moment
Q. This has been studied in detail in Ref. 13, where it
found that'97% of the total weight,(QFQ5^SW 0•SW 11

1
4&

(→ ln2 in the thermodynamic limit!, is concentrated a
Q50. This remarkable feature makes the calculation sim

The matrix element coming from the charge part of t
wave function isB015u^c f ub0b1ucGS&u

2, where bi annihi-
lates a spinless fermion. First, we discuss the caseV50.
Thenuc& can be characterized by the quantum numbers of
two holes,I 1

h and I 2
h , with momentaLk1,2

h 52pI 1,2
h 1Q, and

the momentum and energy are

Pf52k1
h2k2

h1Q5
2p

L
~2I 1

h2I 2
h1J!

Ef5EGS12t~cosk1
h1cosk2

h!1U, ~12!

where we have neglected the small energy difference
tween the exchange energies of the ground state and the
states of the order oft2/U; furthermore we assume that th
ground state has momentum 0~i.e., the system has 2,6,1
etc. sites!. ThenB01 reads

B015
4

L2
sin2

k1
h2k2

h

2
. ~13!

Let us next consider the case with finiteV: The effect of
the nearest-neighbor repulsion appears as attraction bet
the empty and double occupied sites, and leads to an e
2V(12nj )(12nj11) term in the Hamiltonian describing
the spinless fermions. Therefore we expect bound states~ex-
citons! to appear in the spectrum. In the large-U limit the
factorized wave function remains an eigenstate even in
ducing theV term,7 supposing thatV!U. The two particle
problem can be solved using the standard Bethe-ansatz

uc&5 (
j 1, j 2

aj 1 , j 2u j 1 , j 2&, ~14!

where the holes are located at sitesj 1 and j 2. Since the
system is translationally invariant, we can separate the
mentum of the holesK ~so that the total momentum i
Pf52K1Q):
s

e.

e

e-
nal

en
tra

o-

o-

aj 1 , j 25ei ~ j 11 j 2!K/2@eiq~ j 22 j 1!1neiq~L2 j 21 j 1!#. ~15!

From the twisted boundary conditiona0,j52e2 iQaj ,L
~we assume that the number of fermions and holes
even!, n52ei (KL/22Q)561, and the quantizationLK
52pI K12Q follow, whereI K is an integer. Then the energ
is simply ~we introduce for compactnessE85E2U and
v85v2U):

E854tcos
K

2
cosq, ~16!

and the secular equation forq becomes

2pI5Lq12arctan
Vcosq12tcos~K/2!

Vsinq
, ~17!

where for n51 the quantum numberI is integer,
I50,1, . . . ,L/221, and half odd integer
@I5 1

2,
3
2, . . . ,~L23!/2# for n521. Depending on the ratio

V/@2tcos(K/2)#, we can have either all theq’s real, or, for
sufficiently large ratio a bound state can appear with co
plexq. In the thermodynamic limit,L→`, the bound state is
formed forV.2tcosK/2 with energy

Eexc8 52V2
4t2

V
cos2

K

2
. ~18!

B01 is now given byua0,1u2/( j 1, j 2
uaj 1 , j 2u

2 and, after a
straightforward but tedious calculation, it reads

B015
1

L

16t2cos2
K

2
2E82

LS 4t2cos2K2 1VE81V2D2VE822V2

. ~19!

At this point we have the weights to leading order
t/U. We have performed analogous calculations includ
also the termñ(2) in the matrix elements, and the result o
tained will be given later. Note that there are also contrib
tions of the same order coming from the wave function c
rection, which would require going beyond the factoriz
wave function. In order to investigate the relevance of th
terms, we present in Fig. 2 a comparison of different ap
proximations. Apart from an energy shiftO(t2/U) the
dashed line is seen to be quite reliable, and is in fact bette
far as the distribution of weights is concerned than is
dotted line, which shows that the operator corrections
more significant than those to the wave function.

In the continuum limit we introduce
g(K,v8)5L( IB01d(v82Ef8), and we get

g~K,v8!5
1

2p

A16t2cos2
K

2
2v82

4t2cos2
K

2
1Vv81V2

QS 4tcosK2 2uv8u D

1S 12
4t2

V2 cos
2
K

2 D d~v82Eexc8 !, ~20!

*g(k,v)dv51, andN(k,v) now reads
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N~k,v!'
t2

U216sin
2
k

2
F0g~k,v2U !1Ninc~k,v!, ~21!

whereNinc(k,v) contains the contributions fromQÞ0 and
its weight is small~3%! compared to the main features give
by theQ50 part.

The functiong(k,v) is shown in Fig. 3. As previously
alluded to, the spectrum consists of both continuum a
sharp excitonic features. ForV't the exciton emerges from
the continuum in the middle of the zone, and accounts
almost all of the spectral weight close to the zone bound
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