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Dynamical density-density correlations in one-dimensional Mott insulators
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The dynamical density-density correlation function is calculated for the one-dimensional, half-filled Hub-
bard model extended with nearest-neighbor repulsion using thezba algorithm for finite-size systems and
analytically for large on-site repulsion compared to hopping amplitudes. At the zone boundary an excitonic
feature exists for any finite nearest-neighbor repulsion and exhausts most of the spectral weight, even for
parameters where no exciton is visible at zero momenf&®163-182@6)52048-3

Materials such as SrCufOand Sp,CuOg are believed to We evaluate Eq(2) by (a) direct diagonalization, which
be quite well described by the one-dimensional half-filledis limited to small clusters(b) for U>t,V we perform a
Hubbard modet. With the current level of experimental canonical transformation of the type introduced by Harris
technology it is possible to measure dielectric responsand Lang&to get a ‘tJ” like effective model. This model is
(which is directly related to the density response fungtion then diagonalized for larger system sizés;finally, for the
with good resolution in both momentum and energyeffective model in the thermodynamic limit an analytic ex-
transfer?® which makes it of great interest to understand thepression is obtained using the factorized wave function of
response expected from this simplest model of a Mott-Ogata and Shiba.

Hubbard insulator. In this paper we present the combined a. Exact diagonalization of Hubbard moddlsing the
results of analytic and numerical calculations, which clarifystandard Laczos algorithm, it is straightforward to calculate
the nature of the dynamical density response function of the\(k,w) for finite size clusters oE sites. In Fig. 1 we show
Hubbard model including also nearest-neighbor repulsiona typical plot for relatively largeU and intermediateV.
which is a first step to the inclusion of the long-range Cou-There are several features to observe: the spectra consist of
lomb interaction. The results presented may serve as a indi-

cation of the appropriateness of the model to particular ma-  o.010 — . .
terials once experimental data become available. Previous i
work of Mori, Fukuyama, and Imadan this direction was 0.005 | ]
based on an effective low-energy model whose relation to
our extended Hubbard model is nontrivial. 0.000
The extended Hubbard model is defined as
0.02 i
H=—12 (¢, 1,Cj ,+HC)+U+Y, (1) 000
], .S
where U=UZ;n; ;n; | is the on-site Coulomb repulsion, 004 L ]
V=VZjninj,; is the nearest-neighbor repulsion and ’
ni=n;;+n;, is the density at site. E 0.00
The imaginary part of the density-density correlation =
function is given by 010
Nik,0) =2 [(fInG9[*5(w—Ef+Ec9, (2 000
where|GS) is the half-filled ground state ar{d) denotes a 0.20 ¢ )
final state with energ¥; and momentunk=P;. Note that
the optical conductivity is directly related to the density- 0.00
density correlation function through the continuity equation " k=nt
(see, e.g., Ref.)5 0.20 | ‘A 1
: @ 0%%35 100 12.0 140 16.0
R&T(w)zlmm./\f(k,w). (3) Wt

For the case of small charge gap compared to bandwidth F|G. 1. Ak, ) of a half-filled twelve site Hubbard modéll
o(w) has been calculated by Giamarchi and Milissing line) for V=t, U/t=12, effective model with(dotted liné and
bosonization, and the lardeé case was studied by Gebhard without (dashed ling t?/U? corrections in the density operators.
etal’ The & functions are plotted as Lorentzians of widtht0.1
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dominant peaks which are distributed over a frequency rangereation operators for the states are ordered with increasing
from approximatelyU —V—4t to U—V+4t at small mo- site index and in case of double occupancy we cq%e,*l.
mentum transfer, narrowing to a single peak ndarV at In order to calculate the matrix elements describing the
the zone boundary. There are also less intense features whitfansition to the upper Hubbard band in ), we must
are barely visible in the figure whose weight increasesransform the electron density operator appropriatély,
slightly for smallerU. The number of large peaks at small ﬁi,u:ﬁiﬁ)"”ﬁi,%hf ..., where the leading term
momentum scales I!nearly with the sys;e_m size, and is thereﬁi(llJ):[TU T o]/U reads
fore most naturally interpreted as the finite-size precursor to ’
a continuum absorption. Near the zone boundary, however, t
for all accessible system sizes we see only a single peak = vl > [(MiatilCis se(1-Niy 55)
whenV is finite. We shall see that this is due to the appear- o=
ance of an exciton below thg continuum. A fl_thh_er f_eat.ure of —ﬁi+aﬁi1 500 (1= )], 7)
MKk, w) is the asymmetry in the weight distribution: the
spectra are skewed toward lower frequency, which is mor@he next order correction 2 will be considered later.
pronounced for either smallé# or greater'V. Our main in- At half—filling the ground state wave function &f; is
terest here is the regiovi<U, however we note that fo¥  simply that of the Heisenberg model, and matrix elements
approachingU/2 the transition to the charge density wave are with the states in the upper Hubbard band—i.e., with the
staté’ is directly seen as a drastic softening of the responsstates containing exactly one doubly occupied site. Then
atk=r. Apart from the features presented there is of coursgf[Ri,()|GS) =t/U(f|=,, €1+ 5o— ;' 5,6,,)|GS holds
also the special case &f=0 where the response is simply a and V(k,w) simplifies to
delta function at zero frequency.

b. Effective modeln order to understand more clearly the t2 .k fm ot )
above observations it is instructive to derive an effective N(k,w)sz4smz > Ef [(1(€1sC00— CouC1s)|GS)|
model in the strong-coupling lardg limit. We closely fol-
low the approach of Harris and Lan§&owever, for details X 6(w—Ef+Egs) ok p,- (8)
and notation we refer to Ref. 11. We first define

The density response for this effective model as determined

= = ~ ~t~ ~ by exact diagonalization is shown in Fig. 1 as the dashed
To=V-t> ni,;Ci,TaCi+5,ani+5,zr_ Y ; X

i.o.0 curve. We can see that the overall behavior follows that of

the Hubbard model, however, there are significant deviations

—t 1-7 9T T 1-7. in the distribution of weights near the.edges of the spectrum
i;a ( 1) CioCi+ 500 i+5:0) for the not extremely largé) used. This agreement may be

improved by including also the next to leading order correc-
_ - —t= - tion to the density operator:
Tu—_tzﬁ: N 5Ci »Cit 5,01 Niys55), (4)

B B i,0,0 o 1~ - - t2 _
andT_UzTJNWhere the subscript denotes the change in the nj,u_m[[TU ToliNj o] = u? 025 [(1-2n}455)
eigenvalue oi/ induced, corresponding to the change in the '
number of doubly occupied sites, so that X(’EjTFZ&,an,a'_EjTo’Ej+2§,¢r)

2 Vvi? +2(Ci} 255+ 6,0C+56,6C),0

_ v u _CjTECJT%—&,UCj+5,ECj+25,a)]
Here byO we denote the canonically transformed operators.
_ : : tv e ~t =
The expression fofH. at the operator I_evel is quite long + 02 E (Ci4Cj+ 50~ Cjt 50Cja) (©)
and complicated, here we rather give the effect of 0,0
U Y Ty,T_y] applied to the basis states:

_ ~ 1 -~ —~
Heff:Z/{"_To‘i‘U[Tu,T,U:I‘i‘O

where the final form is correct only when applied to a half-

— 2 — .\ filled state with no double occupancy. The diagonalization
|0o)=(2t1V)(jo0)=|oa) result including also these terms in the matrix elements is
(2t U D + 77 shown as the dotted line in Fig. 1. The agreement with the
[77) = M7y +lrn) Hubbard model results as compared to the first approxima-
|ro0)— (V) ([oor)—|oor)) tion is noticeably improved as regards the skewing of the
spectrum.
|co7)— (2IU) (| 7o0) | 70 o)) c. Analytic approach.The operator"c'f;c'og—'?:'ol'ela in
Eqg. (8 removes a spin singlet from the Heisenberg wave
|7-7-_a>—>—(t2/U)(|ara-_)+|ch)) function and ared “singlet” is created:
lormy— — (t2U)(|770) +[770)), (6) [LT--)=1]---)=2(]de---)—[ed---)).

where o stands for spins and for empty () or doubly  The wave function of the final state in the largelimit can
occupied @) states, and we use the convention where theébe written in the product form:
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|f>=|A?(|l/I>®|X>®|QD>), (10) ajl'j2=ei(j1+j2)K/2[eiq(j2_jl)+Veiq(L_j2+jl)]. (15)

where|y) described —2 spinless free fermions on ansite From the twisted boundary conditiorao,jz—e*‘Qaj,L
lattice with twisted boundary conditibh(the holes represent (we assume that the number of fermions and holes is
the e andd), |x) is the squeezed wave function of the re-even, v=—¢'K2"Q==+1 and the quantizationLK
maining L—2 spins with momentumQ=2=J/(L—2), =2xl¢+2Q follow, wherel is an integer. Then the energy
(J=0,...L-3) and|¢)=(led)+|de))/y2. The operator is simply (we introduce for compactness’=E—U and
R=3,;€' ™" corrects for the opposite sign of hopping of @' =w—U):

thed compared tee. Using this wave function, foAM{ w,k)

K
we get E’=4tcos§cosq, (16)
t2 K .
Nk, )= Lm16sir?§ Eh h FoBo18(w—Ef+Ege) 5k,Pf- and the secular equation fgrbecomes
Q17,1
172 (11) Vcogy+ 2tcog K/2)

: (17

2@l =Lg+2arctan .
. . L=2124 L \12 Vsing
The spin part giveso=2|(xq “[Flxcg|* where the op- o
eratorF removes a singlet from the first two sites of the spinwhere for »=1 the quantum numberl is integer,
wave function and the sum is over all states with momentund =0,1,...L/2=1, = and ~ half ~ odd  integer
Q. This has been studied in detail in Ref. 13, where it isll =2.2, - - - {L=3)/2] for v=—1. Dependmg on the ratio
found that~97% of the total weightSoF o= (3o S1+ 1) V/[2tcos(/2)], we can have either all the's real, or, for
(—In2 in the thermodynamic limit is concentrated at sufficiently large ratio a bound state can appear with com-

Q=0. This remarkable feature makes the calculation simpleplexq' In the thermodynamic limit, —, the bound state is

The matrix element coming from the charge part of theformed forV=>2tcos/2 with energy

wave function isBo,=|{i;|bgby|ce)|? Whereb; annihi- a2 K
lates a spinless fermion. First, we discuss the cdseD. Efye= —V— —COF+. (18)
Then|) can be characterized by the quantum numbers of the v 2
two holes,I and1}, with momentaLk*l‘]2=27TI*1"2+ Q, and

Bo1 is now given by|ag4%/=; ~i |a;. ;.|? and, after a
the momentum and energy are o 9 ylaod*/=;, <j,lay,

straightforward but tedious calculation, it reads
27
Pi=—ki—k3+Q="-(—11-13+J) 162c02 N _ 12
1 2
h h Bor={ K
Et=Egst 2t(cokq+cosky) +U, (12 L| 4t?co8 5 +VE'+V?| - VE'~2V?

(19

where we have neglected the small energy difference be-

tween the exchange energies of the ground state and the final At this point we have the weights to leading order in
states of the order af/U; furthermore we assume that the t/U. We have performed analogous calculations including
ground state has momentum (De., the system has 2,6,10 also the terrm® in the matrix elements, and the result ob-

etc. sitey. ThenBy, reads tained will be given later. Note that there are also contribu-
tions of the same order coming from the wave function cor-

4 K'—Kb rection, which would require going beyond the factorized
Bm:ps'”zT- (13 wave function. In order to investigate the relevance of these

terms, we present in Fi®z a comparison of different ap-
> W N
Let us next consider the case with finke The effect of ~Proximations. Apart from an energy shitd(t“/U) the

the nearest-neighbor repulsion appears as attraction betweg@shed line is seen to be quite reliable, and is in fact better as
the empty and double occupied sites, and leads to an extfa" as the distribution of weights is concerned than is the
—V(1-n;))(1—n;,,) term in the Hamiltonian describing dotted line, which shows that the operator corrections are
the spinless fermions. Therefore we expect bound states More significant than those to the wave function.
citons to appear in the spectrum. In the largelimit the In , the CO”“{”UW,“ limit ~ we introduce
factorized wave function remains an eigenstate even introd(K,©")=LZB;16(w’ —E;), and we get
ducing theV term/ supposing tha¥<U. The two particle

; / K
problem can be solved using the standard Bethe-ansatz, . 16t2C0525—w’2

9(K,0")=5—
.. 2 K
|¢>=j12<jzajl,j2|ll=12>v (14 774t2C052§+Vw’+V2

K
(4tcos§—|w’|)

2

where the holes are located at sitgsand j,. Since the 4t K )
1- Wcos?E (o' —EL, (20)

system is translationally invariant, we can separate the mo- +
mentum of the holeK (so that the total momentum is
P;=—K+Q): Jo(k,w)dw=1, andN(k,w) now reads
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0.10 . FIG. 3. g(k,0") for V=t andk=0 (dotted, #/2 (dashed dot-
ted), 57/6 (dashegl and# (solid line). The weight of the excitonic
0.00 } peak is not in the same scale as the continuum. The inset shows the
e momentum dependence of the boundary, the continuum, and the
020 | = ] exciton dispersiortheavy ling.
0.10 | : : e i
For small momentum where the exciton is “inside” the con-
0.00, 0 o0 70 tinuum its presence may still be seen as a strong enhance-

ment of the intensity of the spectrum near the lower edge. Of
course forv>2t the exciton is present for all momenta.

FIG. 2. M(k,w) for an 18-site cluster withy =12t andV=2t. The effect of includingi® in the operators can be given

The solid line is the “best” strong-coupling limit result, where the conveniently as
exact wave functions and energies from the diagonalization of

Her as well as th&d® correction is included, which are, however, 4ow+2V

omitted for the dotted line. The dashed line includ@® but g(k,w)—g(kw){ 1— U (22)
uses the leading order wave functions and energies for the final

states. for the most important case =0. ForV=0, thet3U 3

corrections only redistribute the weight and the sum rule
SNk, w)do=16In2¢/U)sirtk/2+ O(t*/U*%) is satisfied.
To conclude, we have determined the density response of

a simple model for a correlated quasi-one-dimensional insu-
lator. The most surprising result is that excitons may appear
near the zone boundary even if they are not present in the
optical absorptiorithe k— 0 limit), depending on the param-

ters chosen. It would be interesting if these features can be

bserved experimentally.

2
NK,w)~ l3—216s,ir?;Fog(k,w— U)+ Nine(k, @), (21)

where MVi,(k,w) contains the contributions fro®+0 and
its weight is small3%) compared to the main features given
by the Q=0 part.

The functiong(k,w) is shown in Fig. 3. As previously
alluded to, the spectrum consists of both continuum an
sharp excitonic features. Fdt~t the exciton emerges from
the continuum in the middle of the zone, and accounts for We acknowledge useful discussions with J. Fink, F. Geb-
almost all of the spectral weight close to the zone boundaryhard, T. Giamarchi, and P. Horsch.
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