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We extend previous work on preformed pair models of superconductivity to incorporate Coulomb correla-
tion effects. For neutral systems, these models have provided a useful scheme which interpolates between BCS
and Bose-Einstein condensation with increasing coupling and thereby describes some aspects of pseudogap
phenomena. However, charge fluctuations~via the plasmon,vp) significantly modify the collective modes and
therefore the interpolation behavior. We discuss the resulting behavior of the pseudogap and thermodynamic
quantities such asTc , x, andCv as a function ofvp . @S0163-1829~96!50846-5#

The role of the pseudogap1 in the high-Tc cuprates is
emerging as an important indicator of the nature of the su-
perconductivity as well as the normal state. There are two
widely discussed but competing explanations for pseudogap
effects but no clear and decisive experiments to support one
scenario over the other. Early observations associated the
pseudogap with magnetic pairing2 aboveTc ~often called the
‘‘spin gap’’!. It is now clear, however, that some form of
normal-state pairing is seen in photoemission as well as
charge transport data. Moreover, at least in the photoemis-
sion data the pseudogap appears to have thed-wave
symmetry1 of the ordered state and this leads naturally
to the association of this ‘‘gap’’ with precursor super-
conductivity.3–5 This second scenario is further supported by
the observation of low dimensionality and short coherence
lengths in high-Tc superconductors, which suggests impor-
tant deviations from ideal mean field or BCS transitions. In-
deed, the approach of the present paper assumes the precur-
sor superconductivity scenario, in large part because it is
important to establish, at least as a base line, the extent to
which such superconducting ‘‘fluctuation’’ effects may be
responsible for pseudogap behavior.

Among those models which subscribe to a precursor su-
perconductivity scenario there are additionally two rather
distinct viewpoints. Emery and Kivelson5 have argued that
the pseudogap state of the cuprates is similar to that observed
in granular films where phase coherence is not fully estab-
lished, although large regions of the material have a well
established superconducting amplitude. Because it is small,
in some sense, in the cuprates their approach focuses on
n/m* or alternatively on the plasma frequencyvp as the key
‘‘phase stiffness’’ parameter. Alternatively, others3,4,6,7have
focused on the observed small size of the superconducting
correlation lengthj to argue for important corrections to
BCS theory associated with preformed or nearly formed
pairs8 which exist well aboveTc and therefore give rise to
significant pseudogap effects. The present paper is based on
the viewpoint that in the cuprates the characteristic parameter
of the charge degrees of freedom,n/m* or equivalently
vp , should be treated on a relatively equal footing with the
correlation length,j.

To study the role of Coulomb interactions on pseudogap
phenomena, we adopt a natural microscopic framework
which incoporates charge fluctuations into theories which

treat the crossover from BCS pairing to Bose-Einstein con-
densation~BEC! of preformed pairs.9 In neutral systems, this
crossover has been studied by a variety of investigators.3,4,6

Numerical simulation studies,7 which have been performed
in the context of attractive Hubbard models, include, in prin-
ciple, all diagrammatic contributions. On the other hand,
analytical work has mostly been confined to theT-matrix
approximation. The issue of nonconserving and conserving
T-matrix schemes has been widely discussed in the
literature6 in the context of the BCS-BEC crossover problem.
In the original work of Nozie`res and Schmitt-Rink a noncon-
serving approach was used. Recent work6 on neutral systems
has extended this scheme using aT-matrix approximation
which satisfies global conservation laws and in the process
introduces renormalized Green’s functions into the general-
ized susceptibilities. In the charged system, as a consequence
of gauge invariance, the analogue renormalized susceptibili-
ties must then appear in the particle-hole channel. As has
been known for some time,10 however, the collective mode
spectrum is then treated incorrectly at this level of approxi-
mation and a more sophisticated scheme is needed. In order
to avoid this complexity and to develop an intuitive under-
standing of the effects of charge, however, we restrict the
analysis, in this paper, to the more familiar scheme intro-
duced by Nozie`res and Schmitt-Rink and defer consideration
of a fully conserving formalism. We note, however, that our
formulation will be locally conserving and in the case of
charged systems this approximation does not yield qualita-
tively different physics from that expected using a globally
conserving approach. Furthermore, it is our contention that
mode-mode coupling effects will ultimately lead to impor-
tant insights which we will discuss in a future paper.

The Hamiltonian under consideration contains an attrac-
tive interactionVk,k8, parametrized by a coupling constant
g, as well as long-range Coulomb terms. For definiteness we
take the same separable pairing potential,Vk,k85gvkvk8
wherevk5(11k2/k0

2)21/2, as was used initially by Nozie`res
and Schmitt-Rink. Within this model, the pairing energy
scale~or ‘‘Debye frequency’’! is the Fermi energy. We as-
sume a three-dimensional free electron model for the elec-
trons and defer discussion of anisotropy effects until later in
the text. It is assumed that in the cuprates there is sufficient
interlayer hopping so that a strictly two-dimensional model
and its associated Kosterlitz-Thouless transition is not the
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appropriate starting point. We generalize the path integral
formulation of Ref. 4, replacing the usual fermionic fields by
Nambu spinors,ck

†5(ck↑
† ,c2k↓), and decoupling in four real

fields given byh i5c†t ic (t i ,i50, . . . ,3, are theidentity
and three Pauli matrices!. The interaction in the off-diagonal
channels (i51,2) is the pairing interaction while the Cou-
lomb term appears in the diagonal channels (i50,3). Finally,
the fieldh0 may be eliminated by a suitable gauge transfor-
mation and the thermodynamic potentialV is computed for
the remaining degrees of freedom at the Gaussian approxi-
mation level,
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HereV0 is the usual contribution from noninteracting fermi-
ons andnf denotes the corresponding number density of free
fermions. In the interactionVq

( i )5g,vk
( i )5vk for i51,2, and

Vq
(3)54pe2/kq2,vk

(3)51. Finally,Gq,v is the single-particle
Green’s function in Nambu space andT is the temperature,
while nm andv l are the even and odd Matsubara frequen-
cies, respectively. AboveTc the fluctuation propagatorG is
diagonal; thus all three channels~the particle-particle,
particle-hole, and uncorrelated fermions! contribute addi-
tively to V as well as to the various derived thermodynamic
quantities which we calculate below.

In the present formalism,4 the transition temperature is
obtained from the BCS gap equation with a self-consistently
determined chemical potential,m, obtained from the condi-
tion ntot52]V/]m. The resulting coupled equations are
solved numerically form andTc . In the limit of arbitrarily
largeg the effects of the Coulomb interaction drop out, since
mode-mode coupling is neglected at the Gaussian level, so
that Tc is given by the ideal BEC temperature. At smallg,
the collective mode contribution tom becomes arbitrarily
small and the BCS limit is approached, albeit with a Cou-
lomb renormalized chemical potential.11 When the supercon-
ducting coupling constantg vanishes, the above form for
V reflects the plasmon contribution and reduces to that of the
usual Coulomb gas.11 The Gaussian approximation toV
gives a random-phase-approximation-like treatment of the
collective modes and so provides a reasonable scheme for
interpolating between these two limits. It should be noted,
however, that Coulomb pseudopotential effects~which
would act to renormalizeg) are, for simplicity, not included
in our calculations. Here we focus principally on the effects
introduced by the long-range Coulomb interaction@which
enters via the parametervp

254pne2/(m* k)].
To illustrate the effects of charge fluctuations we plot, in

Fig. 1~a!, Tc as a function ofg/gc for various values of the
plasma frequency. The dotted line represents the BCS result
~for the neutral system! and the solid line is the correspond-
ing ~neutral! transition temperature which includes Gaussian
fluctuations. The remaining curves from left to right demon-
strate the effects of increasingly largevp . For the purposes
of focusing on charging effects only we fixEF andkF /k0; in

this way all the Gaussian derived curves have the same high
g asymptote. Moreover, with these assumptions the neutral
system reference curve is unchanged asvp is varied. Two
effects of Coulomb interactions can be observed in Fig. 1~a!:
~i! Tc decreases with increasingvp , and ~ii ! the nonmono-
tonic behavior as a function ofg found for the neutral case
~which is believed to be unphysical!6 progressively disap-
pears with increasingvp .

The first observation, which is perhaps the more impor-
tant, is a consequence of the fact that an attraction due to
Coulomb interactions in the particle-hole channel reduces the
effectiveness of the attraction in the pairing channel. We
illustrate this first point more directly in the inset of Fig.
1~b!, which plots the number of superconducting pairs as a
function of increasingvp . This effect may seem counter to
the expectation that systems with largervp will have re-
ducedTc suppression~i.e., largerTc) due to phase fluctua-
tions. However, when the appropriate reference temperature
is used, Coulomb interactions are found to lead to better
agreement with mean-field theory; in this sense supercon-
ducting fluctuations are, indeed, suppressed by Coulomb in-
teractions. We plot in the main portion of Fig. 1~b! the ratio
of Tc to the critical temperatureT0 obtained by neglecting
pair fluctuations~but including Coulomb effects! for the
same range of plasma frequencies as in Fig. 1~a!. As can be
seen, the larger the plasma frequency, the higher the ratio

FIG. 1. ~a! The variation ofTc as a function of coupling con-
stant in the BCS and Gaussian approximation theories for neutral
and charged systems with increasing plasma frequencies.~b! Tc
normalized by the Coulomb mean-field result~see text! T0 for the
same plasma frequencies as in~a!. The inset in~b! plots the number
of paired electrons vsg/gc for the same parameter set.
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Tc /T0 and thus the better the agreement with a mean-field
treatment of the pairing channel.

A more convenient way of illustrating fluctuation effects
and the associated role of the plasma frequency, however, is
to study thermodynamic properties directly. Here pseudogap
effects enter as precursor superconducting contributions in,
for example, the specific heat and spin susceptibility. As in
Fig. 1~b!, these fluctuation effects are expected to weaken as
the plasma frequency increases and mean-field behavior is
restored. We plotCv andx in Fig. 2 for the same parameter
set as in Fig. 1, withg/gc set equal to unity. This choice of
coupling strength is consistent with the observation of rela-
tively short coherence lengths in the cuprates and with the
claim that high-Tc compounds lie close to the bound-state
limit.8 Here the dotted lines again represent the BCS value
~with a properlyT-dependentm). As is appropriate12 for
Gaussian fluctuation theories, the specific heat varies as
(T2Tc)

21/2. Comparison with the neutral~solid! reference
curve shows that the effects of variablevp are not as evident
in the specific heat as in the spin susceptibility. Similarly,
deviations from mean-field behavior appear at higher tem-
peratures inx than inCv .

It is worth noting that in the present formulation there is
no well defined ‘‘onset temperature’’ for the appearance of a
pseudogap, as might exist if a sharp phase transition oc-
curred at some temperatureT* aboveTc . Moreover, in dis-
cussing the onset of fluctuations, it should be stressed that

their appearance is unrelated to the temperature dependence
of the total number of fluctuations or preformed pairs. As
shown in the inset of Fig. 2~a!, for fixedvp , the total num-
ber of pairs is relatively constant up to temperatures many
times higher thanTc ; however, their distribution shifts to
lower momenta asTc is approached and long-range coher-
ence is established. Detailed calculations indicate that vary-
ing vp does not alter the critical behavior in the pairing
channel asTc is approached; the narrowing of the pseudogap
region with increasingvp is a result of the smaller relative
contribution that pairing fluctuations make to the thermody-
namics as Coulomb correlations become more dominant. Fi-
nally, it should also be noted that the neutral system yields
unphysical thermodynamic behavior at smaller coupling con-
stants than when Coulomb effects are included. This is illus-
trated by the negative values ofx indicated in the figure.
Such unphysical behavior has been shown to result from the
nonconserving nature of the approximations used.13

While the above figures were designed to illustrate the
effect of Coulomb correlations, they do not fully represent
the physical system in which variations in the plasma fre-
quency are necessarily associated with changes in the elec-
tronic energy scale. In reality bothvp andEF5kF

2/2m* de-
pend on similar combinations of the carrier densityn and
effective massm* . As the insulator is approachedvp de-
creases asvp

2'x ~where x denotes the number of doped
holes!; however, whether one assumes a Fermi-liquid
(n'11x) or non-Fermi-liquid (n'x) approach to the insu-
lator, it follows necessarily that the electronic energy scale
EF must also vanish as the hole concentrationx approaches
0. In scenarios based on electronic pairing mechanisms,
therefore, it is difficult to escape the conclusion that the onset
temperature for coherent superconducting fluctuations,T* ,
should also become small as the insulator is approached. Our
numerical calculations ofCv andx exhibit this effect, prin-
cipally because ours is a single energy scale theory: both
T* and Tc derive from the same pairing mechanism. This
behavior is in contrast to experiment1 where even in highly
underdoped systemsT* is of the order of 100 K or more.
LargeT* seems to be most naturally associated with a high-
energy scale in the insulating parent compound, such as a
magnetic energy.2 However, in such a scenario it then be-
comes problematic to understand how the other important
energy scale8 vp enters to determineTc . We speculate that a
crossover from three- to two-dimensionality may play some
role in loweringTc at low doping concentrations where en-
hanced ~quasi-two-dimensional! critical fluctuation effects
are most apparent.14

In Fig. 3, we explore these issues within the context of
our model. We consider three situations in which the Gauss-
ian derivedTc is plotted as a function ofvp ~which may be
directly related to hole concentrationx) to arrive at a form of
‘‘phase diagram.’’ The solid line corresponds to the case in
which the characteristic energy for pairing~called ‘‘EF’’ ! is
held fixed, and as observed in Fig. 1~a!, Tc monotonically
decreases. This should be contrasted with the situation in
whichEF is allowed to vary self-consistently~dotted line! in
accord with the measuredvp . Here for definiteness, we as-
sume a Luttinger volume Fermi surface. The latter case
yields8 Tc'vp ; however,Tc is suppressed at low doping

FIG. 2. Temperature-dependent specific heat~a! and spin sus-
ceptibility ~b! for the same parameters as in Fig. 1. The dotted lines
are the BCS results~with slightly temperature-dependent chemical
potential!. The inset in~a! plots the total number of pairs vsT,
along with the number atq50.
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primarily as a result of the lowering of the electronic energy
scale,EF , rather than from increased phase fluctuations.
Neither of the above cases is entirely satisfactory for under-
standing the larger pseudogap regime at low doping. We
address this issue phenomenologically by introducing the ef-
fects of a dimensionality crossover for fixed pairing energy
scaleEF and calculatingTc for a system in 21e dimensions
~dashed curve! where e varies smoothly from zero when
vp'0 ~at half filling! to one whenvp'1.2 eV~correspond-
ing to optimal doping! and then remains constant.15 Here
Tc is suppressed at low doping, as a consequence of two-
dimensional fluctuation effects. Moreover, one can associate
T* with the solid curve, which exhibits the observed experi-
mental trends. Thus the low doping regime is characterized
by a large pseudogap. On the other hand, at higher doping or

vp , both Tc and T* converge and the pseudogap region
vanishes. Whether or not this phenomenology is appropriate,
the above discussion underlines the importance of multiple
energy scales (vp , as distinct from the pairing energy scale!
and the possible role of a dimensionality crossover14 in un-
derstanding pseudogap behavior.

In summary, we have presented a preformed pair model in
which the effects of Coulomb correlations are clearly seen to
suppress superconducting fluctuations~above Tc) and
thereby tune pseudogap behavior in the calculated specific
heat and spin susceptibility. Moreover, these two thermody-
namic variables, as a function ofT, are found to be reason-
ably consistent with experiment. However, it should be
stressed that within our microscopic model, the effects of
Coulomb correlations enter in a rather different way than has
been assumed in previous phenomenological schemes.5,16

Our approach focuses more directly on correlated pairs rather
than superconducting grains; therefore, phase and amplitude
fluctuations appear on a relatively equivalent basis. As a con-
sequence, introducing Coulomb interactions into the pre-
formed pair formalism leads to a narrowing of the pseudogap
region by providing a competing attraction in the particle-
hole channel and thus reducing the effectiveness of super-
conducting pairing.
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