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Coulomb correlations and pseudogap effects in a preformed pair model for the cuprates
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We extend previous work on preformed pair models of superconductivity to incorporate Coulomb correla-
tion effects. For neutral systems, these models have provided a useful scheme which interpolates between BCS
and Bose-Einstein condensation with increasing coupling and thereby describes some aspects of pseudogap
phenomena. However, charge fluctuatigvia the plasmong,) significantly modify the collective modes and
therefore the interpolation behavior. We discuss the resulting behavior of the pseudogap and thermodynamic
quantities such a%., y, andC, as a function ofw, . [S0163-1826)50846-5

The role of the pseudogapn the highT, cuprates is treat the crossover from BCS pairing to Bose-Einstein con-
emerging as an important indicator of the nature of the sudensation(BEC) of preformed pairg.In neutral systems, this
perconductivity as well as the normal state. There are twerossover has been studied by a variety of investigdtd?s.
widely discussed but competing explanations for pseudogapumerical simulation studi€swhich have been performed
effects but no clear and decisive experiments to support onié the context of attractive Hubbard models, include, in prin-
scenario over the other. Early observations associated thaple, all diagrammatic contributions. On the other hand,
pseudogap with magnetic pairingboveT,, (often called the analytical work has mostly been confined to thematrix
“spin gap”). It is now clear, however, that some form of approximation. The issue of nonconserving and conserving
normal-state pairing is seen in photoemission as well ag-matrix schemes has been widely discussed in the
charge transport data. Moreover, at least in the photoemiditeraturé in the context of the BCS-BEC crossover problem.
sion data the pseudogap appears to have dhsave In the original work of Noziees and Schmitt-Rink a noncon-
symmetry of the ordered state and this leads naturallyserving approach was used. Recent Wank neutral systems
to the association of this “gap” with precursor super- has extended this scheme usinglanatrix approximation
conductivity>=° This second scenario is further supported bywhich satisfies global conservation laws and in the process
the observation of low dimensionality and short coherencéntroduces renormalized Green’s functions into the general-
lengths in highT. superconductors, which suggests impor-ized susceptibilities. In the charged system, as a consequence
tant deviations from ideal mean field or BCS transitions. In-of gauge invariance, the analogue renormalized susceptibili-
deed, the approach of the present paper assumes the preciigs must then appear in the particle-hole channel. As has
sor superconductivity scenario, in large part because it ibeen known for some tim, however, the collective mode
important to establish, at least as a base line, the extent gpectrum is then treated incorrectly at this level of approxi-
which such superconducting “fluctuation” effects may be mation and a more sophisticated scheme is needed. In order
responsible for pseudogap behavior. to avoid this complexity and to develop an intuitive under-

Among those models which subscribe to a precursor sustanding of the effects of charge, however, we restrict the
perconductivity scenario there are additionally two ratheranalysis, in this paper, to the more familiar scheme intro-
distinct viewpoints. Emery and Kivelsdrhave argued that duced by Noziees and Schmitt-Rink and defer consideration
the pseudogap state of the cuprates is similar to that observed a fully conserving formalism. We note, however, that our
in granular films where phase coherence is not fully estabformulation will be locally conserving and in the case of
lished, although large regions of the material have a weltharged systems this approximation does not yield qualita-
established superconducting amplitude. Because it is smaliively different physics from that expected using a globally
in some sense, in the cuprates their approach focuses @monserving approach. Furthermore, it is our contention that
n/m* or alternatively on the plasma frequeney as the key ~mode-mode coupling effects will ultimately lead to impor-
“phase stiffness” parameter. Alternatively, oth&f$’have  tant insights which we will discuss in a future paper.
focused on the observed small size of the superconducting The Hamiltonian under consideration contains an attrac-
correlation lengthé to argue for important corrections to tive interactionV, ., parametrized by a coupling constant
BCS theory associated with preformed or nearly formedy, as well as long-range Coulomb terms. For definiteness we
pair€ which exist well aboveT,, and therefore give rise to take the same separable pairing potent¥dl, = gv vy
significant pseudogap effects. The present paper is based @rherev,=(1+ kzlkg)*l’z, as was used initially by Nozies
the viewpoint that in the cuprates the characteristic parametemd Schmitt-Rink. Within this model, the pairing energy
of the charge degrees of freedom/m* or equivalently scale(or “Debye frequency’) is the Fermi energy. We as-
oy, should be treated on a relatively equal footing with thesume a three-dimensional free electron model for the elec-
correlation length§. trons and defer discussion of anisotropy effects until later in

To study the role of Coulomb interactions on pseudogaghe text. It is assumed that in the cuprates there is sufficient
phenomena, we adopt a natural microscopic frameworlnterlayer hopping so that a strictly two-dimensional model
which incoporates charge fluctuations into theories whictand its associated Kosterlitz-Thouless transition is not the
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appropriate starting point. We generalize the path integral
formulation of Ref. 4, replacing the usual fermionic fields by @) To/Ep vs 9/9

0.3
Nambu spinorsy = (¢}, ,c_y,), and decoupling in four real

fields given by»,=y 7y (7,i=0, ...,3, are thedentity

and three Pauli matricgsThe interaction in the off-diagonal 02l e

channels (=1,2) is the pairing interaction while the Cou-
lomb term appears in the diagonal channéis @,3). Finally,

the field n, may be eliminated by a suitable gauge transfor-
mation and the thermodynamic potentialis computed for

the remaining degrees of freedom at the Gaussian approxi-
mation level,
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Here (), is the usual contribution from noninteracting fermi-
ons andh; denotes the corresponding number density of free
fermions. In the interactioV{’=g,v{’=v, for i=1,2, and
V&= 47me? kq? vP=1. Finally, G, , is the single-particle
Green'’s function in Nambu space afdis the temperature,
while v, and w, are the even and odd Matsubara frequen-
cies, respectively. Abové&, the fluctuation propagatdr is
diagonal; thus all three channelghe particle-particle,
particle-hole, and uncorrelated fermigneontribute addi- FIG. 1. (a) The variation ofT. as a function of coupling con-
tively to () as well as to the various derived thermodynamiCstant in the BCS and Gaussian approximation theories for neutral
quantities which we calculate below. and charged systems with increasing plasma frequengiesT,

In the present formalisrh the transition temperature iS normalized by the Coulomb mean-field restdee text T, for the
obtained from the BCS gap equation with a self-consistentlysame plasma frequencies agah The inset in(b) plots the number
determined chemical potentigk, obtained from the condi- of paired electrons vg/g, for the same parameter set.
tion ni=—9dQ/du. The resulting coupled equations are
solved numerically forw andT.. In the limit of arbitrarily  this way all the Gaussian derived curves have the same high
largeg the effects of the Coulomb interaction drop out, sinceg asymptote. Moreover, with these assumptions the neutral
mode-mode coupling is neglected at the Gaussian level, sgystem reference curve is unchangedwgsis varied. Two
that T. is given by the ideal BEC temperature. At small  effects of Coulomb interactions can be observed in Fig):1
the collective mode contribution tpe becomes arbitrarily (i) T, decreases with increasing, , and (ii) the nonmono-
small and the BCS limit is approached, albeit with a Cou-tonic behavior as a function af found for the neutral case
lomb renormalized chemical potentfdlWhen the supercon- (which is believed to be unphysig&lprogressively disap-
ducting coupling constang vanishes, the above form for pears with increasing,, .

Q reflects the plasmon contribution and reduces to that of the The first observation, which is perhaps the more impor-
usual Coulomb ga%: The Gaussian approximation 0  tant, is a consequence of the fact that an attraction due to
gives a random-phase-approximation-like treatment of theCoulomb interactions in the particle-hole channel reduces the
collective modes and so provides a reasonable scheme feffectiveness of the attraction in the pairing channel. We
interpolating between these two limits. It should be notedjllustrate this first point more directly in the inset of Fig.
however, that Coulomb pseudopotential effedighich  1(b), which plots the number of superconducting pairs as a
would act to renormalizg) are, for simplicity, not included function of increasingw,. This effect may seem counter to

in our calculations. Here we focus principally on the effectsthe expectation that systems with largep will have re-
introduced by the long-range Coulomb interactimhich  ducedT, suppressiorii.e., largerT,) due to phase fluctua-
enters via the parametelf)=47rne2/(m* «)]. tions. However, when the appropriate reference temperature

To illustrate the effects of charge fluctuations we plot, inis used, Coulomb interactions are found to lead to better
Fig. 1(@), T, as a function ofg/g. for various values of the agreement with mean-field theory; in this sense supercon-
plasma frequency. The dotted line represents the BCS resuducting fluctuations are, indeed, suppressed by Coulomb in-
(for the neutral systejrand the solid line is the correspond- teractions. We plot in the main portion of Fig(b} the ratio
ing (neutra) transition temperature which includes Gaussianof T, to the critical temperatur@, obtained by neglecting
fluctuations. The remaining curves from left to right demon-pair fluctuations(but including Coulomb effecjsfor the
strate the effects of increasingly largg,. For the purposes same range of plasma frequencies as in Fg). As can be
of focusing on charging effects only we i andkg /kg; in seen, the larger the plasma frequency, the higher the ratio
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their appearance is unrelated to the temperature dependence
of the total number of fluctuations or preformed pairs. As
shown in the inset of Fig. (@), for fixed w,, the total num-

ber of pairs is relatively constant up to temperatures many
times higher thanT;; however, their distribution shifts to
lower momenta ag; is approached and long-range coher-
ence is established. Detailed calculations indicate that vary-
ing w, does not alter the critical behavior in the pairing
channel ag . is approached; the narrowing of the pseudogap
region with increasingo,, is a result of the smaller relative
contribution that pairing fluctuations make to the thermody-
namics as Coulomb correlations become more dominant. Fi-
nally, it should also be noted that the neutral system yields
unphysical thermodynamic behavior at smaller coupling con-
stants than when Coulomb effects are included. This is illus-
trated by the negative values gf indicated in the figure.
Such unphysical behavior has been shown to result from the
nonconserving nature of the approximations used.

While the above figures were designed to illustrate the
effect of Coulomb correlations, they do not fully represent
the physical system in which variations in the plasma fre-
quency are necessarily associated with changes in the elec-
tronic energy scale. In reality both, and EF=k,2:/2m* de-
pend on similar combinations of the carrier dengityand
effective massm*. As the insulator is approached, de-
creases a&)ﬁwx (where x denotes the number of doped
holeg; however, whether one assumes a Fermi-liquid

FIG. 2. Temperature-dependent specific h@atand spin sus- (N~1+Xx) or non-Fermi-liquid 6~Xx) approach to the insu-
ceptibility (b) for the same parameters as in Fig. 1. The dotted linedator, it follows necessarily that the electronic energy scale
are the BCS resultéwith slightly temperature-dependent chemical Ex must also vanish as the hole concentrattoapproaches
potentia). The inset in(a) plots the total number of pairs V6, 0. In scenarios based on electronic pairing mechanisms,
along with the number aj=0. therefore, it is difficult to escape the conclusion that the onset

temperature for coherent superconducting fluctuatidrs,
T./To and thus the better the agreement with a mean-fieléhould also become small as the insulator is approached. Our
treatment of the pairing channel. numerical calculations of, and y exhibit this effect, prin-

A more convenient way of illustrating fluctuation effects cipally because ours is a single energy scale theory: both
and the associated role of the plasma frequency, however, & and T, derive from the same pairing mechanism. This
to study thermodynamic properties directly. Here pseudogapehavior is in contrast to experimémnwhere even in highly
effects enter as precursor superconducting contributions inynderdoped systeniB* is of the order of 100 K or more.
for example, the specific heat and spin susceptibility. As inLargeT* seems to be most naturally associated with a high-
Fig. 1(b), these fluctuation effects are expected to weaken asnergy scale in the insulating parent compound, such as a
the plasma frequency increases and mean-field behavior isagnetic energ§.However, in such a scenario it then be-
restored. We plo€, andy in Fig. 2 for the same parameter comes problematic to understand how the other important
set as in Fig. 1, withg/g. set equal to unity. This choice of energy scal%wp enters to determin&; . We speculate that a
coupling strength is consistent with the observation of relacrossover from three- to two-dimensionality may play some
tively short coherence lengths in the cuprates and with theole in loweringT, at low doping concentrations where en-
claim that highT. compounds lie close to the bound-state hanced (quasi-two-dimensionglcritical fluctuation effects
limit.® Here the dotted lines again represent the BCS valuare most apparent.

(with a properly T-dependentu). As is appropriaté for In Fig. 3, we explore these issues within the context of
Gaussian fluctuation theories, the specific heat varies asur model. We consider three situations in which the Gauss-
(T—T.) Y2 Comparison with the neutrdkolid) reference ian derivedT, is plotted as a function ab, (which may be
curve shows that the effects of varialalg are not as evident directly related to hole concentratien to arrive at a form of

in the specific heat as in the spin susceptibility. Similarly,“phase diagram.” The solid line corresponds to the case in
deviations from mean-field behavior appear at higher temwhich the characteristic energy for pairiicalled “E¢” ) is
peratures iny than inC, . held fixed, and as observed in Fig@l T. monotonically

It is worth noting that in the present formulation there is decreases. This should be contrasted with the situation in
no well defined “onset temperature” for the appearance of avhich E¢ is allowed to vary self-consistentlgotted ling in
pseudogap, as might exist if a sharp phase transition oaccord with the measured, . Here for definiteness, we as-
curred at some temperatufé aboveT.. Moreover, in dis- sume a Luttinger volume Fermi surface. The latter case
cussing the onset of fluctuations, it should be stressed thaields® Tc~w,; however,T; is suppressed at low doping
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wp, both T, and T* converge and the pseudogap region
200 vanishes. Whether or not this phenomenology is appropriate,
a) the above discussion underlines the importance of multiple
-------- 8) energy scalesd,,, as distinct from the pairing energy scale
S ® and the possible role of a dimensionality cross&ter un-
derstanding pseudogap behavior.

In summary, we have presented a preformed pair model in
which the effects of Coulomb correlations are clearly seen to
suppress superconducting fluctuatiottabove T.) and
thereby tune pseudogap behavior in the calculated specific

o 50 heat and spin susceptibility. Moreover, these two thermody-
) o (eV) namic variables, as a function @f are found to be reason-
ably consistent with experiment. However, it should be

FIG. 3. Variation ofT; with w,, (in units of eV, where optimal stressed that Wit_hin our mi_croscopic mOdeI’ the effects of
doping corresponds te,~1.2 eV) with E. held fixed[curves(a) Coulomb correlat_lons en_ter in a rather dlffere_nt way than has
and (b)] as well as using self-consistently determirigg [curve ~ D€€N assumed in previous phenomenological schérifes.
(¢)]. Curve (b) corresponds to 2 € dimensions withe=0 when  Our approach focuses more directly on correlated pairs rather
w,=0 and growing linearly toe=1 near optimal. See text for than superconducting grains; therefore, phase and amplitude
details. fluctuations appear on a relatively equivalent basis. As a con-

) ) ) ) sequence, introducing Coulomb interactions into the pre-
primarily as a result of the Iovyermg of the electronic eNerg¥tormed pair formalism leads to a narrowing of the pseudogap
scale, Eg, rather than from increased phase fluctuations,eqion by providing a competing attraction in the particle-
Neltht_er of the above cases is entlrely satisfactory fo_r underpqle channel and thus reducing the effectiveness of super-
standing the larger pseudogap regime at low doping. W%onducting pairing.
address this issue phenomenologically by introducing the ef-
fects of a dimensionality crossover for fixed pairing energy  This work was supported by the National Science Foun-
scaleEr and calculatingr . for a system in 2- e dimensions  dation (Grant No. DMR 91-20000through the Science and
(dashed curvewhere e varies smoothly from zero when Technology Center for Superconductivity. K.L. acknowl-
wp~=0 (at half filling) to one whenw,~1.2 eV (correspond- edges the hospitality and support, via the National Science
ing to optimal doping and then remains constaitHere  FoundationGrant No. PHY94-07194 of the Santa Barbara
T. is suppressed at low doping, as a consequence of twdnstitute for Theoretical Physics and J.M. gratefully ac-
dimensional fluctuation effects. Moreover, one can associatenowledges the financial support of the National Science and
T* with the solid curve, which exhibits the observed experi-Engineering Research CounciCanada Useful conversa-
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