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An analytic theory of electromagnetic response and collective excitations of antidot superlattices is pre-
sented. Explicit functional dependencies of the response functions and the excitation spectra on the antidot
lattice parameters are found. New collective modes of the system are predicted. Two-dimensional electron
systems both with and without the screening metal electrodes are considered. The theory quantitatively agrees
with experimental data.@S0163-1829~96!50844-1#

Lateral superlattices of antidots have been attracting in-
creased attention because of the interesting physical phenom-
ena recently observed in these systems. Magnetotransport
experiments exhibit pronounced resistivity peaks at magnetic
fieldsB for which the diameter of the cyclotron orbit 2r c is
commensurate with the lattice constanta.1,2 Far-infrared
~FIR! transmission experiments3–7 show a characteristic two-
mode behavior of the collective excitations with the upper
mode converging at largeB towards the cyclotron resonance
~CR! v5vc , and the lower, edge magnetoplasmon~EMP!
mode associated with electrons skipping around each antidot.
The dispersion of these modes for high magnetic fields is the
same as for quantum dots. However, forB→0 the behavior
is quite different. In dots upper and lower modes converge to
the frequency of the dimensional plasma resonance at
B50. In antidots, they show an anticrossing feature with
exchange of oscillator strength: the upper mode passes
through the minimum and tends to a finite frequency with
negative B dispersion atB→0; the lower mode passes
through the maximum and linearly tends to zero withB. In
addition, the weak CR line is observed between two main
resonances in antidot structures.

Contrary to the dc magnetotransport in antidot superlat-
tices and the FIR spectra of quantum dots, the excitation
spectrum of antidot superlattices is not yet completely under-
stood. The theoretical papers published so far8–11 have the
principal shortcoming that they did not take into account
properly the periodicity of the real antidot lattice. In Ref. 8,
the authors dealt with the problem of a single antidot. Wu
and Zhao9 replaced the real~square! Wigner-Seitz cell by the
circular one and solved the problem numerically. Although
they obtained an agreement with experimental data,3,4 the
dependence on antidot lattice parameters was not clarified.
The results9 cannot therefore be used to analyze new experi-
ments. In our previous work,10,11 the problem was solved in
modified dipole approximation~which agrees with experi-
ment but is valid only atv,vc) and in effective medium
approximation~EMA! ~in which the problem of the antidot
lattice was replaced by that of a single antidot immersed in
an effective 2D medium!. EMA, although reproducing the
essential features of the experimental data, would give iden-
tical results for both a square lattice of antidots and a disor-
dered system of randomly distributed antidots with the same
area filling factor.11

In this paper we present theanalyticsolution of the prob-
lem of electromagnetic response of the antidot latticetaking
fully into accountits real spatial symmetry. We obtain ex-
plicit functional dependencies of the response function of an
antidot in the lattice, the macroscopic conductivity, the ab-
sorption coefficients and the excitation spectrum on the lat-
tice constant, the antidot radius, the distance from 2DES to
screening metal electrodes, and the electron density profile in
antidots. We show that the full dipole excitation spectrum
consists of three types of modes: the single-particle CR
v5vc , which is due to the ‘‘background’’ electrons of
2DES, the EMP modevEMP,vc , and an infinite set of
high-frequency modesvm,n

(6)(B).vc . The EMP mode is
strongly localized near the antidot boundaries;11 its fre-
quency depends mainly on the antidot radiusR, but not on
the lattice perioda. The high-frequency modesvm,n

(6) are ex-
cited in the system due to the antidot superlattice, which can
be considered as a grating coupler imposed on the homoge-
neous 2DES. The frequenciesvm,n

(6)(B) are close to those of
2D bulk magnetoplasmons,vMP(Gm,n ,B), with the wave
vectors q equal to all reciprocal lattice vectors
Gm,n5(2p/a)(m,n). The high-frequency modesvm,n

(6)(B)
are the principal new result of our theory; only the mode
v1,0
(1) has been observed so far.
Let the 2DES be placed at the planez50 between two

metal electrodes at the planesz5d1 andz52d2, the back-
ground dielectric constants equal toe1 at 0,z,d1 ande2 at
2d2,z,0, and an equilibrium electron density of 2D elec-
trons written as

n0~r !5n0$12Q~r !%, Q~r !5(
i , j

q~r2ai , j !. ~1!

Heren0 is the background density of a homogeneous 2DES
and ai , j5a( i , j ), i , j integer, are the lattice vectors. The
function q(r )[q(r ) describes the density profile near an
antidot; it changes fromq(r )51 inside of the antidots to
q(r )50 outside of the antidots on a distance small
compared toa and R. The system is probed by an exter-
nal electric field, uniform and parallel to the planez50;
it is described by the scalar potentialwext(r ,t)
5w6

ext(r )exp(6iu2ivt), where w6
ext(r )52E6

0 r /A2 and
E6
0 5(Ex

07 iEy
0)/A2 are the field amplitudes with6 circular
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polarization. The upper sign corresponds to the polarization
of the CR.

The dynamic fluctuations of the charge density
r(r )5(GrGe

iG–r and the induced potentialw ind in the
system are related by the Poisson equation with the boun-
dary conditionsw induz5d1,2d2

50. In the case of antidots, it

is more relevant11 to presentr in the form r5rhomo1dr,
where rG

homo5G2sLL(G,v)wG
tot/ iv corresponds to the

charge density fluctuations in the uniform 2DES with the
densityn0 anddrG5Gad j a

G/v is due to the lack of electrons
in antidots; heresLL(G,v) is the longitudinal diagonal con-
ductivity of the uniform 2DES andG5uGu. The Poisson and
continuity equations then give

Ea
ind~r !5

2p

iv (
GÞ0

GaGbe
iG–r

GeLL~G,v!
d j b

G , ~2!

where

eLL~G,v!5@e1coth~Gd1!1e2coth~Gd2!#/2

12p isLL~G,v!G/v ~3!

is the dielectric function of the system ‘‘metal - dielectric -
2DES - dielectric - metal.’’12 Assuming the local relation
betweend j (r ) andEtot(r ) we obtain

d j a
G5sab~0,v!^q~r !Eb

tot~r !e2 iG–r&; ~4!

the angular brackets mean the average over the area of an
elementary cell.

Equations~2! and~4! relate the induced field at any point
in the 2DES with the total electric field inside antidots. To
solve them one has to expand the unknown functions
Ea
ind(r ) at r,R over a set of suitable orthogonal polynomials

and then to solve the resulting system of equations for ex-
pansion coefficients. We restrict ourselves to the first term in
this expansion, assuming that the induced~and total! electric
field inside the antidotsis uniform, E(r )5const atr,R.
Then for a square lattice of circular antidots we find

E6
tot5E6

0 /z6~v,B!,r,R. ~5!

Here the function

z6~v,B!512
p i ^q&s6~v!

v (
GÞ0

Ga~G!

eLL~G,v!
~6!

has the meaning of the response function of one antidot in
the lattice,s65sxx6 isxy , ^q& is the area filling factor, and

a~G!5U ^qeiG–r&

^q&
U2 ~7!

is a form factor determined by the Fourier components of
equilibrium density profile near the antidots.

Making use of Eqs.~2!, ~4!, and~5!, one can calculate the
macroscopic conductivity

s6
macro~v!5s6~v!$12^q&/z6~v!% ~8!

and the absorption coefficientsg6(v) of the structure,

g65s68 2
^q&s68

uz6u2
1

sxx8

2 U2p^q&s6

vz6
U2 (

GÞ0

G2a~G!

ueLL~G,v!u2
.

~9!

Here the prime means the real part andg6 are defined as
Q65g6uE6

0 u2/2, Q is Joule’s heat.
Figure 1 demonstrates the frequency dependence of the

absorption coefficientsg6(v) at different magnetic fields,
for ^q&50.5 andv0t520, wherev0[vp(G1,0) is the fre-
quency of 2D bulk plasmon with the fundamental reciprocal
lattice vectorG1,052p/a, andt is the momentum relaxation
time. For simplicity we use here the local expression for the
conductivitysLL(G,v) of the uniform 2DES~Drude model!.
As pronounced features the calculated spectra of Fig. 1 show
the observed resonances. In addition we find the weak
2 polarized mode atv.v0 ~it was predicted in Refs. 9–11!
and a set of high-frequency1 and 2 polarized modes at
v/v0.1 with smaller oscillator strengths. These new high-
frequency modes were not observed or predicted till now.

The position of resonances is determined by the poles of
absorption coefficientsg6(v) which coincide with~a! the
poles ofs6(v) and ~b! the zeros ofz6(v). The poles of
s6(v) give the single-particlecontributionv5vc to the
excitation spectrum with an oscillator strength13

Scr5H 11
^q&2

^q&2^q2& J
21

. ~10!

In order to find the resonance frequencies of thecollective
modes@the zeros ofz6(v)# we rewrite Eq.~6! using the
collisionless Drude formulas forsab(v),

z6~v!511
^q&
2

v6vc

v (
GÞ0

a~G!
vp
2~G!

v22vMP
2 ~G!

. ~11!

Here vp(G) and vMP(G) are the frequencies of 2D bulk
plasmons and magnetoplasmons,

FIG. 1. The absorption coefficientsg1(v) ~solid curves! and
g2(v) ~dashed curves!, Eq. ~9!, of the unscreened (d15d25`)
square lattice of antidots at different magnetic fields,^q&50.5 and
v0t520.
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vp
2~G!5

4pn0e
2G

m!$e1coth~Gd1!1e2coth~Gd2!%
, ~12!

vMP
2 ~G!5vp

2~G!1vc
2 ; ~13!

m! is the effective mass of electrons. As seen from Eq.~11!,
the functions z6(v) have an infinite set of poles at
v5vMP(Gm,n) and an infinite set of zeros at the frequencies

vm,n
~6 !~B!5vMP~Gm,n!@12Dm,n

~6 !~B!#1/2, ~14!

which are shifted down with respect to the poles. To the first
order inDm,n

(6) one can find that

Dm,n
~6 !~B!

Dm,n
5

vp
2~Gm,n!@vMP~Gm,n!6vc#

vMP
3 ~Gm,n!

, ~15!

Dm,n[Dm,n
~6 !~0!5gm,n^q&a~Gm,n!/2, ~16!

wheregm,n is the degeneracy factor~the number of terms in
the sum overG with the samem21n2: g1,05g1,15g2,054,
g2,158, etc!. Oscillator strengthsSm,n

(6)(B) of the modes
vm,n
(6) are given by

Sm,n
~6 !~B!

Sm,n
5

@vMP
2 ~Gm,n!1vc

2#@vMP~Gm,n!6vc#
2

vMP
4 ~Gm,n!

,

~17!

Sm,n[Sm,n
~6 !~0!5^q&Dm,n . ~18!

The slopedvm,n
(6)/dvc at B→0 is determined by the same

factorDm,n :

dvm,n
~6 !/dvcuB5057Dm,n/2. ~19!

In finite B the functionz1(v) has one additional low-
frequency zerovEMP,vc @due to the polev50, see Eq.
~11!#. The EMP mode has the1 polarization and the small
damping in strongB. If vEMP!vMP(G1,0), the EMP spec-
trum is written as

vEMP~B!5~vc1 i /t!F/~12F !, ~20!

whereF(B) is a function of magnetic field,

F~B!5
^q&
2 (

GÞ0

a~G!vp
2~G!

vMP
2 ~G!

. ~21!

For an antidot lattice with a small^q&!1, the sum here can
be replaced by the integral

F~B!'
^q&a2

4p E
0

`

qdq
a~q!vp

2~q!

vMP
2 ~q!

, ~22!

which depends on the antidot radiusR, but not on the lattice
perioda. The corrections to Eq.~22! are due to the interan-
tidot interaction; they are small atvc@vp(1/R) in order of
^q&3/2 in an unscreened 2DES (d15d25`) and ^q&2 in a
2DES with screening electrodes. The weak dependence of
the EMP frequency on the lattice constant results from the
strong localization of EMP charge near the boundaries of
antidots.11

Figures 2~a! and 2~b! demonstrate the excitation spectrum

of the antidot lattice in an unscreened 2DES (d15d25`)
for parameters corresponding to the experimental situation in
Refs. 7 and 3, respectively. Solid~dashed! curves show the
1 ~2! polarized modes, dotted curves show the 2D bulk
magnetoplasmon spectra~13!. Figure 3 demonstrates the
magnetic field dependence of reduced oscillator strengths of
modes vm,n

(6) , Eq. ~17!. The zero-B oscillator strengths
Sm,n , Eq. ~18!, essentially depend on the density profile
q(r ). We illustrate the dependence ofSm,n on ^q& for the
steplike profileq(r )5u(R2r ) in the inset to Fig. 3.13

The circles in Fig. 2~a! and crosses in Fig. 2~b! present the
experimental data from Ref. 7~double-quantum-well
Al xGa12xAs/GaAs structure withn05931011 cm22 in
each well,a5800 nm,R5180 nm! and Ref. 3~single-well
heterostructure GaxIn12xAs/AlxIn12xAs, n052.531012

FIG. 2. The excitation spectrum of the square lattice of antidots
(d15d25`). Solid ~dashed! curves correspond to1 ~–! polarized
modes, dotted curves to 2D bulk magnetoplasmons~13!. Thin solid
line in ~b! is the linev52vc . High-frequency modesvm,n

(6) are
labeled by the integers$m,n%. Circles ~a! and crosses~b! present
the experimental data from Refs. 7 and 3, respectively.

FIG. 3. The reduced oscillator strengthsSm,n
(6)(B)/Sm,n of the

modesvm,n
(1) ~solid curve! andvm,n

(2) ~dashed curve! as a function of
reduced magnetic fieldvc /vp(Gm,n). Inset: the oscillator strengths
Sm,n , Eq. ~18!, as a function of the area filling factor in the model
of the steplike profile.
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cm22, a5300 nm,R550 nm!, respectively. Apart from the
value of effective mass, taken from Refs. 7 and 3, no fitting
parameters was used. As seen from Fig. 2, the local theory
quantitatively explains the observed excitation spectra of an-
tidots, except the anticrossing atv1,0

(1)(B).2vc , which is
seen in some experiments@Fig. 2~b!#.

To describe this anticrossing, one should take into ac-
count nonlocal corrections to the conductivity of the uniform
2DES,14

sLL~G,v!5
n0e

2

m
ivH 1

v22vc
2 1

~Grc/2!2

v22~2vc!
2 1•••J ,

r c!a. The dispersion equationz1(v)50 near the intersec-
tion point then assumes the form

~v2v1,0
~1 !!~v22vc!2G250, ~23!

where the factorG'A3pvp(G1,0)r c/4a determines the
mode splitting atv1,0

(1).2vc .
The quantum oscillations of the EMP frequency at large

B, recently observed in Ref. 7@Fig. 2~a!#, can be qualita-
tively understood as follows. As seen from Eqs.~20!, ~21!,

and~7!, the EMP frequency is a functional of the equilibrium
electron densityq(r ) in antidots. Effects of nonlinear
screening15 should result in theB-dependent oscillations of
q(r ,B) and hence, of the form factora(G,B) and EMP
frequencyvEMP(B) in strongB. Note that the frequencies
vm,n
(6) and the damping of the EMP and the high-frequency

modes also depend on the factora(Gm,n ,B). Therefore one
can expect the similar quantum oscillations of the frequency
and the linewidth ofall collective modes in the system.

In conclusion, we have developed the analytic theory of
electromagnetic response of antidot superlattices which takes
explicitly into account both the translational symmetry of the
lattice and the circular symmetry of individual antidots. Con-
nected with this symmetry we have predicted new modes
related to the 2D magnetoplasmons. Our results are in the
very good agreement with experimental data obtained in dif-
ferent semiconductor structures with different parameters.
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