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Theory of electromagnetic response and collective excitations of a square lattice of antidots
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An analytic theory of electromagnetic response and collective excitations of antidot superlattices is pre-
sented. Explicit functional dependencies of the response functions and the excitation spectra on the antidot
lattice parameters are found. New collective modes of the system are predicted. Two-dimensional electron
systems both with and without the screening metal electrodes are considered. The theory quantitatively agrees
with experimental datd.S0163-18206)50844-1

Lateral superlattices of antidots have been attracting in- In this paper we present tlanalytic solution of the prob-
creased attention because of the interesting physical phenor@m of electromagnetic response of the antidot |attadeéng
ena recently observed in these systems. Magnetotranspdttly into accountits real spatial symmetry. We obtain ex-
experiments exhibit pronounced resistivity peaks at magnetiplicit functional dependencies of the response function of an
fields B for which the diameter of the cyclotron orbit 2is ~ antidot in the lattice, the macroscopic conductivity, the ab-
commensurate with the lattice constamf? Far-infrared Sorption coefficients and the excitation spectrum on the lat-
(FIR) transmission experimertts show a characteristic two- tice constant, the antidot radius, the distance from 2DES to
mode behavior of the collective excitations with the upperScreening metal electrodes, and the electron density profile in
mode converging at large towards the cyclotron resonance ant|d_ots. We show that the full dipole excitation spectrum
(CR) w=w,, and the lower, edge magnetoplasn&MP) consists of_thrge types of mczdes: the S|Tgle-part|cle CR
mode associated with electrons skipping around each antido;’D_E(‘)Sc : t?\N h'g'l/“f du(ej to thg backgdround_ f_e I.? ctronts ?f
The dispersion of these modes for high magnetic fields is th  the mod&yeyp=wc, and an infinite set o

. _ (i) .
same as for quantum dots. However, B0 the behavior ﬁ|gh frequency mOdeg"m'”(B)>(’.)°' The EMEé mode IS
is quite different. In dots upper and lower modes converge tgtrongly localized near the antldqt boundariesits fre-

' uency depends mainly on the antidot radRjsbut not on

the frequency of the dimensional plasma resonance CL . ) . ()
B=0. In antidots, they show an anticrossing feature witf? € lattice perioda. The high-frequency modasy, , are ex-

. ) cited in the system due to the antidot superlattii:e, which can
exchange of oscillator strength: the upper mode passe$

through the minimum and tends to a finite frequency with € considered as a grating .Co‘i'?'er imposed on the homoge-

; . : i neous 2DES. The frequencua'én 2(B) are close to those of
negative B dispersion atB—0; the lower mode passes 2D bulk magnetoplasmonsy (G B), with the wave
through the maximum and linearly tends to zero wihin ghetop MP? =min » =/

. L .vectors g equal to all reciprocal lattice vectors
addition, the weak CR line is observed between two mai _ . (+)
: . mn=(2m/a)(m,n). The high-frequency modes,, (B)
resonances in antidot structures. ' ’

. . are the principal new result of our theory; only the mode
Contrary to the dc magnetotransport in antidot superlat- P P Y y
w7 ¢ has been observed so far.

. o)
tices and the EIR spectra Qf qu_antum dots, the excitation Let the 2DES be placed at the plane 0 between two
spectrum of antidot superlattices is not yet completely under-

. . . metal electrodes at the planes d, andz= —d,, the back-
stood. The theoretical papers published sdfdrhave the : :
S X : . <7<
principal shortcoming that they did not take into accountground dielectric constants equaldpat 0<z=d, ande, at

properly the periodicity of the real antidot lattice. In Ref. 8, trodn23<V\Z/;ct0e’nagg an equilibrium electron density of 2D elec-
the authors dealt with the problem of a single antidot. Wu

and Zhad replaced the reabsquarg Wigner-Seitz cell by the

circular one and solved the problem numerically. Although

they obtained an agreement with experimental d4tthe No(r)=no{1—-O(r)}, ®(r)=i2 dr—a,). @
dependence on antidot lattice parameters was not clarified. !

The resultd cannot therefore be used to analyze new experi- ) )

ments. In our previous wor1the problem was solved in Hereng is the background density of a homogeneous 2DES
modified dipole approximatiotwhich agrees with experi- and & ;=a(i,j), i,j integer, are the lattice vectors. The
ment but is valid only atv<w.) and in effective medium function 8(r)=¥9(r) describes the density profile near an
approximation(EMA) (in which the problem of the antidot 2antidot; it changes fromy(r)=1 inside of the antidots to
lattice was replaced by that of a single antidot immersed in(r)=0 outside of the antidots on a distance small
an effective 2D medium EMA, although reproducing the compared toa and R. The system is probed by an exter-
essential features of the experimental data, would give iderf@l electric field, uniform and parallel to the plage=0;
tical results for both a square lattice of antidots and a disorit IS described by the scalar potentiatpe(r,t)
dered system of randomly distributed antidots with the same= #2(r)exp(=if—int), where ¢¥(r)=-E2r/{2 and
area filling factor'! E% = (EXFIE)/V2 are the field amplitudes withr circular
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polarization. The upper sign corresponds to the polarization
of the CR.

The dynamic fluctuations of the charge density
p(r)==gpce'®" and the induced potentiab;,q in the
system are related by the Poisson equation with the boun-
dary conditionScpind|z=dl,,d2=0. In the case of antidots, it

is more relevarit to presentp in the form p=p"°™°+ §p,
where pP™=G2%0 (G,0)¢Siw corresponds to the
charge density fluctuations in the uniform 2DES with the
densityny andspg= G, dj S/w is due to the lack of electrons
in antidots; herer | (G,w) is the longitudinal diagonal con-
ductivity of the uniform 2DES an& = |G|. The Poisson and

continuity equations then give

1,

- 0 05 } 15 2
, 2w G,Gze'™" W/,
ind, .\ _ a=B .G (o}
EN=Te oG (G V6 @

FIG. 1. The absorption coefficientg, (w) (solid curve$ and

where v_(w) (dashed curves Eq. (9), of the unscreeneddf=d,=)
square lattice of antidots at different magnetic field®=0.5 and
€ .(G,w)=[€;,coth(Gd;) + e coth(Gd,) ]/2 wor=20.
o (0ol oy 277(1‘})03_,’2 G2a(G)

is the dielectric function of the system “metal - dielectric - Y+=0+— Ak 2| ot | le (G, o) %
2DES - dielectric - metal.*?> Assuming the local relation - - GFO e ©
betweendj(r) andE™{(r) we obtain

Here the prime means the real part apd are defined as
. =7.|E%|?/2, Q is Joule’s heat.

the angular brackets mean the average over the area of an Figure 1 demonstrates the frequency dependence of the
elementary cell. absorption coefficients.(w) at different magnetic fields,

Equations(2) and (4) relate the induced field at any point for (9)=0.5 andwy7=20, wherewo=wy(Gyg is the fre-
in the 2DES with the total electric field inside antidots. To quency of 2D bulk plasmon with the fundamental reciprocal
solve them one has to expand the unknown functiondattice vectorG, o=2m/a, andr is the momentum relaxation
EM(r) atr <R over a set of suitable orthogonal polynomials time. For simplicity we use here the local expression for the
and then to solve the resulting system of equations for exconductivityo, (G, ) of the uniform 2DESDrude model.
pansion coefficients. We restrict ourselves to the first term if?S Pronounced features the calculated spectra of Fig. 1 show
this expansion, assuming that the indu¢aad tota) electric ~ the observed resonances. In addition we find the weak

8j5=0,p(0,0)(H(r)Eg(r)e e, (4)

a

field inside the antidotss uniform, E(r)=const atr<R.  — Polarized mode ab=w, (it was predicted in Refs. 9-11
Then for a square lattice of circular antidots we find and a set of high-frequency and — polarized modes at
wlwe>1 with smaller oscillator strengths. These new high-
EY=E%/¢.(w,B),r<R. (5)  frequency modes were not observed or predicted till now.
- - The position of resonances is determined by the poles of
Here the function absorption coefficienty..(w) which coincide with(a) the
poles of o+ (w) and (b) the zeros ofl.(w). The poles of
3 7i{)o.(w) Ga(G) o (w) give the single-particle contribution o= w, to the
{+(0,B)=1- ® &0 €, (G,w) ()  excitation spectrum with an oscillator strength
has the meaning of the response function of one antidot in (9)? -1
the lattice,o. = o, *i0yy, () is the area filling factor, and Se=11+ m] . (10
<ﬁeiG-r> 2
a(G)= NON (7 In order to find the resonance frequencies ofdbkective

modes[the zeros of{.(w)] we rewrite Eq.(6) using the
is a form factor determined by the Fourier components ofcollisionless Drude formulas far ,5(w),
equilibrium density profile near the antidots.

Making use of Egs(2), (4), and(5), one can calculate the (9) w+

2
ws (G
macroscopic conductivity Lo(w)=1+ 5" wwc > a(G) (&)

&70 w?—wyp(G)’

11

oMM w)=0+(0){1— (/. () (8)
- (I (w)) Here w,(G) and wyp(G) are the frequencies of 2D bulk
and the absorption coefficients. (w) of the structure, plasmons and magnetoplasmons,
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) B 4’7Tn0ezG
wp(G)= m*{e;coth(Gd,) + e,coth(Gdy)} "
04p(G) = wd(G) + w?; (13

m* is the effective mass of electrons. As seen from @&d),
the functions {.(w) have an infinite set of poles at
o= owyp(Gn ) and an infinite set of zeros at the frequencies

wm n(B) wMP(Gm n[1- A
which are shifted down with respect to the poles. To the first

(B)]Y2, (14)
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g,
3

order inA{;) one can find that

ALa(B) 3G ) @up(Gmn) * 0]
Bon >3 Gon) - @9
Apn=AG0)=gm () (G )2, (16)

wheregp, , is the degeneracy fact(bthe number of terms in

the sum ovelG with the samem?+ n?: 010=0911=020=4

9,1=8, et9. Oscillator strengthssfnﬁ),(B) of the modes
;) are given by

Sta(B)
Sm,n

_ [op(Gmn) + 0N @yp( Gm) * 0]

w;\‘/IP(Gm,n)

(17)
Smn=Sha(0) (18

fﬂi’%/dwC at B—0 is determined by the same

:<6>Am,n-

The slopedw
factorAy ,:
dol )V dods—o=FAmp /2. (19
In finite B the function, (w) has one additional low-
frequency zerowgyp<w. [due to the polew=0, see Eq.
(11)]. The EMP mode has thé polarization and the small
damping in strongB. If wgyp<wyp(Gy g, the EMP spec-
trum is written as

wemp(B)=(wc+il7)FI(1-F), (20
whereF (B) is a function of magnetic field,
a(G l[,(G)

For an antidot lattice with a smaJl$)<1, the sum here can
be replaced by the integral

(9)a? a(q) wh(a)
T 4n

‘*’%AP(Q)
which depends on the antidot radids but not on the lattice
perioda. The corrections to Eq22) are due to the interan-

tidot interaction; they are small ai.> w,(1/R) in order of
(9)¥2in an unscreened 2DESI{= dz—oo) and ()2 in a

: (22

0.5f
0.5f R
EMP e EMP
% o5 1 5 2z % 0.5 1 15
mc/coo

FIG. 2. The excitation spectrum of the square lattice of antidots
(d;=d,=00). Solid (dashedl curves correspond ter (—) polarized
modes, dotted curves to 2D bulk magnetoplasm@das Thin solid
line in (b) is the line w=2w,. High-frequency modes;) are
labeled by the integerGm,n}. Circles(a) and crossesb) present
the experimental data from Refs. 7 and 3, respectively.

of the antidot lattice in an unscreened 2DESH € d,=x)
for parameters corresponding to the experimental situation in
Refs. 7 and 3, respectively. Solidashedl curves show the
+ (—) polarized modes, dotted curves show the 2D bulk
magnetoplasmon spectid3). Figure 3 demonstrates the
magnetic field dependence of reduced oscillator strengths of
modes wmr),, Eq. (17). The zeroB oscillator strengths
Smn. EQ. (18), essentially depend on the density profile
&(r). We illustrate the dependence 8f,, on (d) for the
steplike profiled(r)=6(R—r) in the inset to Fig. 33

The circles in Fig. 2a) and crosses in Fig.(B) present the
experimental data from Ref. 7(double-quantum-well

Al,Ga _,As/GaAs structure withny=9x10"" cm~2 in
each well,a=800 nm,R=180 nm and Ref. 3(single-well
Gin,_As/AlyIn, _,As,

heterostructure no=2.5x 102

2DES with screening electrodes. The weak dependence of g|G. 3. The reduced oscnlator strengtsﬁ (B)/Smn Of the

the EMP frequency on the lattice constant results from the‘modeSw(ﬂ (solid curve and

(dashed curveas a function of

strong Iocallzatlon of EMP charge near the boundaries ofeduced r magnetic fiele, /wp(Gm a). Inset: the oscillator strengths

antidots!!

Eq. (18), as a function of the area filling factor in the model

Smn

Figures Za) and 2Zb) demonstrate the excitation spectrum of the steplike profile.
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cm 2, a=300 nm,R=50 nm), respectively. Apart from the and(7), the EMP frequency is a functional of the equilibrium
value of effective mass, taken from Refs. 7 and 3, no fittingelectron densityd9(r) in antidots. Effects of nonlinear
parameters was used. As seen from Fig. 2, the local theo,@creenmc}]5 should result in theB-dependent oscillations of
quantitatively explains the observed excitation spectra of an(r,B) and hence, of the form factox(G,B) and EMP
tidots, except the anticrossing ﬁi(lJB)(B):ch which is  frequencywgyp(B) in strongB. Note that the frequencies
; i i ’ ’ o) and the damping of the EMP and the high-frequency

seen in some experimer(sig. 2(b)]. mn

To describe this anticrossing, one should take into actmodes also depend on the facte(Gy,,,B). Therefore one
count nonlocal corrections to the conductivity of the uniform ¢an expect the similar quantum oscillations of the frequency

2DESH and the linewidth ofall collective modes in the system.
In conclusion, we have developed the analytic theory of
nee?. 1 (Gr2)? electromagnetic response of antidot superlattices which takes
ou(Gw)=——lo wz_wng wz—(ch)2+ e explicitly into account both the translational symmetry of the

lattice and the circular symmetry of individual antidots. Con-
r.<a. The dispersion equatiofi, (w) =0 near the intersec- nected with this symmetry we have predicted new modes

tion point then assumes the form related to the 2D magnetoplasmons. Our results are in the
+) ) very good agreement with experimental data obtained in dif-
(0= w10)(0—20,)—1"=0, (23 ferent semiconductor structures with different parameters.
where the factorl'~\37w,(G,gr/4a determines the | thank Professor U. Rssler, who has carefully read the
mode splitting atu(lfo):ch. manuscript and made many valuable comments, and N. Sa-

The quantum oscillations of the EMP frequency at largevostianova for helpful discussions. The work was supported
B, recently observed in Ref. [fFig. 2@)], can be qualita- by the Alexander von Humboldt Foundation and the NATO
tively understood as follows. As seen from E¢R0), (21), Science Program.
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