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dc transport in quantum wires
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The influence of the electron-electron interaction on the two-terminal dc conductance of one-dimensional
guantum wires is studied. A cancelation between the effect of the electron-electron interaction on the current
and on the external electric field is the reason for the universal vefi2y% per mode, of the dc conductance
of a clean wire. The effect of the renormalization of the electric field on the dc conductance in the presence of
an interplay between the electron-electron interaction and backward scattering due to an impurity is considered.
[S0163-18206)52544-7

It is well understood now that for noninteracting electronsHall regime, that when the conductance is defined as the
a two-terminal dc conductaneg of a clean quantum wire is response to the total field, rather than to the external one, the
e?/2mh per modet Since the electron-electrore<e) inter-  dc conductance of a clean 1D system is not influenced by the
action renormalizes the current, it was generally accepte@-€ interaction. The renormalization of the electric field by
after the calculation of Ref. 2 that the conductance should b&e e-€ interaction was ignored in Refs. 8, as well as in
renormalized to the Va|que2/2,n-ﬁ, where the parameter €arlier publications. In this paper we clarify the role of this

K, is related to the density-density electron interactioneffect. _ _ _
Let us consider the case of a clean wire when the density-

(K,=1 in the absence of the interactjorin this paper we el i . ‘ h
explain why despite the fact that the current is renormalized(,jenSIty electron interaction exists and may be not homoge-
the conductance is not. In a clean wire with @ interac-  "€0US- First we will show the universality of the dc conduc-

: tance in a procedure similar to the one elaborated in the

tion G=e%/2w#. This occurs because the electric field is .
| lized by the-e int tion. The d duct context of the edge states in quantum Hall devit@hen,
also renormalized by € Interaction. 1he dc conauctance . oyiand the consideration of Ref. 9 to the case of interact-

of a clean one-dimensionélD) electron liquid is a property ing electrons and show how to calculate the two-terminal

in which the effect of the-e interaction on the electric field . qquctance in the Kubo formalism.

cancels out its effect on the currénf. The question of the The dc conductance of a quantum wire connecting two

renormalization of the external electric field to the total ON€reservoirs(leads is given by

demands special care in one dimension because the only pos-

sible electric field is longitudinal. The influence of the renor- 1_ .2 2_ 1
S L G=ell - =ell - , 1

malization of the electric field on the conductance when (g Hi) (&= i) @)

there is an interplay between an impurity backward scatterynere| is the current ( does not depend or in the dc

ing and thlee-e mtehractlc:rg is also d'SC‘r"]SS'ed- . limit), i is the chemical potential of the rigkieft) mov-
Recently Taruchat al.” measured the conductance o @ing electrons near the left reservoir a/ué(L) is the chemical

(rqnuoe:jnutllgtri]on-(\jl\cl:ree d r:g:gggtrucftﬁ)rg]s ngg?jaggfﬁ/e/’“gg er otential of the right(left) moving electrons near the right
P ' PErREservoir. The second equality in E(.) follows from the

:E;ea?]ea'feggeo?cse?; tgihcéniuocfnﬁi’ I(te V\éa;s.;ogggt:ggf}[’;m%ct that in equilibrium the conductance calculated for elec-
ysl ) p V- TIOWEVET, | trons or for holes should give the same result. To find the

the earlier predictions, the conductance per mode was Veldurrent! the continuity equation will be used. In the absence

ngsegot:e'eeuxmﬁﬁzlnglLilvzi:g '\,\,T:ser)r(f:)l:l@r; ;Se;essuslirgf of backward scattering of electrons we can apply the conti-
o > EXp y nuity equation for the left- and right-moving electrons sepa-
with two line segments attached to the central part of therately

guantum wire. The temperature dependence of the conduc-
tance was controlled by an impurity located in the central i d e
part where thee-e interaction parameter wasr’, while the JrL(P)===eprL(P)=—[H,prL(P)], 2)
interaction parameter in the attached segments Wgs ' pdt™m hp '

W
7K, . For the length of the segments much larger than thg, ne e is the Hamiltonian of the system. The density op-
length of the central part, the quantization of the CondUCtanCSratorSp (P)=2,..,.al. a, have the standard 1D com-
was determined biK;; only, and was given by -e?/274 in utationR]rLeIationélBN_kF ktpk
A :

this theory. Eventually, it was assumed that the line segmen
represent the leads where the electrons are free, i.e., oL

Ki=1, and in this way the discrepancy between the theory [pr(— "= —p")= —

ar’;d the experiment was settled. On the other hand, it has ) A : : 2m PP

been argued by KawabAtésee also Ref.)5and indepen-

dently by ug (in the context of edge states in the quantum [pL(P),pr(P’)]=0, ©)]
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wherelL is the length of the wire. For operators commuting
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Let us consider again the case of a clean wire with an

like that, performing commutation is equivalent to differen-inhomogeneou®-e interactionV(x,y). For a 1D electron

tiation, i.e., [F{prL}prL(P)]==(pLI2m)dF{pr .}/

liquid the Hamiltonian of the problem can be expressed in

dpr,L(—P). Since in one dimension the Hamiltonian is aterms of conjugated bosonic operat@kéx) anda(x). The

functional of thepg | operators, we can rewritdg | in Eq.
(2) as

oH

e
2mh dprL(—P)’ @

1
E‘]R,L(p): *

operator ¢(x) is related to the electron density operator
p(x) as— (1\/7) dp(x)/dx= p(x); the operators(x) has a
similar relation with the current operator. The fluctuations of
the charge density are described by the Tomonaga—Luttinger
Hamiltonian,

On the other hand, by definition, the chemical potentials of

the right- and left-moving species of electrons are given by

oH
dprL(—P)

Thus, for the total currentJ=Jgz+J, we obtain that
J(p)= (e27h) [ ur(pP) — 1 (P)]- This result holds for any

1
E,U«R,L(p): (5

v ~—~ v
Ho:i > p2¢p¢7p+ i% [5p,qp2
+paV(p,—a)/(mvel) g, (11a

where ¢, agd’gzp are the Fourier transforms of the operators
#(x) and ¢(x), and V(p,q) is the Fourier transform of

momentump and therefore it can be represented also inv(x,y); here we seé=%=1. When an external electric field

space i.e., at any pointx the current J(x)
= (el27h) [ ur(X) — L (X)]. Since in the dc limit the cur-
rentl =(J) does not depend ox,

B Bl = pi— pi=(2mhle)l. (6)

Finally, the combination of Egs(l) and (6) leads to
wi=u?=u ,wh=ui=pugin the dc limit, and, correspond-

ingly,
G=e?27H. 7)

Note that separately each a8k, J,, ug and u, is influ-
enced by thee-e interaction, while in the particular ratio

E®X{(x,t) is applied, the term

1 ex
Hy=— ﬁg BpES\(1) (11b

should be added to the Hamiltonian. This term describes the
interaction of the local dipole moment with the external elec-
tric field.

The current operator in _a 1D system id(p)
= (i/Nm) [Ho,ppl=i (vep/\'m) ¢, where the commuta-
tion relations[ ¢, ¢p]= (L/p) 6, 4 have been used. Then,
the current =(J) induced by the external electric field is

defining the conductance the renormalization of the chemical

potential difference cancels out the renormalization of the

current.

The above treatment is in the spirit of Landauer’s

VeQ ~

l—w(_Q)=_|ﬁ<¢—w,—q>! (12

approach. Now we consider the conductance of the 1D elec- ~ S ~ _

tron gas using the Kubo formalism. In a two-terminal mea-Where ¢,, 4= [dte'*/(e'"o™ "Dt (q)e~'HoTHuY) A a re-
surement the electrons accelerated by the total electric fieldult (see, e.g., Chap. 3 of Ref. J11

inside the wire dissipate their energy in the reservoirs. The

total electric fieldE'®'(x) is built from the external field and

_ Fa ext
the induced one. Since the electric field vanishes inside the l_o(—a)= _'7% Cu(aP)Eyp,

(13

reservoirs, the dc conductance of the two-terminal device is

given by

— - tot ( - tot )2
G Jl)l(x)E (x)dx/ foE (x)dx]| . (8)

Let us define a tensar(x,x’), such that

L
I(x)=J o(X,x")E®Y(x")dx’. 9)

0
It follows from the Kubo formula that-(x,x’) is a diver-
genceless tensor in the dc limit, i.elg(x,x’)/dx=0; see
Appendix A of Ref. 9. This property o&(x,x’) together
with Egs.(8) and (9) yields

G=0(Xg,Xp), (10

wherexg, X, are arbitrary points inside the wire. The location
of these points can be chosen so as to simplify the calculéSince(¢_,, _q)=— (ve /) 2D (AP)EG s

tion of o(Xg,Xg)-

whereC is the retarded correlation function Efand ¢. The
function C obeys the Dyson equation,

1
Cal0,P)=CE(P) Bp q+ Cola) -2 akM(a, —kID u(k,p),
(14)

where D is the full propagator of ¢ and C?u(p)
=—(U2P)[(w+vep+iy) T+ (0—vep+iy) 1]. The total
electric field is the sum of the external and the induced fields,
EC'=E®4EM The induced fieldE™ arises as a result of
the redistribution of the density of the electrons,

, 1
Elg,dp:_[\/;% PAV(p,—a){( Py —q)- (15

et the induced

field is related toE¢", as
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g UF whereES)=o(q,p) is the irreducible(with respect to thee-e
EIS,D‘T% PaV(p, —a)Du(dK)ETL. (16) interaction) part of the retarded correlation function of the
operatorsp and ¢ in the presence of the impurity backward

With the help of the Dyson equatioil4) and Eq.(16) the  scattering and the interaction. The full correlation function

relation betweerEy) ) andE{ can be obtained: Cis related to its irreducible part via the Dyson equation,

C=C0+C°WD. (22)
CoUPEN,=2 Cu(POES. (17 ~
a Here W(k,—q)= (1/7L) gkV(q,—Kk) and the matrixD is

This result corresponds to a well-known fact in the diagram—the correlation function ot operators(Henceforth we use

matic technique, that when the conductance is calculatefflalrix notation. The matricesD and C carry information
with the help of the density correlation function only the about the backward scattering in the presence of interaction:

irreducible part of the correlation function is involved. The =~ ~
response to the external electric field is given by a series of D=D+D71D,C=C+CTD, (22)

diagrams containing polarization bubbles and starting withwhere T is the effective scattering matrix of thg operators
an external field. The total field is given by diagrams of thedue to the impurity term, and the matricBsand C are the

same type. Therefore the response to the total electric field isorrelators in the absence of the impurity. After some trans-
given by the irreducible part of the correlation function. Theformations we obtain
importance of this fact to the calculation of the conductance

of quantum wires was emphasized recently by Kawabata. °=c%D% YD 1+w) L, (23
Substitution of Eq(17) in the expression for the current, Eq. . .
(13), yields an P g whereD? and C° are the irreducible parts of the correlators

D andC, see Eq(14). Thus, the calculation of the conduc-
tance is reduced to the inversion of operators. To perform the
. qu 0 tot . . . . .
l_o(=@)=—1—C(DE, 4. (18)  inversion we will assume that the impurity backward scatter-
77 ing is local, while thee-e interaction inside the wire is ho-

mogeneous and short range, i.e., the elements of the matrix
7 do not depend on the momenta and
W(q,—k)= (1/7) Voqzb‘q,k. Now the inversion can be done
straightforwardly and one obtains

From this relation one can obtain the conducta@ctor the
two-terminal dc transport:

1
G=0(00=(~1) > queCf_o(a)=1/2m. (19 .
! C’=Co+ mCOYDO. (29
Since the wire is attached to the reservoirs the electron states i )
in the wire have a finite widthy, which we assume to be With the use of Eq(20) the conductanc&(7) is determined
larger than the level spacing. Under this assumption the surifi the scattering matrixZ is known.
over momenta in Eq(19) was transformed to an integral. When one ignores the effect of the renormalization of the
After restoring the constantsand? the dc conductance of a electric field the full correlato€ is used instead at® in Eq.
clean wire become&=e?/27#, i.e., it is not influenced by (20). The quantity obtained will be denoted K&/ . In con-
the e-e interaction. trast to to the conductand®, which is the response to the
The above consideration was performed for an arbitraryota| electric field,G’ describes the response to the external
e-e interaction including the case when it is spatially inho- fie|d. Using Eq.(22) G'(7) can be found:
mogeneous. Let us discuss now a system of the type consid-
ered in Refs. 8 in which the-e interaction exists only in the _UE
central part(of length L;,) and is absent in the segments G'(ﬂ:(_')ﬁz qCou=0(A)[ g,p+7(A,P)Dy=o(P)]-
attached to the central part of the wire. One can check that if ’ (25)
the dc conductance is calculated ignoring the renormaliza-
tion of the electric field, i.e., using,(p,q) rather than The relations(24) and (25) enable us to eliminaté and to
Cc%(p) in Eg. (19, then there appear corrections €XPressG as a function oG’
~(yLint/ve)(V/Ivg). However, these corrections are not no-

ticeable when the region of the interactidn,,, is short. In G= K,G . , (26)
the treatment of Refs. 8,-/y corresponds to the length of 2m(K,—1)G'+K,
the wireL, and the limitL;,,/L—0 was considered. where szll\/m_ The structure of Eq(26) re-

Let us discuss now a system with a backward scatteringe s the fact that in the presence of a backward scattering

defect inside the wire. Our goal now is to determine thecener the effect of the electric field renormalization depends
effect of the renormalization of the external electric field on

. ; ~'not only on thee-e interaction, but also on the interplay
the conductance of this system. We will follow the same lineyotveen the backscattering and thee interaction. The
of consideration as above. The conductance is given by quantity G’, rather tharG, has been extensively studied in
the recent years by diverse technigés-3in the perturba-
.. UE ~ . . . .
G=(—i)—> qc _(a,p), (20 tive and nonperturbative regimes. Equati@®) allows one
wLgp to use these results to recalculate the conductance in order to
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include the effect of the renormalization of the electric field.of a cancelation of the effects of theee interaction on the
The results of the experiméntan be interpreted now with- current and on the external electric field. In addition, for a
out using the model with two line segments attached to thgystem with a backward scattering center we have found the
wire? At high temperature§&’ ~K /27 and Eq.(26) repro-  relation of the dc conductance to the response to the external
duces the universal value of the conducta@cevhile when  glectric field.
the temperature decreases the deviation of the conductance The |ast remark concerns the relation of the edge state
from the ideal value is given by a power law correction. Bothelectrons, under the condition of the quantum Hall effect
features have been observed in the experirfient. (QHE), to the interacting 1D electron g&$lt is a rather
Until now the simplified case of a single mode wire has:qommon belief that the physics of the edge states in the
been considered. In a real quantum wire a few modes ex'srliactional QHE with»=1/(2p+1) and the physics of the

due to spin anq subbands corresponding to quanUzapon } teracting 1D electron gas are equivalent when the filling
transversal motion. In the absence of backward scattering E?actor =K. The fact thatG’ =K e2/2m% and the Hall
p* P

(19) can be easily generalized to the case wNenl modes o .
) 0 . conductancer,,= ve“/27h is one of the reasons for that
are occupied. Namely,C_ _,(q) should be substituted by . : Yo : . .
@ point of view. In this connection we would like to emphasize

N, n~0n B : : :
2n=1VgC,—o(d) wheren is the mode index. This yields that » is not completely equivalent t§,. In the fractional

the conductance of a multimode wi@y=Ne?*/27#. To - )
generalize Eq(26) we consider the most symmetric case QHE. the filling factor» appears through the 'commutanon
when the Fermi velocities in all channels are identical,relatIons of the ope.rators OT thg electrpn density, but not as a
vl=ve, and only an interaction of the form result of the density-density interaction of the_ e_dge state
()Vod(X—Y)p(y) is present, where is the total electron eleqtrons. For that reason j[he effect of the electric field renor-
gensito Then ’ malization has no connection with the factgrand therefore
Y oy does contain it. On the other hand, the Hall conductance

kNG’ of the edge states is not modified by an interedge
_ p =N . .3 . . .
Gn= , (27) interaction; precisely in the same way as in the case of a
KN—1 .
277< pN G,’\,+KE clean wire.
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