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The influence of the electron-electron interaction on the two-terminal dc conductance of one-dimensional
quantum wires is studied. A cancelation between the effect of the electron-electron interaction on the current
and on the external electric field is the reason for the universal value,e2/2p\ per mode, of the dc conductance
of a clean wire. The effect of the renormalization of the electric field on the dc conductance in the presence of
an interplay between the electron-electron interaction and backward scattering due to an impurity is considered.
@S0163-1829~96!52544-0#

It is well understood now that for noninteracting electrons
a two-terminal dc conductanceG of a clean quantum wire is
e2/2p\ per mode.1 Since the electron-electron (e-e) inter-
action renormalizes the current, it was generally accepted
after the calculation of Ref. 2 that the conductance should be
renormalized to the valueKre

2/2p\, where the parameter
Kr is related to the density-density electron interaction
(Kr51 in the absence of the interaction!. In this paper we
explain why despite the fact that the current is renormalized,
the conductance is not. In a clean wire with ane-e interac-
tion G5e2/2p\. This occurs because the electric field is
also renormalized by thee-e interaction. The dc conductance
of a clean one-dimensional~1D! electron liquid is a property
in which the effect of thee-e interaction on the electric field
cancels out its effect on the current.3–5 The question of the
renormalization of the external electric field to the total one
demands special care in one dimension because the only pos-
sible electric field is longitudinal. The influence of the renor-
malization of the electric field on the conductance when
there is an interplay between an impurity backward scatter-
ing and thee-e interaction is also discussed.

Recently Taruchaet al.6 measured the conductance of a
quantum wire formed from Al0.35Ga0.65As/AlGa
modulation-doped heterostructures. Based on the tempera-
ture dependence of the conductance, it was found following
the analysis of Refs. 7 thatKr;0.7. However, in contrast to
the earlier predictions, the conductance per mode was very
close to the universal valuee2/2p\. To explain the results of
Ref. 6 the experimental device was modeled8 by a system
with two line segments attached to the central part of the
quantum wire. The temperature dependence of the conduc-
tance was controlled by an impurity located in the central
part where thee-e interaction parameter wasKr

W , while the
interaction parameter in the attached segments wasKr

L

ÞKr
W . For the length of the segments much larger than the

length of the central part, the quantization of the conductance
was determined byKr

L only, and was given byKr
Le2/2p\ in

this theory. Eventually, it was assumed that the line segments
represent the leads where the electrons are free, i.e.,
Kr
L51, and in this way the discrepancy between the theory

and the experiment was settled. On the other hand, it has
been argued by Kawabata4 ~see also Ref. 5! and indepen-
dently by us3 ~in the context of edge states in the quantum

Hall regime!, that when the conductance is defined as the
response to the total field, rather than to the external one, the
dc conductance of a clean 1D system is not influenced by the
e-e interaction. The renormalization of the electric field by
the e-e interaction was ignored in Refs. 8, as well as in
earlier publications. In this paper we clarify the role of this
effect.

Let us consider the case of a clean wire when the density-
density electron interaction exists and may be not homoge-
neous. First we will show the universality of the dc conduc-
tance in a procedure similar to the one elaborated in the
context of the edge states in quantum Hall devices.3 Then,
we extend the consideration of Ref. 9 to the case of interact-
ing electrons and show how to calculate the two-terminal
conductance in the Kubo formalism.

The dc conductance of a quantum wire connecting two
reservoirs~leads! is given by

G5eI/~mR
12mL

2!5eI/~mR
22mL

1!, ~1!

where I is the current (I does not depend onx in the dc
limit !, mR(L)

1 is the chemical potential of the right~left! mov-
ing electrons near the left reservoir andmR(L)

2 is the chemical
potential of the right~left! moving electrons near the right
reservoir. The second equality in Eq.~1! follows from the
fact that in equilibrium the conductance calculated for elec-
trons or for holes should give the same result. To find the
currentI the continuity equation will be used. In the absence
of backward scattering of electrons we can apply the conti-
nuity equation for the left- and right-moving electrons sepa-
rately,

JR,L~p!5
i

p

d

dt
erR,L~p!5

e

\p
@H,rR,L~p!#, ~2!

whereH is the Hamiltonian of the system. The density op-
eratorsrR,L(p)5(k'6kF

ak1p
† ak have the standard 1D com-

mutation relations:10

@rR~2p!,rR~p8!#5@rL~p!,rL~2p8!#5
pL

2p
dp,p8,

@rL~p!,rR~p8!#50, ~3!
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whereL is the length of the wire. For operators commuting
like that, performing commutation is equivalent to differen-
tiation, i.e., @F$rR,L%,rR,L(p)#56(pL/2p)]F$rR,L%/
]rR,L(2p). Since in one dimension the Hamiltonian is a
functional of therR,L operators, we can rewriteJR,L in Eq.
~2! as

1

L
JR,L~p!56

e

2p\

]H

]rR,L~2p!
. ~4!

On the other hand, by definition, the chemical potentials of
the right- and left-moving species of electrons are given by

1

L
mR,L~p!5

]H

]rR,L~2p!
. ~5!

Thus, for the total currentJ5JR1JL we obtain that
J(p)5 (e/2p\) @mR(p)2mL(p)#. This result holds for any
momentump and therefore it can be represented also in
space i.e., at any point x the current J(x)
5 (e/2p\) @mR(x)2mL(x)#. Since in the dc limit the cur-
rent I5^J& does not depend onx,

mR
12mL

15mR
22mL

25~2p\/e!I . ~6!

Finally, the combination of Eqs.~1! and ~6! leads to
mL
15mL

25mL ,mR
15mR

25mR in the dc limit, and, correspond-
ingly,

G5e2/2p\. ~7!

Note that separately each ofJR , JL , mR andmL is influ-
enced by thee-e interaction, while in the particular ratio
defining the conductance the renormalization of the chemical
potential difference cancels out the renormalization of the
current.

The above treatment is in the spirit of Landauer’s
approach.1 Now we consider the conductance of the 1D elec-
tron gas using the Kubo formalism. In a two-terminal mea-
surement the electrons accelerated by the total electric field
inside the wire dissipate their energy in the reservoirs. The
total electric fieldEtot(x) is built from the external field and
the induced one. Since the electric field vanishes inside the
reservoirs, the dc conductance of the two-terminal device is
given by

G5E
0

L

I ~x!Etot~x!dxY S E
0

L

Etot~x!dxD 2. ~8!

Let us define a tensors(x,x8), such that

I ~x!5E
0

L

s~x,x8!Etot~x8!dx8. ~9!

It follows from the Kubo formula thats(x,x8) is a diver-
genceless tensor in the dc limit, i.e.,ds(x,x8)/dx50; see
Appendix A of Ref. 9. This property ofs(x,x8) together
with Eqs.~8! and ~9! yields

G5s~x0 ,x08!, ~10!

wherex0 ,x08 are arbitrary points inside the wire. The location
of these points can be chosen so as to simplify the calcula-
tion of s(x0 ,x08).

Let us consider again the case of a clean wire with an
inhomogeneouse-e interactionV(x,y). For a 1D electron
liquid the Hamiltonian of the problem can be expressed in
terms of conjugated bosonic operatorsf(x) and f̃(x). The
operatorf(x) is related to the electron density operator
r(x) as2 (1/Ap) df(x)/dx5r(x); the operatorf̃(x) has a
similar relation with the current operator. The fluctuations of
the charge density are described by the Tomonaga–Luttinger
Hamiltonian,

H05
vF
2L(p p2f̃pf̃2p1

vF
2L(p,q @dp,qp

2

1pqV~p,2q!/~pvFL !#fpf2q , ~11a!

wherefp andf̃p are the Fourier transforms of the operators
f(x) and f̃(x), and V(p,q) is the Fourier transform of
V(x,y); here we sete5\51. When an external electric field
Eext(x,t) is applied, the term

H152
1

ApL
(
p

fpEp
ext~ t ! ~11b!

should be added to the Hamiltonian. This term describes the
interaction of the local dipole moment with the external elec-
tric field.

The current operator in a 1D system isJ(p)
5 ( i /Ap) @H0 ,fp#5 i (vFp/Ap) f̃p , where the commuta-
tion relations@f̃2q ,fp#5 (L/p) dp,q have been used. Then,
the currentI5^J& induced by the external electric field is

I2v~2q!52 i
vFq

Ap
^f̃2v,2q&, ~12!

where f̃v,q5*dteivt^ei (H01H1)tf̃(q)e2 i (H01H1)t&. As a re-
sult ~see, e.g., Chap. 3 of Ref. 11!

I2v~2q!52 i
vFq
p (

p
Cv~q,p!Ev,p

ext , ~13!

whereC is the retarded correlation function off̃ andf. The
functionC obeys the Dyson equation,

Cv~q,p!5Cv
0 ~p!dp,q1Cv

0 ~q!
1

pL(k qkV~q,2k!Dv~k,p!,

~14!

where D is the full propagator of f and Cv
0 (p)

52(1/2p)@(v1vFp1 ig)211(v2vFp1 ig)21#. The total
electric field is the sum of the external and the induced fields,
Etot5Eext1Eind. The induced fieldEind arises as a result of
the redistribution of the density of the electrons,

Ev,p
ind 52

1

L
Ap(

q
pqV~p,2q!^f2v,2q&. ~15!

Since^f2v,2q&52 (vF /Ap) (pDv(q,p)Ev,p
ext , the induced

field is related toEv,p
ext as
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Ev,p
ind 5

vF
L (

qk
pqV~p,2q!Dv~q,k!Ev,k

ext . ~16!

With the help of the Dyson equation~14! and Eq.~16! the
relation betweenEv,p

tot andEv,q
ext can be obtained:

Cv
0 ~p!Ev,p

tot 5(
q

Cv~p,q!Ev,q
ext . ~17!

This result corresponds to a well-known fact in the diagram-
matic technique, that when the conductance is calculated
with the help of the density correlation function only the
irreducible part of the correlation function is involved. The
response to the external electric field is given by a series of
diagrams containing polarization bubbles and starting with
an external field. The total field is given by diagrams of the
same type. Therefore the response to the total electric field is
given by the irreducible part of the correlation function. The
importance of this fact to the calculation of the conductance
of quantum wires was emphasized recently by Kawabata.4

Substitution of Eq.~17! in the expression for the current, Eq.
~13!, yields

I2v~2q!52 i
qvF
p

Cv
0 ~q!Ev,q

tot . ~18!

From this relation one can obtain the conductanceG for the
two-terminal dc transport:

G5s~0,0!5~2 i !
1

pL(q qvFCv50
0 ~q!51/2p. ~19!

Since the wire is attached to the reservoirs the electron states
in the wire have a finite widthg, which we assume to be
larger than the level spacing. Under this assumption the sum
over momenta in Eq.~19! was transformed to an integral.
After restoring the constantse and\ the dc conductance of a
clean wire becomesG5e2/2p\, i.e., it is not influenced by
thee-e interaction.

The above consideration was performed for an arbitrary
e-e interaction including the case when it is spatially inho-
mogeneous. Let us discuss now a system of the type consid-
ered in Refs. 8 in which thee-e interaction exists only in the
central part~of length L int) and is absent in the segments
attached to the central part of the wire. One can check that if
the dc conductance is calculated ignoring the renormaliza-
tion of the electric field, i.e., usingCv(p,q) rather than
Cv
0 (p) in Eq. ~19!, then there appear corrections

;(gL int /vF)(V/vF). However, these corrections are not no-
ticeable when the region of the interaction,L int , is short. In
the treatment of Refs. 8,vF /g corresponds to the length of
the wireL, and the limitL int /L→0 was considered.

Let us discuss now a system with a backward scattering
defect inside the wire. Our goal now is to determine the
effect of the renormalization of the external electric field on
the conductance of this system. We will follow the same line
of consideration as above. The conductance is given by

G5~2 i !
vF
pL(q,p qC̃v50

0 ~q,p!, ~20!

whereC̃v50
0 (q,p) is the irreducible~with respect to thee-e

interaction! part of the retarded correlation function of the
operatorsf̃ andf in the presence of the impurity backward
scattering and the interaction. The full correlation function
C̃ is related to its irreducible part via the Dyson equation,

C̃5 C̃01 C̃0WD̃. ~21!

HereW(k,2q)5 (1/pL) qkV(q,2k) and the matrixD̃ is
the correlation function off operators.~Henceforth we use
matrix notation.! The matricesD̃ and C̃ carry information
about the backward scattering in the presence of interaction:

D̃5D1DTD,C̃5C1CTD, ~22!

whereT is the effective scattering matrix of thef operators
due to the impurity term, and the matricesD andC are the
correlators in the absence of the impurity. After some trans-
formations we obtain

C̃05C0~D0!21~D̃211W!21, ~23!

whereD0 andC0 are the irreducible parts of the correlators
D andC, see Eq.~14!. Thus, the calculation of the conduc-
tance is reduced to the inversion of operators. To perform the
inversion we will assume that the impurity backward scatter-
ing is local, while thee-e interaction inside the wire is ho-
mogeneous and short range, i.e., the elements of the matrix
T do not depend on the momenta and
W(q,2k)5 (1/p) V0q

2dq,k . Now the inversion can be done
straightforwardly and one obtains

C̃05C01
1

11trT~D2D0!
C0TD0. ~24!

With the use of Eq.~20! the conductanceG(T) is determined
if the scattering matrixT is known.

When one ignores the effect of the renormalization of the
electric field the full correlatorC̃ is used instead ofC̃0 in Eq.
~20!. The quantity obtained will be denoted byG8. In con-
trast to to the conductanceG, which is the response to the
total electric field,G8 describes the response to the external
field. Using Eq.~22! G8(T) can be found:

G8~T!5~2 i !
vF
pL(q,p qCv50~q!@dq,p1T~q,p!Dv50~p!#.

~25!

The relations~24! and ~25! enable us to eliminateT and to
expressG as a function ofG8:

G5
KrG8

2p~Kr21!G81Kr
, ~26!

where Kr51/A11V0 /vFp. The structure of Eq.~26! re-
flects the fact that in the presence of a backward scattering
center the effect of the electric field renormalization depends
not only on thee-e interaction, but also on the interplay
between the backscattering and thee-e interaction. The
quantityG8, rather thanG, has been extensively studied in
the recent years by diverse techniques7,12,13 in the perturba-
tive and nonperturbative regimes. Equation~26! allows one
to use these results to recalculate the conductance in order to
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include the effect of the renormalization of the electric field.
The results of the experiment6 can be interpreted now with-
out using the model with two line segments attached to the
wire.8 At high temperaturesG8'Kr/2p and Eq.~26! repro-
duces the universal value of the conductanceG, while when
the temperature decreases the deviation of the conductance
from the ideal value is given by a power law correction. Both
features have been observed in the experiment.6

Until now the simplified case of a single mode wire has
been considered. In a real quantum wire a few modes exist
due to spin and subbands corresponding to quantization of
transversal motion. In the absence of backward scattering Eq.
~19! can be easily generalized to the case whenN.1 modes
are occupied. Namely,vFCv50

0 (q) should be substituted by
(n51

NvF
nCv50

0,n (q) wheren is the mode index. This yields
the conductance of a multimode wireGN5Ne2/2p\. To
generalize Eq.~26! we consider the most symmetric case
when the Fermi velocities in all channels are identical,
vF
n5vF , and only an interaction of the form

r(x)V0d(x2y)r(y) is present, wherer is the total electron
density. Then

GN5
Kr
NGN8

2pSKr
N21

N DGN8 1Kr
N

, ~27!

whereKr
N51/A11NV0 /vFp and the conductancelike quan-

tity GN8 is the response to the external electric field. In the
absence of backward scatteringGN8 5NKr

N/2p, resulting in
GN5Ne2/2p\.

To summarize, we have studied the influence of thee-e
interaction on the two-terminal conductance of quantum
wires. It was shown, by two different approaches, that the
universal value of the conductance in a clean wire is a result

of a cancelation of the effects of thee-e interaction on the
current and on the external electric field. In addition, for a
system with a backward scattering center we have found the
relation of the dc conductance to the response to the external
electric field.

The last remark concerns the relation of the edge state
electrons, under the condition of the quantum Hall effect
~QHE!, to the interacting 1D electron gas.14 It is a rather
common belief that the physics of the edge states in the
fractional QHE withn51/(2p11) and the physics of the
interacting 1D electron gas are equivalent when the filling
factor n5Kr . The fact thatG85Kre

2/2p\ and the Hall
conductancesxy5ne2/2p\ is one of the reasons for that
point of view. In this connection we would like to emphasize
that n is not completely equivalent toKr . In the fractional
QHE the filling factorn appears through the commutation
relations of the operators of the electron density, but not as a
result of the density-density interaction of the edge state
electrons. For that reason the effect of the electric field renor-
malization has no connection with the factorn, and therefore
sxy does contain it. On the other hand, the Hall conductance
of the edge states is not modified by an interedgee-e
interaction,3 precisely in the same way as in the case of a
clean wire.
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