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We have measured the magnetoresistance and the magnetic phase boundaryTc(B) of mesoscopic supercon-
ducting Al structures containing a loop. The structures were designed to study the nonlocal character of the
superconducting condensate confined by the loop and the electrical leads connected to it. Voltage probes have
been attached at several positions to monitor the superconducting transition of both the loop and the segments
of the leads. Strong-coupling effects have been found to exist between the loop and the leads. At low magnetic
fields,Tc(B) of the lead segments reveals a pronounced oscillatory component, while the oscillation amplitude
of Tc(B) of the loop is significantly reduced when compared to the usual Little-Parks effect. The coupling
strength is controlled by the temperature-dependent superconducting coherence length.
@S0163-1829~96!52342-8#

It has been shown that nonlocal effects may influence the
electrical conductance of normal-metal submicrometer sized
structures.1 These experiments clearly demonstrated that the
magnetoconductance of mesoscopic samples, which is ob-
tained from a four terminal measurement, is also influenced
by regions of the conducting structure outside the voltage
probes. Due to the spatial extent of the electron wave func-
tion, all interference processes occurring within the phase
coherence lengthLw contribute to the measured conductance.
While the nonlocal contribution to the conductance of nor-
mal metal structures is rather small, it is enhanced in super-
conducting structures at temperatures above the transition
temperature, where superconducting fluctuations contribute
to the conduction process.2,3

The most pronounced nonlocal effects should be observ-
able justbelow the superconducting transition temperature
Tc , where the conductance is dominated by the presence of
the superconducting condensate. In a magnetic field, parts of
the sample differing in topology or dimensionality may have
a difference in transition temperature,Tc(B) ~Ref. 4!, and
are expected to be coupled by the proximity effect to other
parts of the structure.

Previous studies of superconductivity in mesoscopic
samples3,5 have been complicated by the presence of pro-
nounced resistance anomalies at magnetic fieldsB&1 mT.
Very recently it was shown that these anomalies, which are
related to nonmonotonic transition curvesR(T), can be sup-
pressed by shielding the electrical leads against radiofre-
quency ~rf! interference.6 An explanation of the resistance
anomalies in terms of charge imbalance around phase-slip
centers created by the rf irradiation has been proposed.6,7

In this paper we focus on nonlocal effects in the magne-
toresistance and the superconducting transition temperature
of mesoscopic aluminum samples which are properly
shielded from external noise. We studied square loop Al
structures with a number of voltage probes connected to the
current leads to monitor the superconducting transitions of
the loop as well as of segments of the leads at various dis-

tancesL to the loop. Strong interaction effects between the
loop and the lead segments were observed, which can be
tuned by varying bothL and the coherence length. Our re-
sults provide experimental tests for a number of model cal-
culations dealing with comparable structures.8

Samples were prepared by thermal evaporation of
99.999% pure aluminum onto oxidized silicon wafers. The
patterns were defined using a bilayer polymethyl metacrylate
~PMMA! resist and standard electron beam lithography
methods. Scanning electron~SEM! and atomic force micros-
copy ~AFM! confirmed the presence of a smooth aluminum
surface with no major cracks or holes down to the nanometer
scale. In what follows we will discuss a representative series
of samples having a film thickness of 43 nm and a sheet
resistance ofRh 5 0.6V. The samples were prepared in a
single evaporation run at room temperature to ensure an
identical film thickness and no variation in the structural and
electrical parameters. The Ginzburg-Landau coherence
length j(T)5jGL(12T/Tc0)

21/2 and the penetration depth
l(T)5lGL(12T/Tc0)

21/2 are given byjGL50.85(j0l el)
1/2

and lGL50.66lLo(j0 / l el)
1/2. Tc05Tc(B50) is the transi-

tion temperature in zero magnetic field,j051600 nm the
BCS coherence length,lLo515.6 nm the London penetra-
tion depth of Al, andl el the elastic mean-free path. The ma-
terial parameters of our films arel el 5 16 nm,jGL 5 0.14
mm, andlGL50.10mm.

The inset of Fig. 2 shows an AFM micrograph of a typical
sample. It consists of strands with a widthd50.13mm, in-
terrupted by a square loop of 1-mm outer side length. The
pattern enables us to measure the voltage across a 1-mm long
segment of the strand on both sides of the loop as well as the
voltage across the loop itself. The distanceL between the
inner voltage probes and the loop is varied between 0.2 and
2.0 mm. The width of the current and voltage leads is kept
constant atd50.13mm to a distance of 7mm from the outer
voltage probes and the current path in order to minimize the
influence of the wide parts of the contact leads on the mea-
surement. The magnetic field is always applied perpendicular
to the sample.
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The ac transport measurements are performed at 27 Hz
with a PAR 124A lock-in amplifier. Measuring currentsI ac
of 50 and 100 nA rms have been used. All electrical leads are
shielded by pi filters with a roll-off frequency of 1 MHz. The
normal/superconducting phase boundaries,Tc(B), are mea-
sured by tracing the midpoint temperature of the resistive
transition with the aid of a feedback technique while slowly
ramping the magnetic field. The temperature stability
achieved with the feedback circuit was of the order of 0.1
mK.

As a characteristic signature of the nonlocality, an oscil-
latory magnetoresistanceR(B) of the leads segments is ex-
pected. This is confirmed by the results forR(B) shown in
Fig. 1. The traces in~a! are obtained while measuring across
the loop~voltage contacts 1/2!. The traces in~b! have been
obtained for the same sample across one of the lead segments
~voltage contacts 1/3!, where the distance between the lead
segment and the loop wasL50.4 mm. Not only the loop
segment but also the lead segments show maxima ofR(B) at
half-integer values of the magnetic flux, i.e.,
F5(n11/2)F0, demonstrating the nonlocal influence of the
loop on the lead segments. A first evidence of the nonlocal
effect of a loop connected to line samples has been reported
in Ref. 3. However, this study has mainly been focused on
the fluctuation regime aboveTc0 and no results on the non-
local effects onTc(B) were provided. A small remainder of
the resistance anomalies described above can still be ob-
served in our measurements. The slight enhancement ofR at
low fields (B&1 mT! in some of the traces of Fig. 1~b! is
probably due to a small amount of remaining rf interference
which is not completely suppressed by the filtering of the
leads.

Next, we address the question concerning the coupling
strength between the loop and the leads. In Fig. 2 the nor-
malizedR(T) curves of a sample withL50.2 mm are plot-
ted. In zero magnetic field theR(T) curves of all segments of
the sample coincide~solid lines!. For a magnetic flux en-
closed by the loop ofF5F0/2 a clear shift ofTc between

the loop segment~voltage contacts 1/2! and the lead segment
~voltage contacts 1/3! is seen. The overall transition curve
including both loop and leads~voltage contacts 3/4! is
slightly broadened and coincides with the sum of theR(T)
curves of the subsegments. We do not observe the long-
range proximity effect which has been reported by Kwonget
al.9 for wide Al stripes. In the latter experiment theTc of
parts of the film had been reduced by about 50 mK via re-
active ion etching. Stripes with alternating etched and un-
etched areas showed sharp overall transition curves for
lengths of the etched~i.e., normal! regions up to 50mm. This
coupling is anomalous in the sense that it does not reflect the
temperature dependence of the coherence length, since the
coupling extends over a distance much larger thanj(T). The
origin of the anomalous proximity effect reported in Ref. 9 is
still unclear.

For a more quantitative analysis of the nonlocal effect, the
normal/superconducting phase boundaries of the loop and
one of the lead segments were measured.Tc(B) of the loop
shows the classical Little-Parks~LP! oscillations~see Fig. 3!
although an unexpected and pronounced increase of the os-
cillation amplitudeDTc(B) with increasing field is observed.
This observation is not in agreement with previous measure-
ments on Al microcylinders,10 which have revealed a field-
independent oscillation amplitude. Finally, as already shown
in Fig. 1, the lead segments of our samples also show oscil-
lations at low fields, which rapidly vanish when increasing
the magnetic field.

To analyze the unusual field dependence of the nonlocal
Little-Parks oscillations, we compare our data with the re-
sults of the Ginzburg-Landau theory for the conventional
Little-Parks effect. The solid line in Fig. 3 corresponds to the
calculated phase boundary of a superconducting microcylin-
der in an axial magnetic field:10,11

Tc~B!5Tc0H 12S jGL
Rm

D 2F S pRm
2B

F0
D 2~11z2!22 n

pRm
2B

F0

1
n2

2z
lnS 11z

12zD G J . ~1!

Here Rm5(Rmax1Rmin)/2 is the average of the inner and
outer radius of the cylinder,d5Rmax2Rmin being the wall

FIG. 1. Magnetoresistance of the loop~a! and a segment of the
leads~b! for a typical Al sample with a 0.4-mm distance between
the loop and the lead segments for various temperatures. The curves
are shifted for clarity.

FIG. 2. Normalized resistive transitions of different segments of
a sample with a 0.2-mm distance between the loop and the lead
segments. The inset shows an AFM micrograph of the sample.
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thickness andz5d/2Rm the cylinder aspect ratio. The integer
n has to be chosen to maximizeTc(B) for a given value of
B.

It is important to note that within the framework of the
Ginzburg-Landau theory the oscillation amplitude
DTc5Tc0(jGL/2Rm)

2 is field independent and not a free
parameter.11 Rm is determined from the loop area as well as
from the period of the LP oscillations, whilejGL can be
obtained independently from the parabolic background of
Tc(B) caused by the finite wall thicknessd. The envelope of
Tc(B) for a cylinder is identical to the phase boundary
Tc(B) of a thin film in a parallel magnetic field:11

Tc~B!5Tc0F12
p2

3 S djGLB

F0
D 2G . ~2!

For mesoscopic samples Eqs.~1! and ~2! remain valid for
perpendicular fields, providedj(T),l(T)@d.12 This condi-
tion is always fulfilled in the temperature range under con-
sideration. Whend is known,jGL can be determined by fit-
ting Eq. ~2! to the measured envelope of the phase
boundaries. Inserting the width of the strands determined via
electron microscopy, we find values for the Ginzburg-
Landau coherence length which vary within a series of
samples by not more than 5% and are in good agreement
with the jGL values obtained from the mean-free pathl el .

To further illustrate the nonlocal character of the super-
conducting condensate in our nanostructures, the inset of
Fig. 3 shows the influence ofL—the distance to the
loop—on theTc(B) phase diagram of the lead segments. The
oscillation amplitude ofTc(B) decreases with increasing
field until it vanishes in the experimental background noise.
When increasing the distance between the measured lead
segment and the loop, the oscillations gradually disappear at
smaller fields. In order to better resolve these relatively small

oscillations in the lead segments, we have subtracted the
monotonic background described by Eq.~2! from the mea-
suredTc(B) curves. In some traces a small low-field sup-
pression ofTc is present forB<1 mT, corresponding to the
low-field anomalies inR(B) ~see Fig. 1! which are probably
induced by residual rf radiation.

For a quantitative determination of the magnetic field and
L dependence of the oscillation amplitudeDTc we have ex-
ploited the fact that at the phase boundary the magnetic field
B and j(T) are related by 1/j(T)5(pdB)/(A3F0) @which
is Eq. ~2! rephrased in terms ofBc(T) rather thanTc(B)#.
When increasing the magnetic field, the background suppres-
sion ofTc results in a decrease ofj(T). In Fig. 4 the oscil-
lation amplitudesDTc for the loop and lead segments with
differentL are plotted as a function ofj(T). Note the differ-
ent scales for theDTc axes. Belowj(T).2mm, DTc of the
loop increases with decreasingj(T) @see Fig. 4~a!#. The
dashed line corresponds to the theoretical oscillation ampli-
tude obtained for an isolated loop with the samejGL andd
~solid line in Fig. 3!. In contrast,DTc(B) for the lead seg-
ments decreases with decreasingj(T) @see Fig. 4~b!# Hence,
the change of the oscillation amplitude with increasing mag-
netic field is directly related to the temperature-dependent
coherence length. Figure 4~b! also shows the systematic de-
crease ofDTc with increasing distanceL of the lead segment
to the loop.

Our experiment clearly demonstrates the interesting inter-
play between the loop and the leads in a superconducting
mesoscopic structure. While the transition temperature of an
isolated loop oscillates with a constant amplitude as a func-
tion of the magnetic field, the phase boundariesTc(B) of the
leads should be monotonic in the absence of the nonlocality.
Connecting the loop to the leads has an effect on both of
them—the oscillations in the loop are strongly damped and
Tc(B) of the leads reveals an oscillatory component. As in-
ferred from the observed temperature dependence of the two
effects, the nonlocality can be linked to the stiffness of the

FIG. 3. Normal/superconducting phase boundaries of a loop and
a lead segment (L50.2mm! as described in the text. The solid and
dashed lines correspond to the theoretical phase boundaries of an
isolated loop and a one-dimensional line, respectively. Inset: non-
local Little-Parks oscillations for lead segments with varying dis-
tance to the loopL. The parabolic background depression ofTc has
been subtracted.

FIG. 4. Oscillation amplitude vs coherence length obtained from
the phase boundaries of the loop and the lead segments shown in
Fig. 3. The dashed line indicates the theoretical value of the oscil-
lation amplitude for an isolated loop.
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superconducting order parameterc. ForFÞnF0 the fluxoid
conservation causes a reduction ofTc of the loop. ForT
between the transition temperatures of the isolated systems
c is reduced in the loop when compared to its equilibrium
value in the leads and far away from the loop. Whenj(T) is
larger than or comparable to the loop size, the depression of
c extends into the leads. On the other hand, due to the sta-
bilizing influence of the leads,c in the loop will be consid-
erably higher than in the case of an isolated loop.

As illustrated in Fig. 4, the length scale determining the
coupling strength is indeed the coherence lengthj(T). The
problem of a loop with attached leads has been treated theo-
retically in the limit of vanishing width of the strands. Fink
et al.8 calculated that the presence of leads indeed reduces
the oscillation amplitude ofTc(B) of the loop when com-
pared to an isolated loop. However, the theory overestimates
the coupling strength by assuming a single transition tem-
perature for the whole structure. This assumption cannot
hold, when the leads are much longer thanj(T). As con-
firmed by the data presented in Fig. 2, we find that there is a
difference between the transition temperatures of the loop
and the leads, though considerably smaller than inferred
from the Little-Parks effect for an isolated loop. The strictly
one-dimensional theory used in Ref. 8 can also not account

for the observed crossover from coupled to decoupled behav-
ior, since the decoupling is induced by the parabolic back-
ground depression ofTc(B) due to the finite width of the
strands. OnceTc has been sufficiently decreased by the mag-
netic field,j(T) becomes smaller than the loop size resulting
in a weaker coupling and the experimental phase boundaries
gradually approach the behavior of the isolated systems~see
Fig. 3!.

In conclusion, we have found that a mesoscopic supercon-
ducting loop and the electrical leads connected to it form a
strongly coupled system. The mutual nonlocal influence is
due to the divergence of the coherence length near the tran-
sition temperature and is suppressed at lower temperatures.
Although simple one-dimensional models cannot account for
all of our observations, a qualitative interpretation in terms
of a proximitylike coupling is possible.
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