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Quantum melting of a two-dimensional vortex lattice at zero temperature
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We consider the quantum melting of a two-dimensional flux lattice at temperhtar® in the “superclean
limit.” In this regime, we find that vortex motion is dominated by the Magnus force. A Lindemann criterion
predicts melting whem, /n,= g, wheren, andn, are the areal number densities of vortex pancakes and
Cooper pairs, angg=~0.1. A second criterion is derived by using Wigner-crystal and Laughlin wave functions
for the solid and liquid phases respectively, and setting the two energies equal. This gives a melting value
similar to the Lindemann result. We discuss the numerical value of the@ melting field for thin layers of a
low-T. superconductor, such asMoGe, and single layers of higi; materials.[S0163-18206)50642-9

[. INTRODUCTION remaining forces, the Magnus force usually domindsee
below). The resulting Lindemann melting criterion proves
Vortices in the layered high-, materials have remark- independent of the vortex mass. By contrast, in the opposite
ably strong thermal fluctuations, which have been extenlimit where the intervortex forces dominate, the melting field
sively studied: At sufficiently low temperatures, vortex lines depends sensitively on the vortex méss.
are also expected to be subject goantum fluctuations. The Magnus forceis an effective interaction between
Quantum effects should manifest themselves in the zerosharges and vortices in relative motion. In a superconducting
point motion of vortex lines. If these are large enough, thefilm of thicknessd, this force, per unit volume, acting on the
flux lattice can melt even at temperatFe-0. Indeed, many vortices, in their rest frame, is—JXBZ/c, where
experiments suggest that vortex lattice melting, both in highd= —2en,v/d is the pair current density, is the effective
T. materiald™ and in low-T, films and multilayers, is  areal number density of Cooper pairs, ands the vortex
strongly influenced by quantum fluctuations. velocity relative to the pairs. The force acting on a single
Several authors have already considered possible quantutwo-dimensional“pancake”) vortex is then
melting in highT, superconductors. Blatter and Ivfeiave
examined the influence of quantum fluctuations at finite tem-
peratures. They estimated the shift in the melting curve using
a Lindemann criterion, assuming overdamped dynamics.

- 2e
Fo=d,hvXxzn,= ?VX ZBs. (1)

H(r)ZZEodKO

II. FICTITIOUS MAGNETIC FIELD AND LINDEMANN

and Doniach computed theT=0 melting field for a 2D ®o=hc/2e is the flux quantum, and the film is assumed
account a fictitious magnetic field arising from the Magnuscally small compared to the Magnus force. If the London
in the vortex liquid. Such FQHE states had been predicted by

r

)\—), (2

1
In this paper, we describe two simple models for estimat-
first estimate is a simple Lindemann criterion. The secondion of zeroth order. To estimate the effects of the vortex-

energy per vortexAU,,.m, due to harmonic vibrations about
MELTING CRITERION vector of the triangular lattice,u; is the displace-

arising from the Cooper pair density. We neglect dissipativehe primes denote differentiation.

Chudnovsky has studied a hypothetical two-dimensionalHereq,=*1 is the effective charge of the pancake vortex,

(2D) quantum vortex liquid state at temperatlire 0. Onogi  h is Planck’s constantBs=®on, is the fictitious field,

superconductor using quantum Monte Caf@@MC) tech- ~ perpendicular to the axis. _ _ _

niques without dissipative quantum tunneling. By taking into We now wish to show that the intervortex force is typi-

force on the vortex pancakésthey also found strong nu- penetration depth i3, the direct interaction potential be-

merical evidence for fractional quantum H&IQHE) states tween two pancakes separatedrbig

several author®!! principally in the context of Josephson-

junction arrays.

ing the conditions for quantum melting of a 2D vortex IatticeWhere2 N =\%d is the transverse penetration ~ depth,

atT=0, explicitly including the fictitious magnetic field. The €,=®§/(1672\?), andKy(x) is the modified Bessel func-

involves a simple comparison of internal energies in thevortex interaction, we assume that the vortices are ordered

crystalline and liquid phases. into a triangular lattice, and calculate the change in potential
this lattice. After some algebra, this extra energy is found to
be AUpm=2[x(1)/4 |up—u|?). Here | is a lattice

In our model, the vortex pancakes experience two types ofment of the Ith vortex from equilibrium, and x(I)

forces: those due to other pancakes and the Magnus force(eod/)\f)[()\i INKGIN ) +KG(1/N )], wherel=]l|, and

forces from the “viscous” normal electron background, as We estimate this energy as follows. First, since the

may be acceptable in the “superclean limi?"Of the two  vortex-vortex interaction is assumed small, we neglect
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(ug-u;). Secondly, in the weak-screening regime where the n, 2m ,
nearest-neighbor intervortex distanag<\, , the summa- N TO!L~0-07, (7)
tion may reasonably be replaced by an integral. With these P 3

approximations, and using several identities for derivatives _ 5 ) _
of Bessel functions, we finally obtain using the estimater; ~0.02. Thus, the Lindemann picture

predicts quantum melting af=0 at a vortex density of
AU o= (€0d) X 7m0, (| ug|?), (3) around 7% of the effective areal density of Cooper pairs.

wheren, =2/(,/3a3) is the areal vortex density.

Similarly, for a pancake of mass, moving in a fictitious
field Begr, the zero-point energy per pancake) ,, for a Next, we describe an alternative way of estimating the
pancake in the lowest Landau level is melting temperature in a 2D lattice. We treat the pancake
vortices as bosons, moving in the effective fi@ds. To
describe the bosons, we use a Wigner cry$tdC) wave

IIl. LAUGHLIN LIQUID VERSUS WIGNER CRYSTAL

— ff
AUmag_if“”g ' (4 function in the solid phase, and a properly symmetrized
Laughlin wave functiof? in the liquid. The melting point is
wherew§ﬁ= 2eBy;/(m,C). determined by requiring the energi&s,c and E,, of the

To show that the zero point motion is usually dominatedsolid and liquid states to be equal. A related approach has
by Bey, We demonstrate thdtw.<%Zw" where w, is the been used to treat melting of the 2D electron lattice in a
frequency for zero-point motion of the harmonic lattice in magnetic field.*> o
the absence of B. Now w.= vk/m,, wherek is the effec- The WC wave function is
tive spring constant of the harmonic lattice. It follows from
Eq. (3) thatk=2¢y,dwn,, . B

To comparew, and of" we use the London estimate Ywe=AS H Yn=N . ®
for the penetration depth\?(T)=(m,c?)/(47g?n3P)
= (myc?d)/(4mg?n,), wheren}® is the pair density per unit Here y(r) denotes the zero-momentum single-particle wave
volume, m, is the pair mass, and the pair charge. Then a fynction of the lowest Landau levelS is the symme-
little algebra reveals thab,<wg" provided that trization operator, andA is a normalization constant.

We wish to calculate the averaged vortex-vortex

My, _2Mp ®) iﬂteraction energy in this state, i.eEWC/(Z_eOdS)
m, n,’ =(V|Z 22, Ko([r, =1 l/N)[W)/(2S), where S is the

_ _ _ sample surface area.
wherem, is the Cooper pair mass . As will be shown below, e simplify the calculation by several approximations.
_nU_/np~O.1 at the melting point. Then _inequali(ﬁ) is sat-  First, since a2>(|ug|?), the wave function symme-
isfied so long asn, /m,<20. Now in BiSpCa;Cu,0g.x,  trization is quantitatively unimportant for calculatifyc.
the mass of a single pancake vortex, assuming a thicknesggeed, for large argument, the single-particle wave function
d~10 A (appropriate for a single layer of highs materia) (1) decays exponentially, and the overlap integral between
has been estimated as one electron fhalsus, in this re- y(r—1,) and ¢(r—1,) is almost zero, unles$;=l,. In
gime, the inequality is satisfied antlUom<AUmag @S re-  yiew of this degree of localizatiorE,,c can be expanded
quired. Hence, in calculating melting behavior for vortices Ofin powers of the small ratio<|u0|2)/)\2 keeping only
this mass, we apparently need consider 0Bl mag. OUr o™ firgt two terms. The result LisEWC/(ZeOdS)

results based on including onlgU,,,, do indeed give =(n,/2).0K :
g . . . = v 1#0 O(I/)\L) + nvAUharn{Zfod, Where AUharm IS
n,/n,~0.1, thereby confirming the self-consistency of Ourgiven by Eq.(3). The fluctuations(|ug|?) appearing in

approach. E .
. . . . o g. (3) are the sum of two parts: one due By; and
We now obtain a simple Lindemann melting Criterion, yne other to the intervortex potential. Of these, the for-

assgming_that the dominant contribution to zero-point vortex o is typically much larger, as noted above, and has al-

motion arises fromBeq. Although o' clearly depends on ready been evaluated in chs). We substitute this value

m, , the zero-point di_splacement doe_s not. We calculgtcla.thiﬁ]to Eq. (3) and hence into the expression f&yc. In

d|splacement'assum|ng the symmetr'lc gauge for the fictitioug, o jimit ap<\, , one can evaluate this sum numerically.

vector potential Acy= 3B 1. Then in the lowest Landau the resylt is very well fitted numerically by the form

level, one finds S 120Ko(I/N ) =N, fd?rKo(r/\ ) — 0.500In(2 n,) — 1.437.
Collecting all these results, we finally obtain

D, 1
(JuolPy=((uF+u))= —=—=—, )
TBeit TNy 2
Ewc =EJ kg | - 1n In(A2n,)  (9)
independenbf vortex mass. 2¢pdS 2 On,] 4" L
According to the Lindemann criterion, melting occurs
when the zero-point amplitude is a certain fraction, say 2
a, of ag. In most conventional materialgy, ~0.1—-0.2. —0.71N +i
. 1

2n,’

Sinceay=(2d,/+/3B)*2 the Lindemann criterion becomes p
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since the pancakes are delocalized. We usduamormal- —

ized) trial wave function of the Laughlin forn'’

For the liquid phase, the wave function symmetry matters .,
| xa +y|l900-1] 12

X
n e —
2\, ﬁ)

N == | xdxnx[g(x)—=1]= 7 In(4m\in,)+ 5
tm=11 (zj—2z0) eXF(——E |z||2> (10) fo g WAL 2

j<k

0.74
- ) —=In(A%n,)

~—0.3755+ 0.44((2np 2

Here z;=x;+iy; is the position coordinate of thgh pan-
cake, and all lengths are expressed in units of the “magnetic
length” /o=[®o/(27B) ]2 Since the vortex pancakes — Zn(4m) + Y
are bosonsm must be an even integer. In the Laughlin 4

theory of the fractional quantum Hall effectyiis the filling
fraction of the first Landau level.

Laughlin’s prescription for obtaining the minimizing
value of m is readily translated to the present problem, in B f d2rK
which the role of charges and magnetic field are reversed. 260d5 2 0
The generalized prescription is that the minimizmgpccurs
when the number density, of vortices of the fictitious mag-
netic field equalsn times the number density, of fictitious —O.7201v+0.44(hv(
charges, i.e.m=n,/n, .

We next calculate the internal energy of the Laughlin

Hence, the energy of the Laughlin liquid can be written as

) —n,In(A\%n,) (13

n 0.74

2np) ’

o . , . This differs from the Wigner crystal energy basically only in
liquid at variousms. With a chafngehof scl;alte_,(jtheb VOrteX- the |ast term on the right-hand side. The first three terms on
vortex  interaction energy o the liqui €COMES the right-hand side of Eq$9) and(13) represent the energy
EL/(2€0dS) = (n,/2m) [dXKo(x/A V7N,)9(X),  where — of ihe'static Wigner crystal, while the last term in each equa-
g(x) is the dimensionless density-density Laughlin-liquid 5y represents the deviation of the internal energy from

correlation functior(normalized to unity at large), and the  those values in the solid and liquid states, which have differ-
dimensionless coordinate=rmn,. Sinceg(x) differs sig-  ent structure factors.

nificantly from unity mainly wherex<<1, the interaction en- Finally, the zero-temperature melting transition is de-
ergy is conveniently decomposed as fined by the equation Ewc=E,, or n,/2n,
~0.440(,/2n,)*" or equivalently
En. N 9 n
2eds 2 9Kl X M 1D —*~0.00. (14)

Np

This result agrees remarkably well with the Lindemann cri-
terion.

+&J' d?xK L)[ (x)—1]
2m 0 N NN, J

IV. DISCUSSION

) We now evaluate these predictions for two materials, us-

_n 2 r ing a simplified approximation fon,. As noted by Ao and

~7J d*rKo H) Thouless) n, is not simply the areal density of Cooper pairs,
but that ofsuperconductingCooper pairs—that is, those not

x X pinned by lattice disorder. Since it is unclear how to evaluate
- nvf de{ In( ——| ty|lg(x)—1], this quantity, we simply use the London equation to estimate
0 2\, n, at zero field. To geny(B), we use the Ginzburg-Landau
apprOX|mat|om(B 0)= )\(O 0)[1—B/B¢,]Y? whereB,, is
where y~0.577 . . . is Euler's constant and we have used the T=0 upper critical field, and. (B,T) is the penetration

depth. The melting condition, from either the Lindemann

As noted by Laughlin, the correlation functigr) for the ~ Cfitérion or equating solid and liquid energies, is
Laughlin-liquid state is just that of the 2D one-component™ /Mp= B, where~0.1. Substituting the above expressions
classical plasm&OCP, in which the particles interact loga- into this melting condition, we obtain for the melting field
rithmically. The last term on the right is, to within a factor, ®m
just the internal energy of the OCP. We can therefore use
standard numerical results for the OCP, as obtained by ﬁ_ Bo
Monte Carlo methods by Caillat al'® Using the analytical B, Bo+Bco’
fit of these authors to their own numerical results for the

integral [ gxdxinx[g(x) — 1], we find whereB,= gm,c?dd,/[4m\?(0,0)9%].

the smallx approximation forK 5(x).

(15
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First, we apply this result to an amorphous MoGe film, antheir observed melting scales with, as if there were no
extensively studied 2D extreme type-Il superconductor. Arinfluence ofB.; on B,,. (They consider only mass ratios
amorphous Mg ,4Ge, s film of thickness 30 A has.(0,0) m,/m,=10,) Our simplified analytical calculations suggest
~8000 A andB.,~10* G}" TakingB~H (a good approxi- that B,; may dominate the melting behavior for sufficiently
mation in the extreme type-ll limit and using8=0.1, we light pancake massesn(<40m,.). Presumably, this influ-
find Bo~7x10* G, and thereforeB,,/B.,~0.8—0.9. This  ence ofB would also show up in QMC studies at suffi-
is consistent with the observations of Ephrenal,’” who  ciently smallm, .
find a superconducting-insulating transition at around 10 kG, To conclude, we have calculated the quantum melting cri-
quite close to the estimatd®l.,. The transition in Ref. 17 is terion for a 2D vortex lattice af=0, by comparing the
undoubtedly not uncomplicated quantum melting, since itinternal energies of the vortex solid and vortex fluid in a
occurs in highly disordered samples. Indeed, it is undoubthypothetical superclean limit. We find that, at sufficiently
edly better described as a continuous phase transition fromlaw vortex masses, melting behavior seems to be dominated
vortex glass to a Cooper pair glaédNonetheless, it is grati- by a fictitious magnetic field acting on the vortices and pro-
fying that our predicted field, estimated for a clean sampleduced by the Cooper pair density. The calculated melting
falls rather close to the observed transition. field is close to the superconducting-insulating transition ob-

Of equal interest is possible quantum melting in high-served in certain thin films of amorphous MoGe, and may be
T. superconductors. Since our model is strictly 2D, wewithin reach of pulsed magnetic fields in some underdoped
consider only a single layer of a highs material. The re- CuO,-based highT, materials.
sult may conceivably be extrapolated to the most aniso-
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