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We consider the quantum melting of a two-dimensional flux lattice at temperatureT 5 0 in the ‘‘superclean
limit.’’ In this regime, we find that vortex motion is dominated by the Magnus force. A Lindemann criterion
predicts melting whennv /np>b, wherenv and np are the areal number densities of vortex pancakes and
Cooper pairs, andb'0.1. A second criterion is derived by using Wigner-crystal and Laughlin wave functions
for the solid and liquid phases respectively, and setting the two energies equal. This gives a melting value
similar to the Lindemann result. We discuss the numerical value of theT50 melting field for thin layers of a
low-Tc superconductor, such asa-MoGe, and single layers of high-Tc materials.@S0163-1829~96!50642-9#

I. INTRODUCTION

Vortices in the layered high-Tc materials have remark-
ably strong thermal fluctuations, which have been exten-
sively studied.1 At sufficiently low temperatures, vortex lines
are also expected to be subject toquantum fluctuations.
Quantum effects should manifest themselves in the zero-
point motion of vortex lines. If these are large enough, the
flux lattice can melt even at temperatureT50. Indeed, many
experiments suggest that vortex lattice melting, both in high-
Tc materials2–4 and in low-Tc films and multilayers,5 is
strongly influenced by quantum fluctuations.

Several authors have already considered possible quantum
melting in high-Tc superconductors. Blatter and Ivlev6 have
examined the influence of quantum fluctuations at finite tem-
peratures. They estimated the shift in the melting curve using
a Lindemann criterion, assuming overdamped dynamics.
Chudnovsky7 has studied a hypothetical two-dimensional
~2D! quantum vortex liquid state at temperatureT50. Onogi
and Doniach8 computed theT50 melting field for a 2D
superconductor using quantum Monte Carlo~QMC! tech-
niques without dissipative quantum tunneling. By taking into
account a fictitious magnetic field arising from the Magnus
force on the vortex pancakes,9 they also found strong nu-
merical evidence for fractional quantum Hall~FQHE! states
in the vortex liquid. Such FQHE states had been predicted by
several authors,10,11 principally in the context of Josephson-
junction arrays.

In this paper, we describe two simple models for estimat-
ing the conditions for quantum melting of a 2D vortex lattice
atT50, explicitly including the fictitious magnetic field. The
first estimate is a simple Lindemann criterion. The second
involves a simple comparison of internal energies in the
crystalline and liquid phases.

II. FICTITIOUS MAGNETIC FIELD AND LINDEMANN
MELTING CRITERION

In our model, the vortex pancakes experience two types of
forces: those due to other pancakes and the Magnus force
arising from the Cooper pair density. We neglect dissipative
forces from the ‘‘viscous’’ normal electron background, as
may be acceptable in the ‘‘superclean limit.’’12 Of the two

remaining forces, the Magnus force usually dominates~see
below!. The resulting Lindemann melting criterion proves
independent of the vortex mass. By contrast, in the opposite
limit where the intervortex forces dominate, the melting field
depends sensitively on the vortex mass.8

The Magnus force9 is an effective interaction between
charges and vortices in relative motion. In a superconducting
film of thicknessd, this force, per unit volume, acting on the
vortices, in their rest frame, is2J3Bẑ/c, where
J522enpv/d is the pair current density,np is the effective
areal number density of Cooper pairs, andv is the vortex
velocity relative to the pairs. The force acting on a single
two-dimensional~‘‘pancake’’! vortex is then

Fp5qvhv3 ẑnp[
2e

c
v3 ẑBeff . ~1!

Hereqv561 is the effective charge of the pancake vortex,
h is Planck’s constant,Beff5F0np is the fictitious field,
F05hc/2e is the flux quantum, and the film is assumed
perpendicular to thez axis.

We now wish to show that the intervortex force is typi-
cally small compared to the Magnus force. If the London
penetration depth isl, the direct interaction potential be-
tween two pancakes separated byr is

P~r !52e0dK0S r

l'
D , ~2!

where l'5l2/d is the transverse penetration depth,
e05F0

2/(16p2l2), andK0(x) is the modified Bessel func-
tion of zeroth order. To estimate the effects of the vortex-
vortex interaction, we assume that the vortices are ordered
into a triangular lattice, and calculate the change in potential
energy per vortex,DUharm, due to harmonic vibrations about
this lattice. After some algebra, this extra energy is found to
be DUharm5( l@x( l )/4#^uu02ulu2&. Here l is a lattice
vector of the triangular lattice,ul is the displace-
ment of the lth vortex from equilibrium, andx( l )
5(e0d/l'

2 )@(l' / l )K08( l /l')1K09( l /l')#, where l5ulu, and
the primes denote differentiation.

We estimate this energy as follows. First, since the
vortex-vortex interaction is assumed small, we neglect
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^u0•ul&. Secondly, in the weak-screening regime where the
nearest-neighbor intervortex distancea0!l' , the summa-
tion may reasonably be replaced by an integral. With these
approximations, and using several identities for derivatives
of Bessel functions, we finally obtain

DUharm'~e0d!3pnv^uu0u2&, ~3!

wherenv52/(A3a0
2) is the areal vortex density.

Similarly, for a pancake of massmv moving in a fictitious
field Beff , the zero-point energy per pancakeDUmag for a
pancake in the lowest Landau level is

DUmag5
1

2
\vc

eff , ~4!

wherevc
eff52eBeff /(mvc).

To show that the zero point motion is usually dominated
by Beff , we demonstrate that\vc!\vc

eff wherevc is the
frequency for zero-point motion of the harmonic lattice in
the absence of Beff . Now vc5Ak/mv, wherek is the effec-
tive spring constant of the harmonic lattice. It follows from
Eq. ~3! that k52e0dpnv .

To comparevc and vc
eff we use the London estimate

for the penetration depthl2(T)5(mpc
2)/(4pq2np

3D)
5(mpc

2d)/(4pq2np), wherenp
3D is the pair density per unit

volume,mp is the pair mass, andq the pair charge. Then a
little algebra reveals thatvc!vc

eff provided that

mv

mp
!
2np
nv

, ~5!

wheremp is the Cooper pair mass . As will be shown below,
nv /np'0.1 at the melting point. Then inequality~5! is sat-
isfied so long asmv /mp!20. Now in BiSr2Ca2Cu2O81x ,
the mass of a single pancake vortex, assuming a thickness
d'10 Å ~appropriate for a single layer of high-Tc material!
has been estimated as one electron mass8. Thus, in this re-
gime, the inequality is satisfied andDUharm!DUmag as re-
quired. Hence, in calculating melting behavior for vortices of
this mass, we apparently need consider onlyDUmag. Our
results based on including onlyDUmag do indeed give
nv /np'0.1, thereby confirming the self-consistency of our
approach.

We now obtain a simple Lindemann melting criterion,
assuming that the dominant contribution to zero-point vortex
motion arises fromBeff . Although vc

eff clearly depends on
mv , the zero-point displacement does not. We calculate this
displacement assuming the symmetric gauge for the fictitious
vector potential,Aeff5

1
2Beff3r . Then in the lowest Landau

level, one finds

^uu0u2&[^~ux
21uy

2!&5
F0

pBeff
5

1

pnp
, ~6!

independentof vortex mass.
According to the Lindemann criterion, melting occurs

when the zero-point amplitude is a certain fraction, say
aL , of a0. In most conventional materials,aL'0.120.2.
Sincea05(2F0 /A3B)1/2, the Lindemann criterion becomes

nv
np

5
2p

A3
aL
2'0.07, ~7!

using the estimateaL
2'0.02. Thus, the Lindemann picture

predicts quantum melting atT50 at a vortex density of
around 7% of the effective areal density of Cooper pairs.

III. LAUGHLIN LIQUID VERSUS WIGNER CRYSTAL

Next, we describe an alternative way of estimating the
melting temperature in a 2D lattice. We treat the pancake
vortices as bosons, moving in the effective fieldBeff . To
describe the bosons, we use a Wigner crystal~WC! wave
function in the solid phase, and a properly symmetrized
Laughlin wave function13 in the liquid. The melting point is
determined by requiring the energiesEWC and ELL of the
solid and liquid states to be equal. A related approach has
been used to treat melting of the 2D electron lattice in a
magnetic field.14,15

The WC wave function is

CWC5ASS)
l

c~r l2 l! D . ~8!

Herec(r ) denotes the zero-momentum single-particle wave
function of the lowest Landau level,S is the symme-
trization operator, andA is a normalization constant.
We wish to calculate the averaged vortex-vortex
interaction energy in this state, i.e.EWC/(2e0dS)
5^Cu( l1

( l2Þl1
K0(ur l12r l2u/l')uC&/(2S), where S is the

sample surface area.
We simplify the calculation by several approximations.

First, since a0
2@^uu0u2&, the wave function symme-

trization is quantitatively unimportant for calculatingEWC.
Indeed, for large argument, the single-particle wave function
c(r ) decays exponentially, and the overlap integral between
c(r2 l1) and c(r2 l2) is almost zero, unlessl15 l2. In
view of this degree of localization,EWC can be expanded
in powers of the small ratiô uu0u2&/l'

2 keeping only
the first two terms. The result isEWC/(2e0dS)
5(nv/2)( lÞ0K0( l /l')1nvDUharm/2e0d, where DUharm is
given by Eq. ~3!. The fluctuations^uu0u2& appearing in
Eq. ~3! are the sum of two parts: one due toBeff and
the other to the intervortex potential. Of these, the for-
mer is typically much larger, as noted above, and has al-
ready been evaluated in Eq.~6!. We substitute this value
into Eq. ~3! and hence into the expression forEWC. In
the limit a0!l' , one can evaluate this sum numerically.
The result is very well fitted numerically by the form
( lÞ0K0( l /l')'nv*d

2rK0(r /l')20.500ln(l'
2nv)21.437.

Collecting all these results, we finally obtain

EWC

2e0dS
5
nv
2

2 E d2rK0S r

l'
D2

1

4
nvln~l'

2nv! ~9!

20.719nv1
nv
2

2np
.
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For the liquid phase, the wave function symmetry matters
since the pancakes are delocalized. We use an~unnormal-
ized! trial wave function of the Laughlin form:13

CLL,m5)
j,k

~zj2zk!
mexpS 2

1

4(l uzl u2D . ~10!

Here zj5xj1 iy j is the position coordinate of thej th pan-
cake, and all lengths are expressed in units of the ‘‘magnetic
length’’ l 0[@F0 /(2pBeff!#

1/2. Since the vortex pancakes
are bosons,m must be an even integer. In the Laughlin
theory of the fractional quantum Hall effect, 1/m is the filling
fraction of the first Landau level.

Laughlin’s prescription for obtaining the minimizing
value ofm is readily translated to the present problem, in
which the role of charges and magnetic field are reversed.
The generalized prescription is that the minimizingm occurs
when the number densitynp of vortices of the fictitious mag-
netic field equalsm times the number densitynv of fictitious
charges, i.e.,m5np /nv .

We next calculate the internal energy of the Laughlin
liquid at variousm’s. With a change of scale, the vortex-
vortex interaction energy of the liquid becomes
ELL /(2e0dS)5(nv/2p)*d2xK0(x/l'Apnv)g(x), where
g(x) is the dimensionless density-density Laughlin-liquid
correlation function~normalized to unity at largex), and the
dimensionless coordinatex5rApnv. Sinceg(x) differs sig-
nificantly from unity mainly wherex,1, the interaction en-
ergy is conveniently decomposed as

ELL

2e0dS
5
nv
2

2 E d2rK0S r

l'
D ~11!

1
nv
2pE d2xK0S x

l'Apnv
D @g~x!21#

'
nv
2

2 E d2rK0S r

l'
D

2nvE
0

`

xdxF lnS x

2l'Apnv
D 1gG @g~x!21#,

whereg'0.577 . . . is Euler’s constant and we have used
the small-x approximation forK 0~x!.

As noted by Laughlin, the correlation functiong~r! for the
Laughlin-liquid state is just that of the 2D one-component
classical plasma~OCP!, in which the particles interact loga-
rithmically. The last term on the right is, to within a factor,
just the internal energy of the OCP. We can therefore use
standard numerical results for the OCP, as obtained by
Monte Carlo methods by Caillolet al.16 Using the analytical
fit of these authors to their own numerical results for the
integral*0

`xdxlnx@g(x)21#, we find

2E
0

`

xdxF lnS x

2l'Apnv
D 1gG @g~x!21# ~12!

52E
0

`

xdxlnx@g~x!21#2
1

4
ln~4pl'

2nv!1
g

2

'20.375510.440S nv
2np

D 0.742 1

4
ln~l'

2nv!

2
1

4
ln~4p!1

g

2
.

Hence, the energy of the Laughlin liquid can be written as

ELL

2e0dS
5
nv
2

2 E d2rK0S r

l'
D2

1

4
nvln~l'

2nv! ~13!

20.720nv10.440nvS nv
2np

D 0.74.
This differs from the Wigner crystal energy basically only in
the last term on the right-hand side. The first three terms on
the right-hand side of Eqs.~9! and~13! represent the energy
of the static Wigner crystal, while the last term in each equa-
tion represents the deviation of the internal energy from
those values in the solid and liquid states, which have differ-
ent structure factors.

Finally, the zero-temperature melting transition is de-
fined by the equation EWC5ELL , or nv/2np
'0.440(nv/2np)

0.74, or equivalently

nv
np

'0.09. ~14!

This result agrees remarkably well with the Lindemann cri-
terion.

IV. DISCUSSION

We now evaluate these predictions for two materials, us-
ing a simplified approximation fornp . As noted by Ao and
Thouless,9 np is not simply the areal density of Cooper pairs,
but that ofsuperconductingCooper pairs—that is, those not
pinned by lattice disorder. Since it is unclear how to evaluate
this quantity, we simply use the London equation to estimate
np at zero field. To getnp(B), we use the Ginzburg-Landau
approximationl(B,0)5l(0,0)/@12B/Bc2#

1/2, whereBc2 is
the T50 upper critical field, andl(B,T) is the penetration
depth. The melting condition, from either the Lindemann
criterion or equating solid and liquid energies, is
nv /np5b, whereb'0.1. Substituting the above expressions
into this melting condition, we obtain for the melting field
Bm

Bm

Bc2
5

B0

B01Bc2
, ~15!

whereB05bmpc
2dF0 /@4pl2(0,0)q2#.

54 R12 699QUANTUM MELTING OF A TWO-DIMENSIONAL VORTEX . . .



First, we apply this result to an amorphous MoGe film, an
extensively studied 2D extreme type-II superconductor. An
amorphous Mo0.43Ge0.57 film of thickness 30 Å hasl~0,0!
'8000 Å andBc2'104 G.17 TakingB'H ~a good approxi-
mation in the extreme type-II limit!, and usingb50.1, we
find B0'73104 G, and therefore,Bm /Bc2'0.820.9. This
is consistent with the observations of Ephronet al.,17 who
find a superconducting-insulating transition at around 10 kG,
quite close to the estimatedBc2. The transition in Ref. 17 is
undoubtedly not uncomplicated quantum melting, since it
occurs in highly disordered samples. Indeed, it is undoubt-
edly better described as a continuous phase transition from a
vortex glass to a Cooper pair glass.18 Nonetheless, it is grati-
fying that our predicted field, estimated for a clean sample,
falls rather close to the observed transition.

Of equal interest is possible quantum melting in high-
Tc superconductors. Since our model is strictly 2D, we
consider only a single layer of a high-Tc material. The re-
sult may conceivably be extrapolated to the most aniso-
tropic CuO2-based materials, such as BiSr2Ca2Cu2O81x .
Assuming d510 Å and l(0,0)51400 Å, we obtain
B0'1.53106 G. Estimating Bc2533106 G, we find
Bm'106 G. SinceTc is smaller andl(0,0) is larger in an
underdoped sample, we may expectBm also to decrease in
such materials.

Finally, we comment on the connection between our re-
sults and the calculations of Ref. 8. While these authors find
FQHE-like commensuration effects in the flux liquid state,

their observed melting scales withmv as if there were no
influence ofBeff on Bm . ~They consider only mass ratios
mv/mp>10.! Our simplified analytical calculations suggest
thatBeff may dominate the melting behavior for sufficiently
light pancake masses (mv!40me). Presumably, this influ-
ence ofBeff would also show up in QMC studies at suffi-
ciently smallmv .

To conclude, we have calculated the quantum melting cri-
terion for a 2D vortex lattice atT50, by comparing the
internal energies of the vortex solid and vortex fluid in a
hypothetical superclean limit. We find that, at sufficiently
low vortex masses, melting behavior seems to be dominated
by a fictitious magnetic field acting on the vortices and pro-
duced by the Cooper pair density. The calculated melting
field is close to the superconducting-insulating transition ob-
served in certain thin films of amorphous MoGe, and may be
within reach of pulsed magnetic fields in some underdoped
CuO2-based high-Tc materials.

ACKNOWLEDGMENTS

One of us~D.S.! gratefully acknowledges conversations
with Professor S. Doniach, as well as the hospitality of the
Stanford Department of Applied Physics, where this calcula-
tion was initiated. Work supported by NSF Grant No.
DMR94-02131 and by the Department of Energy through the
Midwest Superconductivity Consortium at Purdue Univer-
sity, Grant No. DE-FG90-02ER-45427.

1G. Blatteret al., Rev. Mod. Phys.66, 1125~1994!, and references
therein.

2R. de Andrade and O. F. de Lima, Phys. Rev. B51, 9383
~1995!.

3A. Schilling et al., Physica B194/196, 1555~1994!.
4P. Y. Fukuzumiet al., Phys. Rev. Lett.76, 684 ~1996!.
5C. Attanasioet al., Phys. Rev. B53, 1087~1996!.
6G. Blatter and B. Ivlev, Phys. Rev. Lett.70, 2621~1993!.
7E. M. Chudnovsky, Phys. Rev. B51, 15 351~1995!.
8H. Onogi and S. Doniach, Solid State Commun.98, 1 ~1996!.

9P. Ao and D. J. Thouless, Phys. Rev. Lett.70, 2158~1993!.
10M. Y. Choi, Phys. Rev. B50, 10 088~1994!.
11A. Stern, Phys. Rev. B50, 10 092~1994!
12G. Blatteret al., Rev. Mod. Phys.66, 1153~1994!.
13R. B. Laughlin, Phys. Rev. Lett.50, 1395~1983!.
14K. Maki and X. Zotos, Phys. Rev. B28, 4349~1983!.
15P. K. Lam and S. M. Girvin, Phys. Rev. B30, 473 ~1984!.
16J. M. Caillol et al., J. Stat. Phys.28, 325 ~1982!.
17D. Ephronet al., Phys. Rev. Lett.76, 1529~1996!.
18M. P. A. Fisher, Phys. Rev. Lett.65, 923 ~1990!.

R12 700 54A. ROZHKOV AND D. STROUD


