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We derive the exact contribution of two spinons to the dynamical correlation function of the spin-1/2
Heisenberg model. For this, we use the isotropic limits of the exact form factors that have been recently
computed through the quantum affine symmetry of the anisotropic Heisenberg modelXXZ.
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I. INTRODUCTION

Ever since Niemeijer derived an exact expression for the
dynamical correlation function~DCF! at any temperature of
the spin-1/2XY model,1 there has been a considerable
amount of work in trying to extend his result to the more
physically interesting case of the isotropic spin-1/2 Heisen-
berg model~i.e.,XXXmodel!. For more details on the defi-
nitions of the spin chain models see Refs. 2 and 3. However,
so far only approximate, but very accurate results have been
computed. For a comprehensive historic review, the impor-
tance of the DCF, an account of the existing results, and a
list of references on this subject, we recommend Refs. 4–9.
In particular, in Ref. 5 an ansatz for the DCF at zero tem-
perature was proposed based on Niemeijer’s result, and other
approximate numerical and analytical results, but it has never
been established whether this ansatz includes contributions
from just two spinons or more. The spinon picture has been
rigorously studied in the case of the Heisenberg model in
Ref. 10, and is of great theoretical and experimental interest.
Let us just mention that the main stumbling block in trying to
compute the exact DCF for the Heisenberg model is due to
the absence of exact results for the form factors. Unfortu-
nately, so far the powerful method of the Bethe ansatz has
not been able to provide them. The form factors are well
understood now just in two-dimensional quantum field theo-
ries with familiar relativistic dispersion relations,11 but not
yet in lattice models. However, an approach based on the
concept of exact resolution of dynamics through just infinite-
dimensional symmetries, and which is widely used in the
context of string theory and conformal field theory, has been
recently upgraded to the ‘‘massive’’XXZmodel in Refs. 12
and 13. It provides almost all exact physical quantities~static
correlation functions and form factors!. Its only shortcom-
ings are that it is based on a relatively complicated symme-
try, which is the quantum affine algebraUq(sl(2)̂), and that
the physical quantities it leads to are somewhat complicated
to deal with. To be more precise, they typically have a con-
tour multi-integral form. Our main point in this paper is that

all these latter problems disappear in the particular case of
the two-spinon form factors of the Heisenberg model. There-
fore we use them to compute the more interesting quantity of
the exact two-spinon DCF at zero temperature.

Our paper is organized as follows: first we briefly review
the results related to the diagonalization of the anisotropic
XXZ Heisenberg model following Ref. 13. Then we define
the two-spinon DCF in the case ofXXZ in terms of the form
factors of this model. Finally, we take the isotropic limit. As
mentioned earlier, the crucial point is that considerable sim-
plifications take place in this case due to the isotropy of the
Heisenberg model, and thus allow us to derive a simple exact
formula for DCF of a two-spinon. We hope that the exact
results contained in this paper will shed some new light on
the spinon picture from both theoretical and experimental
perspectives.

II. DIAGONALIZATION OF THE ANISOTROPIC
HEISENBERG MODEL

The Hamiltonian of the anisotropic (XXZ) Heisenberg
model is defined by

HXXZ52
1

2 (
n52`

`

~sn
xsn11

x 1sn
ysn11

y 1Dsn
zsn11

z !, ~1!

where D5(q1q21)/2 is the anisotropy parameter. Here
sn
x,y,z are the usual Pauli matrices acting at thenth position

of the formal infinite tensor product

W5•••V^V^V•••, ~2!

where V is the two-dimensional representation of
Uq(sl(2)) quantum group. We consider the model in the
antiferromagnetic regimeD,21, i.e.,21,q,0. Later we
take the isotropic limitq→21 in a special manner. The
main point of Refs. 12 and 13 is that the action ofHXXZ on
W is not well defined due to the appearance of divergences.
However, this model is symmetric under the quantum group
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Uq(sl(2)̂), and therefore the eigenspace is identified with
the following level 0Uq(sl(2)̂) representation:

F5(
i , j

V~L i ! ^V~L j !* , ~3!

whereL i and V(L i); i50,1 are level 1Uq(sl(2)̂)-highest
weights and highest weight representations, respectively.
Roughly speaking,V(L i) is identified with the subspace of
the formal semi-infinite space

X5•••V^V^V, ~4!

consisting of all linear combinations of spin configurations
with fixed boundary conditions such that the eigenvalues of
sn
z are (21)i1n in the limit n→2`. Similarly, its dual rep-

resentationV(L i)* is associated with the right semi-infinite
tensor product of theV’s. The particle picture of this Hamil-
tonian is given in terms of vertex operators which act as
intertwiners of certainUq(sl(2)̂) representations, and which
create the set of eigenstates ~spinons!
$uj1 , . . . ,jn&e1 , . . . ,en ; i

,n>0%. Here,i50,1 fixes the bound-

ary conditions,j j denotes a spectral parameter living on the
unit circle, ande j561 is twice thez component of the spin
of a spinon. The actions onF of HXXZ and the translation
operatorT, which shifts the spin chain by one site, are given
by

Tuj1 , . . . ,jn& i5)
i51

n

t~j i !
21uj1 , . . . ,jn&12 i ,

Tu0& i5u0&12 i , ~5!

HXXZuj1 , . . . ,jn& i5(
i51

n

e~j i !uj1 , . . . ,jn& i ,

where

t~j!5j21
uq4~qj2!

uq4~qj22!
5e2 ip~a!,

p~a!5amS 2Kp a D1p/2, ~6!

e~a!5
12q2

2q
j
d

dj
lnt~j!5

2K

p
sinhS pK8

K DdnS 2Kp a D .
Here,e(a) andp(a) are the energy and the momentum of
the spinon, respectively, am(x) and dn(x) are the usual el-
liptic amplitude and delta functions, with nome2q and
complete elliptic integralsK andK8, and

q52exp~2pK8/K !,

j5 ieia, ~7!

ux~y!5~x;x!`~y;x!`~xy21;x!` ,

~y;x!`5 )
n50

`

~12yxn!.

This means,sx,y,z(t,n) at timet and positionn are related to
sx,y,z(0,0) at time 0 and position 0 through

sx,y,z~ t,n!5exp~ i tHXXZ!T
2nsx,y,z~0,0!Tnexp~2 i tHXXZ!.

~8!

The completeness relation reads13

I5 (
i50,1

(
n>0

(
e1 , . . . ,en561

1

n! R dj1
2p i j1

•••

djn
2p i jn

ujn , . . . ,j1&en , . . . ,e1 ; i i ;e1 , . . . ,en
^j1 , . . . ,jnu. ~9!

III. TWO-SPINON DYNAMICAL CORRELATION FUNCTION OF THE HEISENBERG MODEL

First, we will define the dynamical correlation function we are considering in the case of the anisotropic Heisenberg model,
where the particle picture is well understood and the form factors are known exactly.13 However, let us note that the
expressions of these form factors are very complicated to lead to a closed formula for the DCF in the anisotropic case. But, in
the isotropic limit, i.e.,q→21 one of them simplifies substantially, and using the fact that all the nonvanishing components
of the DCF are equal, we find the same closed formula for all of them in this limit.

Let us recall the definition of one of the components of the DCF in the case of theXXZ model. Up to an overall
normalization factor it is given by

Si ,12~w,k!5E
2`

`

dt(
nPZ

ei ~wt1kn!
i^0us1~ t,n!s2~0,0!u0& i , ~10!

herew andk are the energy and momentum transfer, respectively, andi corresponds to the boundary condition. Later we will
find that the DCF is in fact independent ofi . Using the completeness relation, the two-spinon contribution is given by

S2
i ,12~w,k!5p (

nPZ
(

e1 ,e2
R dj1
2p i j1

R dj2
2p i j2

exp$ in@k1p~j1!1p~j2!#%d@w2e~j1!2e~j2!#

3 i1n^0us1~0,0!uj2 ,j1&e2 ,e1 ; i1n i;e1 ,e2
^j1 ,j2us2~0,0!u0& i . ~11!
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This can be rewritten as

S2
i ,12~w,k!5p (

e1 ,e2
R dj1
2p i j1

R dj2
2p i j2

(
nPZ

exp$2in@k1p~j1!1p~j2!#%d@w2e~j1!

2e~j2!#„i^0us1~0,0!uj2 ,j1&e2 ,e1 ; i i ;e1 ,e2
^j1 ,j2us2~0,0!u0& i

1exp$ i @k1p~j1!1p~j2!#%12 i^0us1~0,0!uj2 ,j1&e2 ,e1 ;12 i i ;e1 ,e2
^j1 ,j2us2~0,0!u0& i…. ~12!

The nonvanishing form factors have been computed in Ref. 13, and satisfy the following relations:

i^0us2~0,0!ujn , . . . ,j1&en , . . . ,e1 ; i
512 i^0us1~0,0!ujn , . . . ,j1&2en , . . . ,2e1 ;12 i

5 i^0us1~0,0!u2qj1
21 , . . . ,2qjn

21&2e1 , . . . ,2en ; i
, ~13!

i ;e1 , . . . ,en
^j1 , . . . ,jnus2~0,0!u0& i5 i^0us2~0,0!u2qj1 , . . . ,2qjn&2e1 , . . . ,en ; i

.

Now the isotropic limitq→21 is performed by first mak-
ing the following redefinitions:

j5 ieeb/ ip, ~14!

q52e2e, e→01,

with b, the appropriate spectral parameter for the Heisenberg
model, being real.

Then, one finds the following exact isotropic limits.13 ~We
do not find the same overall coefficient in this limit as that of
Ref. 13. We are grateful to Karbach and Mu¨ller for their help
in simplifying the overall factor in the first relation. See Ref.
14 for further simplifications.!

u i^0us1~0,0!uj2 ,j1&22; i u2
dj1
2p i j1

dj2
2p i j2

→
A~b12b2!

8p2cosh~b1!cosh~b2!
db1db2 ,

lim@12 i^0us1~0,0!uj2 ,j1&22;12 i #

52 lim@ i^0us1~0,0!uj2 ,j1&22; i #, ~15!

p~j!→p~b!5cot21@sinh~b!#, 2p<p~b!<0,

e~j!→e~b!5
p

cosh~b!
52psin„p~b!…,

where

A~b!5expS 2E
0

`

dt
$cosh~2t !cos~2tb/p!21%exp~ t !

tsinh~2t !cosh~ t ! D . ~16!

Restricting to the first Brillouin zone~i.e., 0<k<2p which is assumed in the sequel!, integrating the continuous and discrete
delta functions, keeping track of the Jacobian factors, the energy-momentum conservation relations, and the isotropic limits of
Eq. ~13!, we find thatS2

i ,12(w,k2p) is independent ofi and simplifies substantially to

S2
i ,12~w,k2p!5

Q„2psin~k/2!2w…Q„w2pusin~k!u…A~ b̄12b̄2!

2A@2psin~k/2!#22w2
, ~17!

whereQ is the Heaviside step function, and for fixedw and
k, (b̄1 ,b̄2) is a solution to

w5e~ b̄1!1e~ b̄2!,

k52p~ b̄1!2p~ b̄2!. ~18!

Note that (b̄2 ,b̄1), (2b̄1 ,2b̄2), and (2b̄2 ,2b̄1) are all
identified with (b̄1 ,b̄2).

Let us now make some comments aboutS2
i ,12(w,k2p)

as given by Eq.~17!. From the isotropy of the Heisenberg

model and the inclusion of both sectorsi50 and i51, the
total two-spinon contribution is obtained through

S2
12~w,k2p!5(

i50

1

S2
i ,12~w,k2p!52S2

i ,12~w,k2p!,

~19!

from which we derive all the nonvanishing components of
the DCF as

S2
mm~w,k2p!52S2

12~w,k2p!, m5x,y,z. ~20!
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Here we have used

s65
sx6 isy

2
. ~21!

Furthermore, from the dispersion relations of two spinons,
w, as a function ofk, lies between two boundaries: the lower
one is given by the famous des Cloizeaux-Pearson dispersion
relation, i.e.,

wl5pusin~k!u, 0<k<2p, ~22!

whereas the upper one is given by the dispersion relation

wu52psin~k/2!, 0<k<2p. ~23!

Note that despite its square root singularity,S2
12(w,k2p)

actually vanishes in the vicinity of the upper boundary.
Moreover, it diverges in the vicinity of the lower boundary.
It would be interesting to compare our results with presently
existing approximate results, and especially the ansatz made
for the two-spinon DCF in Ref. 5. In this regard, let us men-
tion that unlike in the latter reference, the upper cutoff at
w5wu appears naturally in our formula. It would also be

interesting to investigate the order of contribution of more
than two spinons to the DCF, and in particular that of four
spinons. Also of interest is to find to what extent the two-
spinon DCF satisfy the various sum rules which involve the
full DCF.5 More recently, some of these issues have been
treated in Refs. 14–17. In particular, in Ref. 14 the two-
spinon DCF of this manuscript is further simplified, in that, it
is expressed just in terms ofw, wu , andwl . Moreover, in
Ref. 17 an exact integral formula for the DCF ofn spinons is
derived. The extension of this work to the Heisenberg model
with higher spin is certainly desirable. In this case, the form
factors can in principle be computed through the bosoniza-
tion of the vertex operators which is now available.18
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