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Exact two-spinon dynamical correlation function of the one-dimensional Heisenberg model
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We derive the exact contribution of two spinons to the dynamical correlation function of the spin-1/2
Heisenberg model. For this, we use the isotropic limits of the exact form factors that have been recently
computed through the quantum affine symmetry of the anisotropic Heisenberg mXxel
[S0163-18206)51142-3

[. INTRODUCTION all these latter problems disappear in the particular case of
the two-spinon form factors of the Heisenberg model. There-
Ever since Niemeijer derived an exact expression for théore we use them to compute the more interesting quantity of
dynamical correlation functiofDCF) at any temperature of the exact two-spinon DCF at zero temperature.
the spin-1/2 XY m()dell1 there has been a considerable Our paper is organized as follows: first we briefly review
amount of work in trying to extend his result to the morethe results related to the diagonalization of the anisotropic
physically interesting case of the isotropic spin-1/2 HeisenXXZ Heisenberg model following Ref. 13. Then we define
berg modeli.e., XXX mode). For more details on the defi- the two-spinon DCF in the case B{XZ in terms of the form
nitions of the spin chain models see Refs. 2 and 3. Howevefactors of this model. Finally, we take the isotropic limit. As
so far only approximate, but very accurate results have beementioned earlier, the crucial point is that considerable sim-
computed. For a comprehensive historic review, the imporplifications take place in this case due to the isotropy of the
tance of the DCF, an account of the existing results, and &leisenberg model, and thus allow us to derive a simple exact
list of references on this subject, we recommend Refs. 4—gormula for DCF of a two-spinon. We hope that the exact
In particular, in Ref. 5 an ansatz for the DCF at zero temJesults contained in this paper will shed some new light on
perature was proposed based on Niemeijer’s result, and oth#te spinon picture from both theoretical and experimental
approximate numerical and analytical results, but it has neveperspectives.
been established whether this ansatz includes contributions
from just two spinons or more. The spinon picture has been  ||. DIAGONALIZATION OF THE ANISOTROPIC
rigorously studied in the case of the Heisenberg model in HEISENBERG MODEL
Ref. 10, and is of great theoretical and experimental interest.
Let us just mention that the main stumbling block in tryingto ~ The Hamiltonian of the anisotropicX(XZ) Heisenberg
compute the exact DCF for the Heisenberg model is due téhodel is defined by
the absence of exact results for the form factors. Unfortu-
nately, so far the powerful method of the Bethe ansatz has 1 - < x vy ,
not been able to provide them. The form factors are well ~ Hxxz=~ En;x (onopeitonop Aoy, (D)
understood now just in two-dimensional quantum field theo-
ries with familiar relativistic dispersion relatioﬁ’s,but not  where A:(q—}—q*l)/z is the anisotropy parameter. Here
yet in lattice models. However, an approach based on thgXy: are the usual Pauli matrices acting at tita position
concept of exact resolution of dynamics through just infinite-of the formal infinite tensor product
dimensional symmetries, and which is widely used in the
context of string theory and conformal field theory, has been W=...VVQV.--, 2
recently upgraded to the “massiveXXZ model in Refs. 12
and 13. It provides almost all exact physical quantitstatic  where V is the two-dimensional representation of
correlation functions and form factordts only shortcom-  Ug(sl(2)) quantum group. We consider the model in the
ings are that it is based on a relatively complicated symmeantiferromagnetic regimA<—1, i.e.,—1<q<0. Later we
try, which is the quantum affine algebcbq(s/I(\Z)), and that take the isotropic limitg——1 in a special manner. The
the physical quantities it leads to are somewhat complicatethain point of Refs. 12 and 13 is that the actionHbfy, on
to deal with. To be more precise, they typically have a conW is not well defined due to the appearance of divergences.
tour multi-integral form. Our main point in this paper is that However, this model is symmetric under the quantum group
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U4(S1(2)), and therefore the eigenspace is identified withwhere
the following level 0U4(S1(2)) representation:

o= )i
F=2 VA)OV(A)*, 3 Oq2(A€?)
. Y= -hi 2K
ngﬁté\l a?nrlid \r:l(gﬁgslt v?éilg k?trerelf)\;ggelrﬂggisjr@) rgtsgph:csgvely. p(a)= an{ ?a) +ml2, (6)
Roughly speakingy(A;) is identified with the subspace of
the formal semi-infinite space 1-q% d 2K (7K’ oK
X=-.-VaVvaV, 4) e(“):ng_g'”“g):?S'”r(T)d”(?“>'

consisting of all linear combinations of spin configurationspygre e(a) andp(a) are the energy and the momentum of
with fixed boundary conditions such that the eigenvalues of,o s’pinon respectively, am) and dn) are the usual el-

oq are (—1)'""in the limit n— —co. Similarly, its dual rep-  |iptic amplitude and delta functions, with nomegq and
resentationV(A;)* is associated with the right semi-infinite complete elliptic integral& andK’, and

tensor product of th¥'’s. The particle picture of this Hamil-
tonian is given in terms of vertex operators which act as
intertwiners of certaiqu(s/I@)) representations, and which
create the set of eigenstates (spinons

g=—exp— 7K'/K),

{|€&1, - n)e,. ... e, N=0}. Here,i=0,1 fixes the bound- é=ie', 7
ary conditions ¢; denotes a spectral parameter living on the .
unit circle, ande; = + 1 is twice thez component of the spin 0x(Y) = (X X)o(Yi X) e (XY™ 71 X) e
of a spinon. The actions ot of Hyx> and the translation
operatorT, which shifts the spin chain by one site, are given *
by (0= 1 (1=yx).
n
T|&, .. ,§n>i:H (&) Héw o EDs This meansg™Y%(t,n) at timet and positiom are related to

=1 a*¥#(0,0) at time 0 and position 0 through

T10%=10)2-+- B (1,0 = explitH ) T "0 2(0,0 Texpl — itH ).
n )
Huoalén - ’§n>i:i=21 S(E)IEr, - i The completeness relation redtls
|
1 [ d§ dé,
ﬂ:|=01n>o - en_ﬂmfﬁm“'mwn, N PSR TPORP ¢ PP on P 9

IIl. TWO-SPINON DYNAMICAL CORRELATION FUNCTION OF THE HEISENBERG MODEL

First, we will define the dynamical correlation function we are considering in the case of the anisotropic Heisenberg model,
where the particle picture is well understood and the form factors are known eXatttywever, let us note that the
expressions of these form factors are very complicated to lead to a closed formula for the DCF in the anisotropic case. But, in
the isotropic limit, i.e.g— —1 one of them simplifies substantially, and using the fact that all the nonvanishing components
of the DCF are equal, we find the same closed formula for all of them in this limit.

Let us recall the definition of one of the components of the DCF in the case oKXi& model. Up to an overall
normalization factor it is given by

S (wk)= fidtnzz e Wk (0o (1,n) 0 (0,0)|0);, (10

herew andk are the energy and momentum transfer, respectivelyj aotresponds to the boundary condition. Later we will
find that the DCF is in fact independent iofUsing the completeness relation, the two-spinon contribution is given by

‘ d d
ST wk=72 X Zjlfl 35 zﬂfzzexmn[k+p(§1)+p(fz)]}é[w_e(gl)_e(fz)]

neZ €y,€p

X i+n<o|0-+(0!0)|§21§1>62,51;i+n i;61,62<§ll§2|0-7(0’o)|0>i . (11)
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This can be rewritten as

>, expl2in[k+p(£&)+p(£) ] olw—e(éy)

27T| 52 neZ

ST wk)=m >

€1,6
—e(&2) ](<0| (0,0 |§2 §l>52 €qii iieq, 52<§1 §2|U (0, O)|O>I
+expli[k+p(£)+p(€2)111-i(0[0 7 (0,0[€2,€1) e, ey 111 i1ey.e,{61. 620 (0,0[0))). 12

The nonvanishing form factors have been computed in Ref. 13, and satisfy the following relations:

i<0|0-_(0!0)|§n1 s l§1>en ..... el;i:17i<0|a-+(olo)|§n! e !§1>7en ..... *61;1*i

dé; dé
2mié; §

=(0[a(0,0]—aérty .. —AE D) ey i (13)
ieq, ... ,en<§lv v !§n|0-7(0!0)|0>i:i<o|0-7(0!0)|_qgli v l_q§n>—el ..... €l
|
Now the isotropic limitg— — 1 is performed by first mak- . , d& dé
ing the following redefinitions: [i{0la™(0,0[&,,&1) i ImiE, 2mE,
E=ie ™ (14) A(B1~B2)
~8m2cosh B,)cosh ) dB1dp2,
— A€ +
a=-e % =07, ML 1(0]o™ (0,0 &2,&1)~—11]
with 3, the appropriate spectral parameter for the Heisenberg =—lim[(0]o " (0,0)|£2,&1) - _.i], (15
model, being real. e _ _
Then, one finds the following exact isotropic limits(\we p(§)—p(B)=cot [sinh(B)], —wm<p(B)=
do not find the same overall coefficient in this limit as that of
Ref. 13. We are grateful to Karbach and u for their help e(é)—e(B)= =—masin(p(B)),
in simplifying the overall factor in the first relation. See Ref. coshB)
14 for further simplificationg. where

AB) = ex;{ f {cosh2t)cog2tB/m) — 1}exp(t). 16

tsinh(2t)cosht)

Restricting to the first Brillouin zoné.e., 0<k<27 which is assumed in the sequehtegrating the continuous and discrete

delta functions, keeping track of the Jacobian factors, the energy-momentum conservation relations, and the isotropic limits of

Eq. (13), we find thatS; "~ (w,k— ) is independent of and simplifies substantially to

@ (2msin(k/2) —w)® (w— wlsm(k)l)A(/al ﬂ2>
2 J[27sin(k/2)]?—w

St (wk—) = 17)

where@ is the Heaviside step function, and for fixadand  model and the inclusion of both sectars0 andi=1, the
k, (B1,8,) is a solution to total two-spinon contribution is obtained through

o — JE— 1
w=e(B1)te(B), S;i(W,k— 77):_20 Si2‘+7(W,k_ 77)225i2’+7(W,k_ ),

k=—P(B1)~P(Bo). (18) (19
Note that (85,81), (— B1,— ), and (- B,,— ;) are all  from which we derive all the nonvanishing components of
identified with (81, 8,). the DCF as

Let us now make some comments abSQf"(w,k— ) .
as given by Eq(17). From the isotropy of the Heisenberg SH(w k=m)=2S;, " (w,k—m), wu=xy,z. (20)
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Here we have used interesting to investigate the order of contribution of more
iy than two spinons to the DCF, and in particular that of four

o= =lo 1) spinons. Also of interest is to find to what extent the two-

2 spinon DCF satisfy the various sum rules which involve the

full DCF.®> More recently, some of these issues have been
treated in Refs. 14-17. In particular, in Ref. 14 the two-
inon DCF of this manuscript is further simplified, in that, it
expressed just in terms @f, w,, andw,. Moreover, in
Ref. 17 an exact integral formula for the DCFropinons is
w, = mlsink)|, O<k=2m, (22)  derived. The extension of this work to the Heisenberg model
o ) ) ~with higher spin is certainly desirable. In this case, the form
whereas the upper one is given by the dispersion relation factors can in principle be computed through the bosoniza-
wy=2msin(ki2), 0<k=2. 293 tion of the vertex operators which is now availabfe.

Note that de_splte |t_s square _ro_ot singulari8j, ~ (w,k— ) ACKNOWLEGMENTS
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Furthermore, from the dispersion relations of two spinons
w, as a function ok, lies between two boundaries: the lower s
one is given by the famous des Cloizeaux-Pearson dispersiqé)
relation, i.e.,
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