PHYSICAL REVIEW B VOLUME 54, NUMBER 18 1 NOVEMBER 1996-II

Quasiparticle energy dispersion in doped two-dimensional quantum antiferromagnets
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The quasiparticle dispersion in the one-hblg -t”-J model is studied. Both finite-size diagonalization and
the self-consistent Born-approximation calculations have been performed and compared. The quasiparticle
band structures in the hole- and electron-doped Higluprates are qualitatively different. In the hole-doped
compounds, the band maxima are located-at/2,+ w/2), while in the electron-doped compounds the band
maxima are located ats(,0) and its equivalent points. The angle-resolved photoemission data for the quasi-
particle dispersion of SEuO,Cl, can be quantitatively reproduced using the one-batidt”-J model with
the three-site hopping termiS0163-18206)50842-9

The energy dispersion of hole quasiparticles in the normabrbitals® the t’ term is the hopping between two nearest
states of two-dimensional CuO planes is of fundamental inneighboring oxygens, and théterm is the hopping between
terest for understanding the microscropic mechanism ofwo oxygens on the two sides of Citt”| is generally smaller
high-temperature superconductivity. Due to the strong Couthan, but certainly of the same order of magnitudetajs®
lomb repulsion between electrons, quasiparticles in fligh- The three-site hopping term is always present if the effective
cuprates behave very differently from what was predicted byne-band model is derived from the one-band Hubbard
one-electron band calculations. Recently Waedlsal! re-  model or the multiband Hubbard mod&IBoth thet” and
ported an ARPES measurement on an insulating layered coghree-site hopping terms involve hoppings on the same sub-
per oxide S§CuO,Cl,. This is by far the most direct mea- lattices and are affected very weakly by antiferromagnetic
surement of the dispersion of &ingle hole in an  correlations. They may therefore have substantial contribu-
antiferromagnetic background since,GuO,Cl, is difficult  tions to the quasiparticle dispersion. Other long-range hop-
to dope. It provides a direct test for the model Hamiltoniansping terms involve the wave function overlap of O orbitals
which are proposed for high-temperature superconductorsiot within the same unit cell and are generally small and
Wells et al. found that the hole bandwidth and the dispersionnegligible.
along the diagonal direction from (0,0) tar() in the Bril- In this paper we report our theoretical results for the en-
louin zone agree well with the calculations based on theergy dispersion in the one-band model with one hole in two
t-J model. However, near#,0) the data differ significantly dimensions. Both the Lanczos diagonalization and the SCBA
from the prediction of thé-J model and the dispersion from calculations are performed and compared. We find that the
(7,0) to (Ogr) is much greater than that in theJ model. experimental data for EuO,Cl, can be quantitatively fitted

Recently Nazarenket al? calculated the hole dispersion by the t-t’-t”-J model with the three-site hopping term
in the one-band-t’-J model under the self-consistent Born within the experimental error.
approximation(SCBA). They found that the presence of the Let us first consider thd-t’-t"-J model without the
t’ term can enlarge the energy dispersion around)Obut  three-site hopping term. The model Hamiltonian is defined in
the overall band structure is inconsistent with the experimenthe Hilbert subspace without double occupied sites by
tal one. Several groups have also calculated the energy dis-
persions of the hole in the three-band model based on either T "
variational wave functiorfs’ or SCBA* and found that the H= _% (tﬁcioci+50+H'C')+3<iEj> (S-S —zniny),
results reproduce very well the experimental data. These (1)
studies seem to imply that the one-band model is inferior to
the multiband model even for studying low-energy propertiesvhere( ) refers to the nearest neighbors, anert for the
of high-T,, cuprates This is actually not true. To understand nearest neighbor hoppingstx,y), t’ for the next nearest
qualitatively the physics of a hole propagating in an antifer-neighbor hopping §=x=*y), andt” for the next-next near-
romagnetic background, theJ or t-t’-J model might be est neighbor hoppingd= 2%,2y). The rest of the notation is
sufficient. However, to fit quantitatively the result of a one- standard. For highi-, materials, botit andJ vary in a cer-
band model with the experimental data, the one-band modéain energy scalei~0.3-0.4 eV andl~0.1-0.2 eV, de-
used should include all the terms which are deduced from thpending on compounds. So far, accurate determinations for
multiband Hubbard model by eliminating high-lying orbitals. t andJ from experiment are still not available. For concrete-
At least two of those terms which are ignored in the previousiess in discussion, we take0.35 eV and]=0.15 eV. The
study should be considered, one is theerm (i.e., the next- quasiparticle bandwidth evaluated from this set of values of
next neighbor hopping tenrand the other is the three-site t and J is roughly the same as that for ,8uO,Cl, when
hopping term. Both th¢’ term andt” term originated from t’=t"=0. In our calculation, we také¢’ andt” as free pa-
the effective hoppingor wave function overlapbetween rameters, but restrigt”|<|t’|<J. If the Hamiltonian(1) is
two O 2p orbitals besides a Cu via the Cud3and 4  derived from the multiband Hubbard model including the Cu
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3d,2_,2 and 4 and Op, andp, orbitals, thert’ is negative There are several approximations involved in the SCBA
(positive for hole- (electron} doped materials and has an  calculation: the linear spin-wave expansion and the neglect
opposite sign ta’.® of crossing diagrams. These approximations ignore vertex

For a one-hole system, we can do a Galilean transformacorrections and the hole distortion to the spin background
tion to shift the origin of the frame of coordinates to the and do not guarantee the hard-core nature of the slave fermi-
position of hole’ If the hole momentum i%, following the  ons and the Schwinger bosons. In the absence of’tiamd
derivation of Ref. 9 it can then be shown that the Hamil-t” terms, the contribution from the two-loop crossing dia-
tonian (1) is equivalent to an effective Hamiltonian gram to vertices is exactly zetd Thus the vertex correction
in the SCBA calculation for thé-J model is small. How-
ever, in the presence of these terms, the two-loop crossing
diagrams are generally nonzero.

For thet-J model, the band structure of holgaq;ﬁasiparti—

1 cles has been extensively studied by many groups,and
+‘]<izj> (S-§=amn), @ the agreement between the finite-size calculafiéhand the
+ ) SCBA calculatio®? is remarkably good. The quasiparticle
where0=(0, 0) andP=2,kcy,Cy, is the total momentum gispersion in this model shows many interesting features
operator. In our exact diagonalization study, we solve thisyhich are completely different from that in the ordinary
effective Hamiltonian on finite-size lattices with periodic metal. Firstly, the band maximum locates at
boundary conditionPBC), but allowk to change continu-  (+ /2 + 7/2); secondly, the effective mass is very aniso-
0u§|y(i.e., k can take all values allowed in an infinite Squaretropic' it has a |arger value a|ong the zone diagona| and a
lattice). smaller value along the direction perpendicular; and thirdly,

For each giverk, we define the difference between the the pandwidth scales with a certain power of the exchange
lowest energy of the one-hole Hamiltonié?) with total spin energyd (~J%3whent<J) rather than the hopping constant
1/2, En-1(K), and the ground state energy of the system.
without holes Ey, as the coherent hole quasiparticle energy |n the previous finite-size calculations, the Hamiltonian
E(k)=En—En-1(k). The quasiparticle energi(k) such (1) with PBC were generally used. As the numbekgfoints
defined corresponds directly to what was measured in experglowed in a finite lattice with PBC is limited, calculations on
ments, since the ground state otGuO,Cl; is a spin singlet  |arge lattices are generally required in order to obtain a com-
and the state with one electron removed from the groungjete picture of the quasiparticle band structure. However, if
state by high-energy photons has spin 1/2. On finite-size lathe Hamiltonian(2) with PBC is diagonalized and the hole
tices, some higher spin states may have lower energies th@lomentumk in Eq. (2) is taken as a free parameféhis is
En-1(k) for certain values ok, soEy_(k) may not always equivalent to diagonalizing the Hamiltonigh) with twisted
be the minimum energy off(k). However, in thermody- houndary conditions as shown in Refl, %ve find that even
namic limit we believe thaEy - 1(k) will either be the mini-  on a relatively small lattice, such &= 20, a comprehensive
mum of H,(K) or differ infinitesimally small from the mini-  picture of the quasiparticle band structure can be obtained.
mum energy oHp(Kk) for all k. Thus alternativelfe(k) can In Fig. 1(a), our finite-size diagonalization results for
also be defined as the difference between the lowest eigg (k) on N=16 and 20 are shown and compared with the
neigen ofHy(k) and the ground state energy without holes.SCBA ones for the-J model. The agreement between the
In thermodynamic limit the above two definitions should finite lattice calculation and the SCBA calculation in the
give the same result fdg(k). whole Brillouin zone is good, in agreement with the previous

Under the SCBA”**the quasiparticle energy is given by calculationst®14The finite-size effect, as revealed by the dif-
the position of coherence peak at the bottom of the spectrgkrence between thd= 16 andN= 20 results and the differ-
function A(k,w) = —Im G(k,w)/m, and the single particle ence between the finite lattice result and that of SCBA is
Green's function G(k,w) is determined by the self- small. On finite lattices, the band maxima locate not exactly

Hpy (k)= — 52 (tze” (P09l cs +H.c)

consistent equation: at (£w/2,=x/2), but they tend to move towards these
points asN increases.
G(k,w)= 1 The presence of the next nearest neighbor and the next-
' ) ' next neighbor hopping terms changes largely the energy dis-
“’_sk_(llN)% I“(k,)G(k—q,0— Q) persion of quasiholes. Let us consider the contribution of the

3) t’ term first. Whent’ <0, as shown in (b), the energy dis-
persion along the line #£,0)—(0,7) is enlarged. Around

where g,=4t'cokcok +2t"(cosX,+cosk,) and I'(k,q)  (4r,0), thedispersion is relatively small, bi(k) falls much
=4(y—_qUqT ykvg) With  Qy=4] 1—)/%. u=[(1  below the band maximum. These features are qualitatively
—y2) "2t 1]1/2/\/£21, vi=—sgn(y)[(1— y§) "Y¥?—1]1¥2  consistent with the experimental results for,QuO,Cl, .
/\2, and k= (cok,+cok)/2. From Eq.(3), it is straight-  However, the overall dispersion &{(k) [except at the vicin-
forward to show thaG(k,w) (and therefore the quasiparticle ity of (, )] is largely reduced by th&' term. If fitting the
dispersion is symmetric under the reflection about the mag-experimental data of EuO,Cl, using thet-t'-J model, we
netic Brillouin zone boundaryi.e., ky+k,=7) sinceey is  find that a rather largd value, about twice as large as what
symmetric under this transformation. This symmetry ishas been found in experiments, is needed.
purely due to the approximations made in this approach; the Whent’'>0, as shown in Fig. (t), E(k) behaves quite
original Hamiltonian(1) does not have this symmetry. differently from the casd’<0: (1) In this case the band
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E(k) — E(7/2,7/2) (unit: eV) in SL,CuG,Cl, (circle) with the cor-
05 | | responding results for thiet’-t"-J model obtained from the exact
diagonalization withN=20 (solid line) and the SCBA approach
04 | . (dashed ling t=0.35 eV, t'=-0.12 eV, t"=0.08 eV, and
03 | | J=0.15 eV.
02 1 netic correlations in the one band-mod&iSo in the pres-
01 - _ ence of a negativeé’ term, the distortion of a hole to the
Lo L guantum antiferromagnetic Mk state is enlarged. In this
00 (tm @O (00) (0  (Om case to obtain a more quantitative description for the quasi-
k particle dispersion, exact diagonalizations on larger lattices
are needed.

FIG. 1. Comparison of the quasiparticle dispersion relation . Lo .
E(K) (unit: V) obtained from the SCBA method on 224 lattice The above discussion indicates that the bandwidth of the

, . . .
(solid line) with that obtained from the finite-size diagonalization t-t’-J model is too S.m‘?‘” compare_d with the experlme_ntal
method onN=16 (triangle and N=20 (circle) lattices for the one for SECuOCl W'th'n thg physically _reasonable. r(_aglon
t-t/-J model with t=0.35 eV, J=0.15 eV and(@ t'=0, (b) of parameters, consistent with the previous sttidyfinite

t'=-0.08 eV, andc) t' =0.08 eV. t” term, however, can change this situation significantly. The
contribution of thet” term toE(K) is similar to a—t’ term,
maxima locate at4,0) and its equivalent points, consistent for example for the-t"-J model ¢’ =0) the band maximum
with other theoretical results;(2) the bandwidth is enlarged locates at /2, 7/2) if t”>0 or (w,0) if t”<0, but the over-
compared with theé-J model ;(3) E(k) becomes more sym- all energy dispersion is always enlarged by théerm.
metric about the magnetic Brillouin zone boundary and In Fig. 2 the quasiparticle dispersions for the’-t"-J
shows a large dispersion along the liner,¢r)—(7,0) model are shown and compared with the experimental data
—(0,0; (4) The agreement between the SCBA and the finitefor S,L,CuO,Cl,. Along two diagonal lines, (0,6) (7, )
size calculations is fairly good and the finite-size effect isand (7,0)—(0,7), the finite-size effect is small and the
even smaller than that for theJ model. However, at' gets  agreement between the experimental data and our calculation
larger, there is no well-defined coherent peak at the bottoris very good. Compared with Fig.(d), we find that the
of a quasiparticle spectrum whéh is in the vicinity of  bandwidth is largely enhanced by even a sntéllterm.
(0,0) in the SCBA. So far no ARPES data are available forAlong the line () —(7,0)—(0,0), the energy dispersion
electron-doped cuprates for comparison. If we believe thabtbtained from both the exact diagonalization and SCBA cal-
the asymmetry between the electron and hole-doped higleulations is larger than the experimental one, and the agree-
T. materials is mainly due to the next nearest neighbor hopment between the exact diagonalization and the SCBA re-
ping term, then the above features Bfk) should in prin-  sults along this line is also not as good as along two diagonal
ciple be observable in the ARPES spectrum in electronlines. A subpeak appears in the curve of the exact diagonal-
doped materials. ization result on the line#,0)—(0,0). This is purely due to
For thet-t'-J model with a negativé’ term, the overall the finite-size effect.
agreement between the finite-size calculation and the SCBA Now let us consider the three-site hopping term. The
calculation is not as good as for the=0 cases. This dis- Hamiltonian for the three-site hopping term is giver! "By’
agreement is probably due to the linear spin-wave approxi-
mation in the SCBA approach which ignores the influence of
holes to the quantum antiferromagneticelstate. A positive J

= e cof co—n—cf
(negative t’' term can enhancéeduce the antiferromag- Ha-site 4y Siro (C/5€isCjsChka— NigCisCko).  (4)
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This term describes an effective hopping of a hole to one of

its next or next-next neighbor sites by exchanging spins with
another hole on its nearest neighbor site. From the calcula- 0
tion we find that this term has a very weak effect on the
quasiparticle dispersion along two diagonal lines. However,
it has a relatively larger effect oB(k) whenk varies along
(7, 7)—(7,0)—(0,0). It suppresses the dispersionkiik)

on (m,m)—(7,0)—(0,0) and therefore improves the agree-
ment between the theoretical result and the experimental®
data. Figure 3 compares the energy dispersion of the &
t-t’-t"-J model with the three-site term onh=20 lattice

with that of SECuG,Cl, . It is easy to see that the one-band
t-t'-t"-J model with the three-site hopping term gives a 04 L
good account for the quasiparticle dispersion in
SrL,CuO,Cl, . This result is consistent with the previous stud-

(T/2, 1/2)
=]
o

(Oin)

ies for the quasiparticle dispersion based upon the multiband 0,0 (mm)y @O  (0,0) (m0)

Hubbard modef=* It implies that the multiband Hubbard k

model is indeed equivalent to a one-band model in describ-

ing low-energy excitations of higfiz cuprates. FIG. 3. Comparison between the quasiparticle energy

In conclusion, we have studied the energy dispersion of (k) —E(7/2,7/2) (unit: eV) of thet-t'-t"-J model with the three-
hole quasiparticles in an antiferromagnetically correlatecfi® hopping term on aN=20 lattice (curve and that of
background using the exact diagonalization and the SCBA2CUOCl. 1=0.35 eV, t'=-012 eV, t"=0.08 eV, and
methods. In the exact diagonalization study, we first derive) = 0-15 €V
an effective Hamiltonian for the one-hoteJ model using  nalization results agree well with the SCBA ones, especially
the Galilean transformation for each given hole momentunvhent’=0. For hole-doped higfi- compounds, the band
k (which can take all allowed values in an infinite latlice maxima locate at £ 7/2,=/2) in thermodynamic limit.
and then diagonalize this effective Hamiltonian on finite lat-However, for electron-doped compounds, the band maxima
tices with PBC. As there is no limitation fd¢ values, this locate at ¢r,0) and its equivalent points. The experimental
allows us to have a comprehensive study for the band strudata for SygCuO,Cl, can be quantitatively understood from
ture of quasiparticles with the finite-size diagonalizationthe one band-t’-t"-J model with the three-site hopping
even on aN=20 lattice. We find that the finite-size diago- term.
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