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The quasiparticle dispersion in the one-holet-t8-t9-J model is studied. Both finite-size diagonalization and
the self-consistent Born-approximation calculations have been performed and compared. The quasiparticle
band structures in the hole- and electron-doped high-Tc cuprates are qualitatively different. In the hole-doped
compounds, the band maxima are located at~6p/2,6p/2!, while in the electron-doped compounds the band
maxima are located at (p,0) and its equivalent points. The angle-resolved photoemission data for the quasi-
particle dispersion of Sr2CuO2Cl2 can be quantitatively reproduced using the one-bandt-t8-t9-J model with
the three-site hopping term.@S0163-1829~96!50842-8#

The energy dispersion of hole quasiparticles in the normal
states of two-dimensional CuO planes is of fundamental in-
terest for understanding the microscropic mechanism of
high-temperature superconductivity. Due to the strong Cou-
lomb repulsion between electrons, quasiparticles in high-Tc
cuprates behave very differently from what was predicted by
one-electron band calculations. Recently Wellset al.1 re-
ported an ARPES measurement on an insulating layered cop-
per oxide Sr2CuO2Cl2. This is by far the most direct mea-
surement of the dispersion of asingle hole in an
antiferromagnetic background since Sr2CuO2Cl2 is difficult
to dope. It provides a direct test for the model Hamiltonians
which are proposed for high-temperature superconductors.
Wellset al. found that the hole bandwidth and the dispersion
along the diagonal direction from (0,0) to (p,p) in the Bril-
louin zone agree well with the calculations based on the
t-J model. However, near (p,0) the data differ significantly
from the prediction of thet-J model and the dispersion from
(p,0) to (0,p) is much greater than that in thet-J model.

Recently Nazarenkoet al.2 calculated the hole dispersion
in the one-bandt-t8-J model under the self-consistent Born
approximation~SCBA!. They found that the presence of the
t8 term can enlarge the energy dispersion around (0,p), but
the overall band structure is inconsistent with the experimen-
tal one. Several groups have also calculated the energy dis-
persions of the hole in the three-band model based on either
variational wave functions2,3 or SCBA4 and found that the
results reproduce very well the experimental data. These
studies seem to imply that the one-band model is inferior to
the multiband model even for studying low-energy properties
of high-Tc cuprates.

3 This is actually not true. To understand
qualitatively the physics of a hole propagating in an antifer-
romagnetic background, thet-J or t-t8-J model might be
sufficient. However, to fit quantitatively the result of a one-
band model with the experimental data, the one-band model
used should include all the terms which are deduced from the
multiband Hubbard model by eliminating high-lying orbitals.
At least two of those terms which are ignored in the previous
study should be considered, one is thet9 term ~i.e., the next-
next neighbor hopping term! and the other is the three-site
hopping term. Both thet8 term andt9 term originated from
the effective hopping~or wave function overlap! between
two O 2p orbitals besides a Cu via the Cu 3d and 4s

orbitals;5 the t8 term is the hopping between two nearest
neighboring oxygens, and thet9 term is the hopping between
two oxygens on the two sides of Cu.ut9u is generally smaller
than, but certainly of the same order of magnitude asut8u.6

The three-site hopping term is always present if the effective
one-band model is derived from the one-band Hubbard
model7 or the multiband Hubbard model.8 Both the t9 and
three-site hopping terms involve hoppings on the same sub-
lattices and are affected very weakly by antiferromagnetic
correlations. They may therefore have substantial contribu-
tions to the quasiparticle dispersion. Other long-range hop-
ping terms involve the wave function overlap of O orbitals
not within the same unit cell and are generally small and
negligible.

In this paper we report our theoretical results for the en-
ergy dispersion in the one-band model with one hole in two
dimensions. Both the Lanczos diagonalization and the SCBA
calculations are performed and compared. We find that the
experimental data for Sr2CuO2Cl2 can be quantitatively fitted
by the t-t8-t9-J model with the three-site hopping term
within the experimental error.

Let us first consider thet-t8-t9-J model without the
three-site hopping term. The model Hamiltonian is defined in
the Hilbert subspace without double occupied sites by

H52(
ids

~ tdcis
† ci1ds1H.c.!1J(̂
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~Si•Sj2
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where^ & refers to the nearest neighbors, andtd5t for the
nearest neighbor hopping (d5 x̂,ŷ), t8 for the next nearest
neighbor hopping (d5 x̂6 ŷ), and t9 for the next-next near-
est neighbor hopping (d52x̂,2ŷ). The rest of the notation is
standard. For high-Tc materials, botht andJ vary in a cer-
tain energy scale,t'0.3–0.4 eV andJ'0.1–0.2 eV, de-
pending on compounds. So far, accurate determinations for
t andJ from experiment are still not available. For concrete-
ness in discussion, we taket50.35 eV andJ50.15 eV. The
quasiparticle bandwidth evaluated from this set of values of
t and J is roughly the same as that for Sr2CuO2Cl2 when
t85t950. In our calculation, we taket8 and t9 as free pa-
rameters, but restrictut9u,ut8u,J. If the Hamiltonian~1! is
derived from the multiband Hubbard model including the Cu
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3dx22y2 and 4s and Opx andpy orbitals, thent8 is negative
~positive! for hole- ~electron-! doped materials andt9 has an
opposite sign tot8.5

For a one-hole system, we can do a Galilean transforma-
tion to shift the origin of the frame of coordinates to the
position of hole.9 If the hole momentum isk, following the
derivation of Ref. 9 it can then be shown that the Hamil-
tonian ~1! is equivalent to an effective Hamiltonian

Hh~k!52(
ds

~ tde
2 i ~P2k!dc0s

† cds1H.c.!

1J(̂
i j &

~Si•Sj2
1
4 ninj !, ~2!

where05(0, 0) andP5(kskcks
† cks is the total momentum

operator. In our exact diagonalization study, we solve this
effective Hamiltonian on finite-size lattices with periodic
boundary condition~PBC!, but allow k to change continu-
ously ~i.e.,k can take all values allowed in an infinite square
lattice!.

For each givenk, we define the difference between the
lowest energy of the one-hole Hamiltonian~2! with total spin
1/2, EN21(k), and the ground state energy of the system
without holes,EN , as the coherent hole quasiparticle energy
E(k)5EN2EN21(k). The quasiparticle energyE(k) such
defined corresponds directly to what was measured in experi-
ments, since the ground state of Sr2CuO2Cl2 is a spin singlet
and the state with one electron removed from the ground
state by high-energy photons has spin 1/2. On finite-size lat-
tices, some higher spin states may have lower energies than
EN21(k) for certain values ofk, soEN21(k) may not always
be the minimum energy ofHh(k). However, in thermody-
namic limit we believe thatEN21(k) will either be the mini-
mum ofHh(k) or differ infinitesimally small from the mini-
mum energy ofHh(k) for all k. Thus alternativelyE(k) can
also be defined as the difference between the lowest eige-
neigen ofHh(k) and the ground state energy without holes.
In thermodynamic limit the above two definitions should
give the same result forE(k).

Under the SCBA,10,11 the quasiparticle energy is given by
the position of coherence peak at the bottom of the spectral
function A(k,v)52Im G(k,v)/p, and the single particle
Green’s function G(k,v) is determined by the self-
consistent equation:

G~k,v!5
1

v2«k2~1/N!(
q

G2~k,q!G~k2q,v2Vq!

,

~3!

where «k54t8coskxcosky12t9(cos2kx1cos2ky) and G(k,q)
54t(gk2quq1gkvq) with Vq54JA12gq, uk5@(1
2gk

2)21/211#1/2/A2, vk52sgn(gk)@(12gk
2)21/221#1/2

/A2, andgk5(coskx1cosky)/2. From Eq.~3!, it is straight-
forward to show thatG(k,v) ~and therefore the quasiparticle
dispersion! is symmetric under the reflection about the mag-
netic Brillouin zone boundary~i.e., kx1ky5p) since«k is
symmetric under this transformation. This symmetry is
purely due to the approximations made in this approach; the
original Hamiltonian~1! does not have this symmetry.

There are several approximations involved in the SCBA
calculation: the linear spin-wave expansion and the neglect
of crossing diagrams. These approximations ignore vertex
corrections and the hole distortion to the spin background
and do not guarantee the hard-core nature of the slave fermi-
ons and the Schwinger bosons. In the absence of thet8 and
t9 terms, the contribution from the two-loop crossing dia-
gram to vertices is exactly zero.12 Thus the vertex correction
in the SCBA calculation for thet-J model is small. How-
ever, in the presence of these terms, the two-loop crossing
diagrams are generally nonzero.

For thet-J model, the band structure of hole quasiparti-
cles has been extensively studied by many groups,11–14 and
the agreement between the finite-size calculation13,14and the
SCBA calculation12 is remarkably good. The quasiparticle
dispersion in this model shows many interesting features
which are completely different from that in the ordinary
metal. Firstly, the band maximum locates at
(6p/2,6p/2); secondly, the effective mass is very aniso-
tropic, it has a larger value along the zone diagonal and a
smaller value along the direction perpendicular; and thirdly,
the bandwidth scales with a certain power of the exchange
energyJ (;J2/3 whent!J) rather than the hopping constant
t.

In the previous finite-size calculations, the Hamiltonian
~1! with PBC were generally used. As the number ofk points
allowed in a finite lattice with PBC is limited, calculations on
large lattices are generally required in order to obtain a com-
plete picture of the quasiparticle band structure. However, if
the Hamiltonian~2! with PBC is diagonalized and the hole
momentumk in Eq. ~2! is taken as a free parameter@this is
equivalent to diagonalizing the Hamiltonian~1! with twisted
boundary conditions as shown in Ref. 9#, we find that even
on a relatively small lattice, such asN520, a comprehensive
picture of the quasiparticle band structure can be obtained.

In Fig. 1~a!, our finite-size diagonalization results for
E(k) on N516 and 20 are shown and compared with the
SCBA ones for thet-J model. The agreement between the
finite lattice calculation and the SCBA calculation in the
whole Brillouin zone is good, in agreement with the previous
calculations.13,14The finite-size effect, as revealed by the dif-
ference between theN516 andN520 results and the differ-
ence between the finite lattice result and that of SCBA is
small. On finite lattices, the band maxima locate not exactly
at (6p/2,6p/2), but they tend to move towards these
points asN increases.9

The presence of the next nearest neighbor and the next-
next neighbor hopping terms changes largely the energy dis-
persion of quasiholes. Let us consider the contribution of the
t8 term first. Whent8,0, as shown in 1~b!, the energy dis-
persion along the line (p,0)2(0,p) is enlarged. Around
(p,0), thedispersion is relatively small, butE(k) falls much
below the band maximum. These features are qualitatively
consistent with the experimental results for Sr2CuO2Cl2 .

1

However, the overall dispersion ofE(k) @except at the vicin-
ity of (p,p)] is largely reduced by thet8 term. If fitting the
experimental data of Sr2CuO2Cl2 using thet-t8-J model, we
find that a rather largeJ value, about twice as large as what
has been found in experiments, is needed.

When t8.0, as shown in Fig. 1~c!, E(k) behaves quite
differently from the caset8,0: ~1! In this case the band
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maxima locate at (p,0) and its equivalent points, consistent
with other theoretical results;15 ~2! the bandwidth is enlarged
compared with thet-J model ;~3! E(k) becomes more sym-
metric about the magnetic Brillouin zone boundary and
shows a large dispersion along the line (p,p)2(p,0)
2~0,0!; ~4! The agreement between the SCBA and the finite-
size calculations is fairly good and the finite-size effect is
even smaller than that for thet-J model. However, ast8 gets
larger, there is no well-defined coherent peak at the bottom
of a quasiparticle spectrum whenk is in the vicinity of
(0,0) in the SCBA. So far no ARPES data are available for
electron-doped cuprates for comparison. If we believe that
the asymmetry between the electron and hole-doped high-
Tc materials is mainly due to the next nearest neighbor hop-
ping term, then the above features ofE(k) should in prin-
ciple be observable in the ARPES spectrum in electron-
doped materials.

For thet-t8-J model with a negativet8 term, the overall
agreement between the finite-size calculation and the SCBA
calculation is not as good as for thet8>0 cases. This dis-
agreement is probably due to the linear spin-wave approxi-
mation in the SCBA approach which ignores the influence of
holes to the quantum antiferromagnetic Ne´el state. A positive
~negative! t8 term can enhance~reduce! the antiferromag-

netic correlations in the one band-model.16 So in the pres-
ence of a negativet8 term, the distortion of a hole to the
quantum antiferromagnetic Ne´el state is enlarged. In this
case to obtain a more quantitative description for the quasi-
particle dispersion, exact diagonalizations on larger lattices
are needed.

The above discussion indicates that the bandwidth of the
t-t8-J model is too small compared with the experimental
one for Sr2CuO2Cl2 within the physically reasonable region
of parameters, consistent with the previous study.2 A finite
t9 term, however, can change this situation significantly. The
contribution of thet9 term toE(k) is similar to a2t8 term,
for example for thet-t9-J model (t850) the band maximum
locates at (p/2,p/2) if t9.0 or (p,0) if t9,0, but the over-
all energy dispersion is always enlarged by thet9 term.

In Fig. 2 the quasiparticle dispersions for thet-t8-t9-J
model are shown and compared with the experimental data
for Sr2CuO2Cl2. Along two diagonal lines, (0,0)2(p,p)
and (p,0)2(0,p), the finite-size effect is small and the
agreement between the experimental data and our calculation
is very good. Compared with Fig. 1~b!, we find that the
bandwidth is largely enhanced by even a smallt9 term.
Along the line (pp)2(p,0)2(0,0), the energy dispersion
obtained from both the exact diagonalization and SCBA cal-
culations is larger than the experimental one, and the agree-
ment between the exact diagonalization and the SCBA re-
sults along this line is also not as good as along two diagonal
lines. A subpeak appears in the curve of the exact diagonal-
ization result on the line (p,0)2(0,0). This is purely due to
the finite-size effect.

Now let us consider the three-site hopping term. The
Hamiltonian for the three-site hopping term is given by7,8,17

H3-site5
J

4 (
^ i j &Þ^ ik&s

~ci s̄
† ciscjs

† cks̄2ni s̄cjs
† cks!. ~4!

FIG. 1. Comparison of the quasiparticle dispersion relation
E(k) ~unit: eV! obtained from the SCBA method on 24324 lattice
~solid line! with that obtained from the finite-size diagonalization
method onN516 ~triangle! and N520 ~circle! lattices for the
t-t8-J model with t50.35 eV, J50.15 eV and~a! t850, ~b!
t8520.08 eV, and~c! t850.08 eV.

FIG. 2. Comparison of the quasiparticle energy
E(k)2E(p/2,p/2) ~unit: eV! in Sr2CuO2Cl2 ~circle! with the cor-
responding results for thet-t8-t9-J model obtained from the exact
diagonalization withN520 ~solid line! and the SCBA approach
~dashed line!. t50.35 eV, t8520.12 eV, t950.08 eV, and
J50.15 eV.
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This term describes an effective hopping of a hole to one of
its next or next-next neighbor sites by exchanging spins with
another hole on its nearest neighbor site. From the calcula-
tion we find that this term has a very weak effect on the
quasiparticle dispersion along two diagonal lines. However,
it has a relatively larger effect onE(k) whenk varies along
(p,p)2(p,0)2(0,0). It suppresses the dispersion ofE(k)
on (p,p)2(p,0)2(0,0) and therefore improves the agree-
ment between the theoretical result and the experimental
data. Figure 3 compares the energy dispersion of the
t-t8-t9-J model with the three-site term on aN520 lattice
with that of Sr2CuO2Cl2 . It is easy to see that the one-band
t-t8-t9-J model with the three-site hopping term gives a
good account for the quasiparticle dispersion in
Sr2CuO2Cl2 . This result is consistent with the previous stud-
ies for the quasiparticle dispersion based upon the multiband
Hubbard model.2–4 It implies that the multiband Hubbard
model is indeed equivalent to a one-band model in describ-
ing low-energy excitations of high-Tc cuprates.

In conclusion, we have studied the energy dispersion of
hole quasiparticles in an antiferromagnetically correlated
background using the exact diagonalization and the SCBA
methods. In the exact diagonalization study, we first derive
an effective Hamiltonian for the one-holet-J model using
the Galilean transformation for each given hole momentum
k ~which can take all allowed values in an infinite lattice!,
and then diagonalize this effective Hamiltonian on finite lat-
tices with PBC. As there is no limitation fork values, this
allows us to have a comprehensive study for the band struc-
ture of quasiparticles with the finite-size diagonalization
even on aN520 lattice. We find that the finite-size diago-

nalization results agree well with the SCBA ones, especially
when t8>0. For hole-doped high-Tc compounds, the band
maxima locate at (6p/2,6p/2) in thermodynamic limit.
However, for electron-doped compounds, the band maxima
locate at (p,0) and its equivalent points. The experimental
data for Sr2CuO2Cl2 can be quantitatively understood from
the one bandt-t8-t9-J model with the three-site hopping
term.
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