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Direct calculation of the two-photon line strength of aI';4-I';4 transition in octahedral symmetry
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Using a direct calculation, the line intensity of the two-phot6lﬁ60F19-Flg(5D4) transition of TB" in the
elpasolite lattice has been accounted for under third-order perturbation theory. Employing the appropriate
4175d intermediate levelsy and u, the transition moment has been written in terms of electric-dipole allowed
transitions between thef# and 4f5d configurations, and of the spin-orbit coupling between the intermediate
states. The calculated line strength is sensitive to the locations of the intermediate-state energy levels.
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[. INTRODUCTION the Judd-Ofelt approximation is employed in third-order
Judd-Pooler-Downer formalisf®. Ceulemans has attributed
Kaiser and Garrettfirst observed the phenomenon of the intensity to a fourth-order mechanisfby contrast to

two-photon absorption in B :CaF,. Subsequently, the the latter weaker transition which was attributed to a third-
theory for two-photon intraconfigurational transitions wasorder mechanism. The current interest in direct
developed by Axé,using the conventional Judd-Ofelt clo- calculation$®*° prompted us to perform a direct calculation
sure approximatiott in second-order perturbation, by cou- of the intensities of transitions between the relevant CF lev-
pling the two electric dipole operators into an effective op-els of Tb®* in order to resolve these problems. In what fol-
erator acting between same parity initial and final states. Aows it is shown that thd’;;—1I';4 transition can be ex-
complete evaluation of second-order effects was given bylained by direct calculation using third-order perturbation
Kibler and Gacon and by Reid and N§.Third-order pro- theory, and that the calculated values are comparable with
cesses in intraconfigurational two-photon spectroscopy, inthe experimental results.
cluding spin-orbit interaction in intermediate stdtesvere
introduced to understand experimental results fof Gdrhe
extension to fourth order was carried out by Dowhand Il. GROUP-THEORETICAL BACKGROUND
Ceulemans? The group-theoretical solution rules and polar-
ization dependence of two-photon transitions were derive
by Bader and Goftt and generalized by Andrewsand

The two-photon absorption betweerf"4states of the
dame parity can be described by using second-order pertur-
. 3 . , bation theory’! The initial state couples with the final state
Kibler and Daoud?® and are substantially different from y two electric dipole operators via the opposite parity inter-
those for one-photon transitions. This provides a source Ofyqjate levels. The intermediate levels belong to configura-
complementary information for the investigation of the eN-tions such as #'~1d, 4"*1d~, and 4"~1g,%2 and for sim-

ergy levels and excited states of transition-metal and rarsjicity in this study we confine this to appropriaté™ '5d
earth ions. The use of linear or circularly polarized radiatio”states Higher-order processes are necessary when the

with oriented cubic crystals has enabled detailed aSSignme”E%cond-order contribution IAS+<0. AL or AJ>2. and/or

to be made fors-electron [TI* (Refs. 14 and 15 e : -
. the transition is forbidden by symmetry selection rules be-
4+ 16 + 17 2+
d-electron(Mn"","® Cu™,™ and Ni*” (Refs. 18-20] and  yeen CF states. In the third-order case, the transition matrix

2+ 21,22 3+ 22 +
L—electron[_Sn;)l ' b'E? N ?nd Etf-_ (Ref_. 23.] sysfter_ns__ element between initial stalg y; and final statd’;y; (where
\ more suitable cubic lattice for the investigation of triposi- v; is a component of the representatiby) can be written
tive cations is the elpasolite typé,and experimental two- 9

photon studies have been performed for,RaGdCls.25~27 a

In this system all of the crystal fieldCF) levels of the

8s,, electronic ground state of the &d ion are nearly de- My 5T

generate so that the selection rules for transitions to CF lev-

els of excited multiplet terms are not restrictive. However, (Tiyilea Dlp){ulV[x){(xle2-DIT ;)

fn systems i_n elpasol_ite lattices with evenmay present (EX_EFi_ﬁwz)(EFf_Eu)

more restrictive selection rules and more distinguishing po- = .
larization dependences for transitions between CF levels. In i |, (Tevilea DI} ulVIx)(xle1-DITiy)

this study we focus upon the two-photon absorption strength (Ex—Er,y,~w))(Er,—E,)

of the ’F4 to °D, transition of the TB™ ion in the octahe-

dral elpasolite lattice, which has been measured by @
Denning®® In particular, the observed intensity of the

(7F6)F19—>Flg(5D4) transition was observed about 14 The summation is over all the intermediate stdtes and
times greater than7F6)Flg—>F3g(5D4) 28 The intensity of  |u). V can be the spin-orbit or crystal-field operator, and the
the former transition is, however, calculated to be zero whemperator acts between intermediatedlectron states.f w;
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and7% w, are the photon energies: D is the scalar product The values of the Clebsch-Gordan coefficients and the basis
of the polarization vectos of the photon and of the electron transformation coefficients are available in Refs. 35-37. Ex-

dipolar operatoD where perimental data for the 45d intermediate states are inad-
equate and we limit our calculation to the lowest/dominant
Dé=2 riCé, intermediate levels. The lowest state results from the cou-

' pling of the core 47(8S;,) I'g, I'7, andT'g levels with the
1 5d states’®3® The CF splitting of the coréS;, term mul-
C,=—(Ct,—Ch), tiplet is negligibly smalf® The crystal-field splitting of the
V2 5d* state is greater than that due to the spin-orbit coupling,
i so that thed orbital first splits intol's and T, states'* The
Cyz—(Cl_1+ Cy), energy of thd's state is lower than that df; by more than
V2 20 000 cn 1% The orbitall'; state will further couple with
1 spinT'g to give thel'g spin-orbit-coupled statd:s will split
C,=Cs. (2 into T'; andT'g via the spin-orbit coupling. The separation
The two-photon transition line strength can be express¥d asbetweenl’; andTs is about 1200 cm*.* _
The transition between the initial staf&4 and the final
) state °D, is spin forbidden, so that the third-order mecha-
Sr,—r,= 2 |MFivﬁFp/f| ' ©) nism involving spin-orbit coupling{=Hgc) has to be con-
Vi Yt . - . .
sidered. The spin-orbit operator can be written as
In Oy, point group symmetry the representation of the electric
dipole operator id",,.3! Under second-order perturbation,
for aT';4 initial CF state the allowed two-photon transitions Hso= {1 2, In-Sn+ Lal g~ Sa- 5
are to terminal CF states contained in the direct product n=1

Pau®lay, 1.8, 1014, T'gg, I'yg, andl'sy provided that the  The matrix element of spin-orbit coupling acting on ttie
LSJ selection rules are complied with. R;g—I'5q transi-  glectron is equal to zero in this case. Thelectron spin-

tion is therefore symmetry forbidden, and it can be shown &t operator couples the core std® with 6P. The corre-
I'1g— 44 transition is forbidden when using two photons gponding matrix element,

from a single beam® Under the Judd-Ofelt approximation

the two dipole operators are coupled into a second rank ten-

sor operator which transforms &g4+I's4 (Oy,). Therefore, <4f7(8s)
only the transitions to terminal CF states witgy+ I's4 rep-

resentations are allowed in second order. We will comment _ 14
elsewhere concerning the use of the Judd-Ofelt approxima:, equal toz; /14, whereZ;=1696 cm *.** We neglect the

. . . 7
tion in this calculation, and the fourth-order formalism of electrostatic interaction between the "acore and the 8
Ceulemand? ele(_:tron, and this approximation is not _I|kely to _Iead to a
serious errof? The wave function of the intermediate state
can then be written 3%

7

7

ng In'Sn
n=1

4f7(6P)>,

lIl. TWO-PHOTON ABSORPTION SPECTRUM

OF Cs;NaTbClg 14727 + 1L, T30 73)5d(I' gl T gve)). 6)

This section presents the direct calculation of the intensity _ _ ) o
of the two-photon transition from the ground state of theWhere the irreducible representations describing tthel&c-
4f8 configuration of TB* in Cs,NaTbCl; ("F¢)T'y, to the tron refer to spin, grbn, and spin-orbit coup_led states,_respec—
excited CF levels 04)I'; and €D,)I's. The polarization t|vely. The core 4" and the 5l representation of the inter-
directions are not specified in the publishedne-color two- ~ Mediate states are transformed idtyl and smJlm, bases,
photon absorption spectrum of @$aTbCl,. Elpasolite crys-  fespectively,
tals prepared by us are polycrystalline on a microscopic .
scale. In the following calculation we consider one-color lin-  [4f7(?5 **L}, T3, 7;)5d(I's'\Tgyq))
early polarized radiation parallel to tH@01] crystal axis.

The initial and final statefi) and|f) described in the sub- - D (I' My |T 573 Moyl va Tavad
groupO, can be written a$ M7, ¥s 71 Mgs Mg
|4£8(25F 13T 57y)) X (3Mgd Ts¥s)(2mg | Ty 7)
- D (IMSIT 37, SMLM | IM,) X417 1L M )| 5dEmge2my)). )
MS’\,A,JMT,S,}X:,}M The nonvanishing matrix elements of f%’FgI';)

—417(3S0 7127712 5d(T 4y4), and

AF7(®P L 70y72) 5d(T gyq) — 4F8(°D4Iy)

X(S' Mg zMis| SMg)(L'M_3mg|LM )

X(J'My|S' Mg L'ML")
e and 48(°D,I"57) transitions can then be calculated by em-
X[4f7 2L My )[4F 5 mi3me). (8 ploying the Wigner-Eckart theorem,
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(3my|rCil2mg) =(3]|CY|2)(3my|1q2me)(f|r|d)/\7 R
(8) 30
and
25
<2md||rc%,|3mf.>=<2||01||3><2md.|1q3mf.><d|r|f>/ﬁ(.g)
20

The results for the calculated matrix elements will be pre-

sented in detail elsewhere, and are the same when using 15
Griffith’s® or Watanabe® and Koster'd’ tables. We take

the energy of the intermediate level$’4S;,I's, I';, and 10
I's) 5dI's(I's and I';) (labeled E1 hereafter and
4171(83,,I'g, T'7, and I'y) 5dI'3(I'g) (E2) to be 37 000
cm ! and 57 000 cm?, respectively’® The energy levels
due to the electrostatic interactions between the crystal-field
levels of the core #'(°P,,) and the 5l electron are ex- E2/E1
pected to be much higher than those of tifeshell and we
approximate these energy levels to be degenerate. Upon sub-
stitution of the calculated matrix elements and the relevant £ 1. piot of the ratio R) between the two-photon transition
energies into Eq(1), the calculated two-photon transition gyengths off;—T'14 andT;;—T ', against the ratio of the ener-
strength is identical in thex, yy, andzz polarization direc-  gies of the intermediate levelsf4®S,,I's,I'; and I'g)5dTs(I'g
tion for thel';q—1I'14 or thel';;— T34 transition. The ratio  andT';) (E1) and 47(3S;,I',I'; andT'g)5d4(I'g) (E2).
(labeledR) between the two-photon transition strengths of
[g—T1g andI'yg—T34 is estimated to be 5.6 which is in
good agreement with the experimental result, considering the
approximations in intermediate state energies, and the ne-
glect of J mixing in our calculations. The calculated polar-
ization dependences of the 7F(5)F19HF19, I3,
F5g(5D4) transitions are in agreement with the predictions

IV. CONCLUSIONS

In this study, we have demonstrated that the two-photon

transition (Fg)I'1q—T14(°Dy4) of Th3* in the elpasolite

lattice is allowed under third-order perturbation and that a

from simple group theord® In particular, the intensity of the direct calculation can reproduce the relative line strength in

7 Peg 5 P - h pa ’ yort agreement with experiment. The sensitivity of our calculated

("Fe)T'1g—T'54(°D,) transition is zero for one-color excita- .

: g 9 o . result to the locations of thedselectron energy levels dem-

tion by two photons of the same polarization. Figure 1 shows Lo .
Lk ; ; onstrates that the approximation of an effective barycenter

the sensitivity of the ratidR to the energie€l andE2, mav not be iustified

keeping E2 constant. The energy of the intermediate y J '

4f"~15dI",, CF state plays a crucial role in the prediction of ~ P.A.T thanks the HK UGC for partial support of this work

the correct ratidR. under RG9040098.
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