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Departures from standard Lifshitz-Kosevich behavior observed in the oscillatory magnetization and magne-
toresistance of bis~ethylenedithio!tetrathiafulvalene~BEDT-TTF! charge-transfer salts in high magnetic fields
are investigated using a numerical model of the Landau levels in a quasi-two-dimensional metal. The numeri-
cal model enables oscillations in the chemical potential to be treated, as well as the effects of finite tempera-
ture, Landau level broadening, and the presence of additional quasi-one-dimensional Fermi surface sheets. The
numerical calculations reproduce experimental magnetization data successfully, and allow several phenomena
observed in the experiments to be investigated. It is found that pinning of the chemical potential to the Landau
levels is responsible for the apparent anomalously low effective masses of the higher harmonics of the de
Haas–van Alphen oscillations observed in recent experiments. In addition, the quasi-one-dimensional compo-
nents of the Fermi surface are found to have a pronounced influence on the wave form of the oscillations in the
model, providing a means by which their density of states can be estimated from experimental results. Whilst
the magnetization is a thermodynamic function of state, calculations of the behavior of the magnetoresistance
are much more model dependent. In this paper, recent theoretical models for the longitudinal magnetoresis-
tance in semiconductor superlattices have been modified for use with the BEDT-TTF salts and are shown to
successfully reproduce the form of the experimental data. The strongly peaked structure of the magnetoresis-
tance, which comes about when the chemical potential is situated in or close to the gap between adjacent
Landau levels, is found to be responsible for the apparent strong increase of the effective mass which has
recently been reported in high field transport measurements.@S0163-1829~96!07137-8#

I. INTRODUCTION

The method derived by Lifshitz and Kosevich~LK ! has
been used to treat quantum oscillatory phenomena such as
the Shubnikov–de Haas~SdH! and de Haas–van Alphen
~dHvA! effects in metals for many years with great success.1

Recently, however, quantum oscillations have been observed
to depart significantly from conventional LK behavior in a
number of charge-transfer salts based on the molecule bis-
~ethylenedithio!tetrathiafulvalene~BEDT-TTF!.2–5These de-
partures become most apparent when the temperature depen-
dence of the oscillations is analyzed in an attempt to
determine the quasiparticle effective massm* . In particular,
the higher harmonics of the oscillations are found to be more
weakly dependent on temperature than predicted by the LK
model,1 leading to estimates form* which are lower than
those derived from the fundamental frequency.2,3 In the case
of the SdH effect, an apparent increase of the effective mass
of the fundamental frequency is also observed at high mag-
netic fields.3,4

The departures from LK behavior at high fields appear to
be directly related to the low-dimensionality of the BEDT-
TTF salts. In order to gain an understanding of the influence
of dimensionality on the quantum oscillations, we have used
numerical methods to calculate the magnetization and longi-

tudinal magnetoresistance of a quasi-two-dimensional~Q2D!
metal. As the relevant experimental data2–5 involve measure-
ments of thea-phase BEDT-TTF salts, the model Fermi sur-
face used is based on those calculated for this family of
compounds; i.e., it consists of a very slightly warped cylin-
der plus a quasi-one-dimensional~Q1D! open section. The
results of the numerical calculations are successful in ac-
counting for many of the departures from LK behavior ob-
served in the BEDT-TTF salts. Furthermore, although the
Q1D part of the Fermi surface does not cause quantum os-
cillations, its associated density of states plays an important
role in determining the wave form of the experimental quan-
tum oscillations.@Note that departures from LK behavior
have also been observed in TMTSF~Ref. 6! and BEDT-TTF
~Refs. 7, 8! charge-transfer salts due to the presence of a
spin-density-wave~SDW! ground state; however, effects due
to SDW’s are beyond the scope of the model and will not be
treated in the present paper.#

This paper is organized as follows: Sec. II gives a more
detailed introduction to the problem, and Sec. III presents
calculations of the oscillatory magnetization. Section IV de-
scribes a method for analyzing experimental magnetization
data which takes account of the Q2D nature of the BEDT-
TTF salts and Sec. V shows calculations of the magnetore-
sistance. A summary is given in Sec. VI.
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II. A QUASI-TWO-DIMENSIONAL METAL
IN A MAGNETIC FIELD

BEDT-TTF salts are often referred to as Q2D, since a
small overlap of the molecular orbitals between the conduct-
ing planes, in what is usually labeled the crystallographicb
direction, leads to the formation of a weakly dispersed en-
ergy band in the reciprocal latticekz direction ~i.e., perpen-
dicular to the Q2Dkx ,ky planes!.

9,10 For the purpose of this
discussion, the three-dimensional~3D! dispersion relation for
a closed Q2D portion of Fermi surface is modeled by the
equation
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It is the finite interplane bandwidthW which causes the
warping of the otherwise perfectly 2D Fermi surface. In
some materials, such asb-~BEDT-TTF!2I3,

11 the warping of
the Fermi surface is thought to have been observed in the
quantum oscillations as a beating effect between two similar
frequenciesF and F1DF. These correspond to the mini-
mum and maximum Fermi surface extremal areas respec-
tively; the difference frequency is given byDF5Wm* /e\.
In contrast, thea-phase BEDT-TTF salts do not exhibit pro-
nounced beating effects.2–4,10,12For this reason, as far as the
quantum oscillatory behavior is concerned, these materials
are nearly ideally 2D. A small but finite warping of the
Fermi surface is, however, known to be present, owing to its
manifestation in the form of angle-dependent magnetoresis-
tance oscillations.8,13

The inability to resolve the two separate frequencies in
the quantum oscillations implies that the difference in area
DA52peDF/\ between the Fermi surface extremal areas is
less than the difference in areaDa52peB/\ between adja-
cent Landau tubes~i.e., DF/B,1, whereB is the magnetic
induction!. Current experimental evidence suggests an upper
estimate of;5 T for DF in thea-phase BEDT-TTF salts.14

Therefore, by applying the high magnetic fields typically
available at pulsed field laboratories2–4 it is possible to
achieve the situation whereDF/B!1.

This near ideal two-dimensionality implies that the Lan-
dau level structure in the density of states~DOS! should
become clearly resolved. The sharpness of the Landau level
structure depends not only on the degree of warping of the
Fermi surface, but also on the extent to which the Landau
levels are broadened by the finite quasiparticle lifetimet.
Only when the width of the Landau levels\t21 is less than
the cyclotron energy\vc ~wherevc5eB/m* ! can the Lan-
dau levels be well resolved. As a consequence, the size of the
oscillatory contribution to the density of statesg̃[«,B] be-
comes comparable to or larger than the field-averaged~back-
ground! DOS ḡ@«#. In this situation, whereg̃[«,B].ḡ[«],
the chemical potentialm becomes pinned to the highest oc-
cupied Landau tube and therefore oscillates as the magnetic
field is swept.15 We refer to this situation as the ‘‘high mag-
netic field limit’’: in 3D systems, it is reached only in the
extreme quantum limit when one Landau tube is occupied.15

However, for the Q2D systems considered in this paper, the
high magnetic field limit is reached when 10 or 20 Landau
tubes are still occupied.2–5

The conventional LK theory is based on the assumption
thatm is constant; as has been described above, this is only a
valid approximation in a Q2D system at very low magnetic
fields.1,15Therefore, in a derivation of the oscillatory magne-
tization or magnetoresistance of a Q2D system, the full mag-
netic field and temperature dependence ofm[B,T] must be
taken into account. This involves finding the inverse of the
integral

N5E
0

`

g@«,B# f @«,m#]« ~2!

over all states. Here,N is the total number of electrons per
unit volume, which is held constant,g[«,B][g̃[«,B]
1ḡ[«] is the total DOS, andf @«,m#5„11exp@~«2m!/kT#…21

is the Fermi-Dirac distribution function.
An analytical solution form[B,T] can be found for the

extreme case of an ideal 2D electron gas with infinitely sharp
Landau levels. This approach was adopted by Vagneret al.16

in an attempt to explain dHvA measurements made on 2D
GaAs/AlxGa12xAs heterojunctions and graphite intercalation
compounds.17 The scope of their solution was, however,
somewhat limited owing to the fact that it did not include the
effects of Landau level broadening. While an approximate
solution which considers Landau level broadening in the
case whereT50 has been considered,18 there has yet been no
complete analytical solution which fully combines both the
effects of Landau level broadening and thermal damping. In
contrast, one of the major successes of conventional LK
theory is that it can be adapted to include many additional
physical effects such as Landau level broadening in the form
of harmonic damping factors.1,15,19

Without a general analytical solution form[B,T] which
can include scattering, etc., it is necessary to resort to nu-
merical methods. Although such methods are more time con-
suming, they enable the effects of Landau level broadening,
finite temperatures and so on to be investigated using the
model. In the following section we shall begin by calculating
the magnetization~i.e., the de Haas–van Alphen effect!. The
advantage of calculating the magnetization is that it is a ther-
modynamic function of state and can therefore be related
directly to the free energy of an electron gas. In contrast, the
calculation of the magnetoresistance~Sec. V! involves many
more assumptions about the electronic scattering mecha-
nisms. As the aim of this paper is to model recent high field
data ~B.20 T!, the warping of the Fermi surface will be
ignored for the purpose of the magnetization calculations; as
has been discussed above, this is not thought to be an impor-
tant consideration at magnetic fields above 10 T. However,
the existence of a finite Fermi surface warping is necessary
for the existence of the longitudinal magnetoresistance, and
so is reintroduced in Sec. V.

III. THE OSCILLATORY MAGNETIZATION

The magnetization for an ensemble of electrons is given
by the partial derivative

M @B,T,N#52
]HF

]B U
N,T

, ~3!
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where the Helmholtz free energyHF is related to the ther-
modynamic potential

V52kTE
0

`

g@«,B# ln@11e~m2«!/kT#]« ~4!

by the relation

HF5V1mN. ~5!

It can be shown analytically15 that the magnetization is
equivalently given by

M @B,T,m#52
]V

]BU
m,T

. ~6!

Here,M is a function ofm which is itself a function of
magnetic field and temperature.

Whilst there is as yet no clear consensus regarding the
exact form of the Landau level broadening in 2D systems,
recent detailed torque magnetization measurements per-
formed on GaAs/~Ga,Al!As heterostructures have been able
to probe the DOS rather directly. Experimentally, the func-
tional form of the broadening distribution function is indis-
tinguishable from that of a Lorentzian.20 Such Lorentzian
broadening was originally proposed as an appropriate way of
taking into account the effects of quasiparticle scattering in
metallic systems by Dingle.19 A further assumption which
can be made to simplify the integration procedure is that the
field averaged~or equivalently, zero field! DOS ḡ is con-
stant. This is generally expected to be true for a 2D parabolic
band.21 In any case, the precise functional form of the DOS
when «!m should not have any significant effect on the
magnetization when 10–20 Landau levels are still occupied
~as is the case in the high field experiments on BEDT-TTF
salts2–5!.15 The DOS therefore becomes

g@«,B#5~DG/p! (
n51

`

„@«8~n!#21G2
…

21, ~7!

whereD5NB/F[1/pbl2 is the degeneracy of Landau lev-
els, G5\/2t and l5A\/eB. For convenience, the energy
variable has been changed via the transformation
«85«2\vc(n21/2)2W/2, in order to shift the coordinates
to the center of the Landau level.

As has been mentioned in Sec. I, in reality the Fermi
surfaces of thea-phase BEDT-TTF salts consist of both
Q2D and Q1D components,9 each of which make their indi-
vidual contributions,g2D@«,B# andg1D@«,B# respectively, to
the DOS. These extra terms in the DOS can be included in
the model by keeping the total number of electrons in the
system constant whilst letting them distribute themselves
amongst the Fermi surface components under the constraint
that m must be the same throughout. The Q1D part of the
Fermi surface in thea-phase~BEDT-TTF! salts is an open
orbit, and therefore does not undergo Landau quantization in
the vicinity of m. This part of the Fermi surface therefore
behaves primarily as a carrier reservoir,22 to and from which
the carriers can flow in an attempt to minimize the free en-
ergy of the system. The size of this reservoir is determined
by the total number of 1D states. In a truly 1D electron
system, the DOS varies with energy as 1/«; however, in the

context of this calculation it is only the DOS of the Q1D
band in the vicinity ofm ~the reservoir capacitance! which is
important, and not the total number of 1D states. For the
purpose of our calculations, we can therefore considerg1D to
be both independent of magnetic field and« as a first ap-
proximation. The following summations are then valid:

g@«,B#5g1D1g2D@«,B#, ~8!

N5N1D1N2D . ~9!

In all the calculations, we have ignored the effects of Zee-
man splitting of the Landau levels. In the experimental re-
sults which are considered, there is no evidence to suggest
that spin splitting is a significant effect at high magnetic
fields.2–4

Figure 1~a! shows the calculated chemical potential for
various values ofg1D with t21 andT zero; the experimen-
tally determined valuesm*52.7 andF5670 T, valid for
a-~BEDT-TTF!2KHg~NCS!4 in its high field state

2 have been
used. As would be expected, the oscillations ofm are largest
wheng1D50, with a maximum possible peak-to-peak (p-p)
amplitude equal to\vc . The fractiong of the oscillation
period over whichm increases with field corresponds to the
situation wherem is pinned to the highest occupied Landau
level. By increasing the relative contribution to the DOS
coming from the Q1D component of the Fermi surface, both
g and the overall amplitude of the oscillations ofm become
smaller. It can be shown that

g5
ḡ2D

g1D1ḡ2D
. ~10!

FIG. 1. ~a! The calculated chemical potential for
a-~BEDT-TTF!2KHg~NCS!4 wheret21 andT are zero, for increas-
ing values ofg1D/ḡ2D equal to 0, 1/3, 1, 3 and 10. This illustrates
the effect of the presence of the additional DOS of the Q1D band on
the wave form of the oscillations.~b! The corresponding magneti-
zation. The intervalg ~over which the chemical potential is pinned!
is shown for the case wheng1D/ḡ2D51 ~note that thep-p amplitude
of the magnetization is not affected by the presence of the Q1D
band!.
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The quantityg also defines the fraction of the oscillation
period over which the magnetization increases@as shown in
Fig. 1~b!#. However, the absolutep-p amplitude of the mag-
netization is independent ofg1D. In the limit g1D50, the
shape of the wave form corresponds to the ideal 2D limit,
whilst asg1D→`, the wave form approaches that in the LK
regime wherem>«F , the Fermi energy.

Figure 2~a! shows a numerical calculation of the magne-
tization as a function of temperature for three different val-
ues ofg1D ~see figure caption! and zero scattering rate. The
temperature dependences of the amplitudes of the fundamen-
tal frequency and the second harmonic@Fig. 2~b!# differ
markedly in the various cases considered. For ease of com-
parison, the temperature dependences of the fundamental fre-
quency and second harmonic expected in the LK model have
also been plotted. As the Fermi surface in question is Q2D,
the 2D LK expression valid for a single slab ofk space has
been used, rather than the conventional 3D LK formula.15 In
the 2D LK approximation, the magnetization is

M52a(
p51

`

Rp@T,B#
1

2pp
sinF2ppS FB2

1

2D Ge2pp/vct,

~11!

where Rp[T,B]5Xp/sinh[Xp], Xp52p2kTmp* /e\B, and
a52e2F/pbm* . Once again, the warping of the Fermi sur-
face has been ignored and in Fig. 2~b!, t2150. The total
thickness of the Q2D Fermi surface slab ink space is equiva-
lent to the reciprocal lattice parameter 2p/b perpendicular to
the conducting planes. Note that in the termRp , the masses
mp*5pm* ; i.e., they are a factorp larger than the effective
massm* of the fundamental frequency. As a result, the am-
plitudes of the higher harmonics in the LK theory are more
strongly attenuated by increasing temperature than that of the
fundamental frequency.15

Figure 2~b! shows that the second harmonic in the nu-
merical calculations of the magnetization departs more
strongly from the LK prediction.~The same is also true for
the higher harmonics.! When g1D/ḡ2D50, the second har-
monic amplitude becomes negative due to the change in the
left-right symmetry of the wave form@see Figure 1~a!#. In
the caseg1D/ḡ2D51 ~i.e., reservoir DOS equal to Q2D DOS!,
the wave form has no even harmonics at all whenT50 as it
consists of a series of symmetrical triangles. Instead more
spectral weight appears in the odd harmonics. Only when the
temperature is increased do the even harmonics begin to ap-
pear; this tilting of the wave form at higher temperatures can
be explained by the effective extension of the pinning inter-
val g as the temperature increases. Whenm is situated di-
rectly between two neighboring Landau levels, the width of
the Fermi-Dirac distribution has less influence on the mag-
netization at this point on the wave form, and hence it is less
temperature dependent. Wheng1D/ḡ2D510, the results of the
numerical calculations correspond most closely to those of
the LK theory. However, even in this case, the fundamental
frequency has a slightly larger amplitude than that predicted
by the LK theory due to a slight shifting of spectral weight
from the even harmonics on to the odd harmonics.

In experimental studies, effective masses are often ob-
tained by fitting the functionRp5Xp/sinh[Xp] ~from 2D or
3D LK theory! to the various temperature dependences of the
harmonic amplitudes of the quantum oscillations. If this pro-
cess is carried out for magnetization amplitudes generated by
the numerical calculations shown in Fig. 2~b!, it is found that
thatm1*;2.8,m2*;3.4, andm3*;3.8 wheng1D/ḡ2D50. This
now explains the origin of the low estimates of the effective
masses obtained from the higher harmonics in dHvA mea-
surements ofa-~BEDT-TTF!2KHg~NCS!4 in its high field
state.2 Because the higher harmonics deviate strongly from
the 2D LK theory and have a complicated temperature de-
pendence, they cannot be used by themselves to determine
the true effective mass.

The effects of Landau level broadening on the amplitude
of the oscillations can also be investigated. A DOS which
includes Landau level broadening was introduced in Eq.~7!.
Figure 3 shows the calculated magnetization for the two ex-
treme cases,g1D50 andg1D@ḡ2D, at temperaturesT50 and
T52 K; the scattering rate has been set att21

50.531012 s21, corresponding to a Dingle temperature of
TD;0.6 K.15,19Becausem oscillates with magnetic field, the
damping factors of the oscillations for finiteT and t21 can
no longer be considered separately, but are interrelated. This
renders the conventional ‘‘Dingle analysis’’ approach
inappropriate.15,19 Nevertheless, the fact remains that
whether thermal damping, Landau level broadening or a

FIG. 2. ~a! The magnetization calculated for different values
of g1D/ḡ2D ~50, 1 and 10! now at finite temperatures of
T50,1,2, . . . ,5 K. ~b! A plot of the temperature dependence of the
relative amplitudes of the fundamental and second harmonic contri-
butions extracted by Fourier analysis. The relative harmonic ampli-
tudes predicted by the 2D LK model are also shown for compari-
son.
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combination of the two is included, thep-p amplitude of the
magnetization remains independent ofg1D. Only the shape of
the wave form and hence the relative amplitudes of the har-
monics are affected by the presence of additional Q1D states.
This result can be understood by examining the analytical
LK expression given as Eq.~11!. The chemical potential
appears only in the argument of the sine function, as
F/B5m/\vc . In this way, an oscillatorym@B,T,g1D# will
not affect the overallp-p amplitude of the oscillatory mag-
netization but just shift the relative positions of the minima
and maxima in magnetic field.

A potentially useful empirical relationship can also be de-
duced from the results of the numerical calculations; for any
g1D, T or t21,

M̃'
N

gB
m̃ ~12!

~whereM̃ andm̃ are the oscillatory components of the mag-
netization and chemical potential respectively! provided that
F/B.;10.23 A similar proportionality is thought to apply to
3D systems.15 In that case, the quantityg is defined approxi-
mately asg̃/ḡtot , whereḡtot refers to the field-averaged DOS
of the entire Fermi surface.15 Equation~12! is useful in that it
enables approximate values of the magnetization to be cal-
culated without calculatingHF . Alternatively for a given set
of dHvA measurements it is possible to determinem̃ and
hence the DOS.

IV. OBTAINING PARAMETERS
FROM THE MAGNETIZATION

Experimental measurements of de Haas–van Alphen
oscillations in the high field state of
a-~BEDT-TTF!2KHg~NCS!4 show that at fields of;40 T
both the Landau level broadening\t2150.13 meV
~TD50.25 K! and the width of the Fermi-Dirac distribution

function tail kT50.07 meV are substantially less than the
cyclotron energy\vc51.7 meV.2 The oscillations ofm are
therefore expected to be significant in this material, and so it
forms a useful test of the numerical calculations described in
the previous sections.

The intermixing of the parametersT andt21 in Q2D sys-
tems, together with the absence of a general analytical ex-
pression forM , means that the simple analysis procedures
which are appropriate for 3D systems can no longer be used.
A point of departure is that thep-p magnetization amplitude
is independent of the Q1D DOS. However, this does not turn
out to be a very convenient approach for analyzing data, as
the maxima and minima inM do not occur at fixed values of
F/B ~see, e.g., Figs. 1 and 2 where the positions clearly vary
with bothT andg1D!; before finding thep-p amplitude, any
calculated expression for the magnetization must first be dif-
ferentiated to locate the maxima and minima. The free en-
ergyHF , on the other hand, also has ap-p amplitude which
is independent ofg1D ~an example of this is shown in Fig. 4!
but possesses left-right symmetry~i.e., it is an even func-
tion!. Hence its maxima occur at integer values ofF/B and
its minima occur at odd half-integer values ofF/B ~i.e., 1/2,
3/2, etc.!. Thep-p amplitudeHp-p is independent ofg1D~«F!,
because at the points whereF/B is an even or odd half
integer,m is equal to the Fermi energy«F . Consequently, the
p-p amplitude of the free energy is the same in the ideal 2D
limit as it is for the 2D LK limit.

This latter observation provides a unique opportunity by
which the amplitude of the oscillations can be interpreted in
terms of the 2D LK result.24 According to the 2D LK for-
mula of Eq. ~11!, the p-p amplitude of the free energy is
given by15

Hp-p[2
B2

F (
podd

Mp

2pp

52a
B2

F (
podd

1

4p2p2
Xp

sinh@Xp#
e2pp/vct. ~13!

FIG. 3. The calculated magnetization for two different extreme
cases ofg1D/ḡ2D, to demonstrate the combined effects of a finite
t21 andT. In the calculations we have usedt2150.531012 s21, and
the temperatures 0 K and 2 K. The main observation is that al-
though the shapes of the wave forms for the two cases differ some-
what at high magnetic fields, the peak to peak magnetization is
independent ofg1D/ḡ2D.

FIG. 4. The free energyF calculated for two different cases of
g1D/ḡ2D. For the case whereg1D/ḡ2D510, the additional constant
free energy contribution originating from the Q1D band has been
subtracted in order to show that the peak to peak amplitudes are
identical.
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Here Hp>B2Mp/2ppF, and theMp represent the Fourier
components of the magnetization~note that the even coeffi-
cients do not contribute toHp-p and that care must be taken
to use the correct sign ofMp!. Equation~13! is plotted in
Fig. 5 alongside thep-p amplitude obtained for the ideal 2D
limit using the numerical calculations. The excellent agree-
ment between the two methods demonstrates that Eq.~13!
can be used with confidence to obtainm* andTD from mea-
surements, even in the most extreme ideal 2D case.24

For many systems, the third or higher harmonic contribu-
tions to the experimental magnetization will be negligible. In
a-~BEDT-TTF!2KHg~NCS!4, for example,

2 Fourier analysis
of the dHvA signal in the high field state shows that the
amplitude of the third harmonic is only approximately 8% of
that of the fundamental. Since the dHvA signal is the second
derivative ofHF , the magnitude ofMp/p in Eq. ~13! for the
third harmonic will in fact be nine times smaller than this.
ThereforeM3/3 is ;1% ofM1/1, and is on the threshold of
being significant.

Including only the first and third harmonic terms of Eq.
~13!, we obtain

M11
1

3
M35a

X1

sinh~X1!
e2p/vct1

a

9

X3

sinh~X3!
e23p/vct.

~14!

This formula can be iteratively fitted to the experimental
values forMp deduced fora-~BEDT-TTF!2KHg~NCS!4 at
different temperatures2 to yield an effective mass between
2.5 and 2.6me , while the quasiparticle scattering ratet21 is
approximately 0.231012 s21. The effective mass obtained
should be compared with the value 2.7me obtained in Ref. 2
by fitting the data to onlyX1/sinh@X1#. Finally, g1D is found
by comparing numerical calculations of the magnetization
with the experimental traces and adjustingg1D to shift the
maxima and minima in the numerical curves to the same
positions as those in the experimental data. Such a procedure

applied to the data of Ref. 2 requires the adjustment of only
the parameterg, yielding g1D/ḡ2D50.460.2.

To illustrate the results of this procedure. Fig. 6~a! shows
a numerical calculation of the magnetization of
a-~BEDT-TTF!2KHg~NCS!4 in its high field state using the
parametersm* , t21, andg1D determined from the data using
the analysis procedure described above. Figure 6~b! shows
the measured dHvA signal from Ref. 2, converted to magne-
tization by integration. A comparison of Figs. 6~a! and 6~b!
suggests that the model is able to reproduce the features of
the experimental data and provide a satisfactory estimate for
the absolute amplitude of the magnetization.@The dramatic
attenuation of the experimental oscillations seen in Fig. 6~b!
below 25 T is due to the so-called ‘‘kink’’ field-induced
phase transition, which is discussed in more detail in Ref. 2.#

V. THE OSCILLATORY MAGNETORESISTANCE

In contrast to the magnetization, the magnetoresistance
cannot be directly related to the free energy, but instead de-
pends on complicated scattering processes. It is therefore
necessary for a number of approximations to be made in
attempts to simulate experimental data. In high magnetic
fields, it might naively be expected that the form of the
Shubnikov–de Haas oscillations in organic Q2D systems
would resemble those observed in 2D semiconductor sys-
tems such as Si inversion layers and GaAs-~Ga,Al!As
heterostructures.15,25 However, the magnetoresistance of 2D
semiconductor systems is invariably measured with the cur-
rent in the sample 2D plane. In contrast, measurements on
the BEDT-TTF charge-transfer salts are typically made in
the longitudinal direction, with the current parallel to the
magnetic field and perpendicular to the Q2D conducting
planes; this approach tends to avoid problems related to con-
tact geometry and yields much larger~i.e., more easily mea-
sured! resistances.10 For this reason, there are significant dif-
ferences between the measurements made on organic
conductors and those made on 2D semiconductor based sys-
tems.

Most theories of longitudinal magnetoresistance deal only
with fully 3D systems,26–28as a strictly 2D system, by defi-

FIG. 5. The relative peak to peak amplitudes of the free energy
calculated both from the 2D Lifshitz-Kosevich theory and the nu-
merical calculations in the most extreme scenario wheng1D/ḡ2D50.
In addition we show the amplitude of the Lifshitz-Kosevich funda-
mental frequency by itself for comparison. All curves are renormal-
ized so that the zero temperature amplitude of the latter curve is
unity.

FIG. 6. ~a! The numerically calculated magnetization using the
parametersm*t21 andg1D which were determined experimentally
in Ref. 2. ~b! The corresponding measured magnetization. The ar-
rows indicate the appropriate axes.
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nition, has no conductivity perpendicular to the conducting
plane. The organic conductors, therefore, represent an inter-
mediate case between 2D and 3D extremes and have many
properties in common with semiconductor superlattices.29

Although in the above calculations of the Landau level den-
sity of states we have ignored the dispersion in the interplane
direction, its existence must be reintroduced in order to cal-
culate the longitudinal magnetoresistance. A useful starting
point is formed by the model of Datars and Sipe,29 developed
for semiconductor superlattices; as will be seen below, the
model provides an explanation for some of the essential fea-
tures of the magnetoresistance oscillations observed in or-
ganic conductors3,4 in spite of the fact that the relative energy
scales are very different.

The component of the velocity in the longitudinal~inter-
plane! direction in the Q2D organic conductors is very small
compared to the typical values in 3D metals. Furthermore,
although in 3D systems a large number of Landau levels
contribute to the conductivity, a single Landau level domi-
nates in Q2D systems at high magnetic fields. The latter
point enables some approximations to be made, and therefore
greatly simplifies the calculations. In the model of Datars
and Sipe,29 the longitudinal conductivity of the Q2D band is
given by

sz52e2(
n

1

2p2l2 E nz
2@n,kz#t t@ k̃# f 8dkz , ~15!

where f 8 is the derivative~with respect to«! of the Fermi-
Dirac distribution function. The longitudinal velocity
nz5]«/\]kz can be obtained from the dispersion relation of
the Q2D band given by Eq.~1!. In a magnetic field the dis-
persion relation becomes a series of Landau tubes of energy

«n5\vcS n2
1

2D1
W

2
~12cos@kzb# !. ~16!

The quantityt t[ k̃] is a transport scattering lifetime which
depends on the transition rate between the initial and finalk
states~in Q2D systems it is often found to differ by a small
numerical factor from the scattering timet used in the cal-
culation of Landau level widths30!.

In order to calculate the conductivity, it is more conve-
nient to integrate over« rather thankz ; these two variables
are related via the density of states

g@«,B#5
1

pl2 S 1p dkz
d« D . ~17!

Although the transport scattering rate 1/tt has a complicated
dependence onk in the case of elastic scattering processes, it
is generally thought to be proportional to the number of
states into which the carriers can be scattered.27,31This is in
turn proportional to the DOS; in accordance with this as-
sumption, for isotropic scattering we consider the product
g@«#tt@«# to be a constant. Using this approximation, it is
therefore possible to define a constant state-averaged scatter-
ing rate t̄ t5*t t[«]g[«]d«/*g[«]d«'t tg«F/N. This ap-
proximate definition of a constant longitudinal transport scat-
tering lifetime greatly simplifies the numerical calculations.
Note, however, that the quasiparticle lifetimet, which is
responsible for the broadening of the Landau levels defined

in Eq. ~7!, remains constant. Substituting the above and Eq.
~16! and ~17! into Eq. ~15!, we arrive at the conductivity

sz>2
1

2
e2

N

«F
(
n

t̄ tE nz
2@n,kz# f 8d«. ~18!

In the absence of Landau level broadening effects, each
k-state can be associated with a single eigenstate energy.
Expressing the velocity as a function of energy then enables
a straightforward numerical calculation of the conductivity to
be carried out.

The uppermost curves~drawn in thicker lines to represent
the situation wheret2150! in Figs. 7~a! and 7~b! show the
profile of the DOSg@«8# and the square velocityn z

2@«8#. For
the purpose of these calculations we have assumed that
B550 T andm*53me and the ratioDF/F has been taken to
be;0.01; this latter quantity is only an upper limit which is
thought to be consistent with recent experimental
observations.12,14 The DOS profile in Fig. 7~a! exhibits two
singularities which correspond to the top and bottom of the
band. Although the group velocity of the quasiparticles
within the conducting planes is;104 ms21, the component
of velocity in the longitudinal direction is more than one
order of magnitude lower, reflecting the small dispersion in
that direction. When the chemical potential is situated at the
top or bottom of the band, the longitudinal component of
velocity is zero@see Fig. 7~b!#. In principle, the conductivity

FIG. 7. ~a! The thick line represents the density of states profile
of the Landau level for a given minibandwidth~warping! in the
absence of Landau level broadening. Additionally, as thin lines, we
have calculated the Landau level broadening characteristic of the
measured samples ofa-~BEDT-TTF!2KHg~NCS!4 ~Ref. 2! and in
a-~BEDT-TTF!2NH4Hg~NCS!4 ~Ref. 3!. ~b! The statistical mean
square velocity, with and without Landau level broadening in-
cluded.

54 9983NUMERICAL MODEL OF QUANTUM OSCILLATIONS IN . . .



should also be zero at this point, but for practical reasons this
can never be realized, due to the effects of finite temperature
and Landau level broadening. Nevertheless, at integer values
of F/B, we should expect a minimum in the conductivity
and hence a maximum in magnetoresistance. This is pre-
cisely what is observed in the organic conductor
a-~BEDT-TTF!2NH4Hg~NCS!4 ~Ref. 3! @reproduced in Fig.
8~c!# and in semiconductor superlattices.32 In contrast, the
transverse magnetoresistance of 2D semiconductor based
systems exhibits a minimum in magnetoresistance at integer
values ofF/B.25

Figure 8~a! shows a calculation of the longitudinal mag-
netoresistancerz51/sz for a-~BEDT-TTF!2NH4Hg~NCS!4
carried out using Eq.~18!. The parametersF5595 T ~Ref.
33! andm*53me taken from Ref. 3 have been used; the two
curves representT50.4 and 4 K. In addition,t21 has been
set to zero, as in the upper curves in Fig. 7~a! and 7~b!.
Consequently, very sharp magnetoresistance maxima are ob-
served~particularly forT50.4 K! as might be expected in a
sample with no scattering.

In order to provide a more realistic simulation of the data,
the effects of scattering must be taken into account. In many
papers, Landau level broadening is often ignored in the deri-
vation of a formula for the SdH effect, and is only inserted in
the final solution as a Dingle reduction factor.19,26,27The lat-
ter approach is somewhat unsatisfactory and in the present

calculation the effects of broadening are included in a similar
manner to the quantum mechanical derivation of Kubo
et al.,28 by considering the Lorentzian distribution function

s@«#5
G

~«n2«!21G2 ; ~19!

renormalized such that*2`
` \s2[«]/pd«5t. Equation ~18!

can then be rewritten as

sz52
1

2
e2

N

«F
(
n
E \t̃ t

pt
^s2@«#nz

2@n,kz#&kzf 8d«,

~20!

where the triangular brackets represent an ensemble average
over all possiblekz states. The functions@«# is counted twice
in this expression, since both the initial and final states in-
volved in the scattering process are broadened. By taking the
limit as G tends to zero,s@«# approaches ad function, and
Eq. ~20! reduces back to Eq.~18!. In contrast to the theoreti-
cal calculations of Kuboet al., in the present model we have
ignored any possible shift of the energy states and have as-
sumedG to be independent of« in order to be consistent with
our DOS defined by Eq.~7!. The average overkz in the
model reduces to the convolutionn z

2
* s

2@«#, resulting in the
definition of a broadened square velocitynz

2@«8#. This is
shown together with the broadened DOS in Figs. 7~a! and
7~b!; the curves are calculated using the measured quasipar-
ticle scattering rates fora-~BEDT-TTF!2KHg~NCS!4 ~Ref.
2! anda-~BEDT-TTF!2NH4Hg~NCS!4.

3 Figure 7~a! clearly
indicates that the double-peaked structure of the DOS can no
longer be clearly resolved, especially in the case of the latter
salt; this point justifies ignoring the warping of the Fermi
surface for the purpose of the magnetization calculations.

Note that a potentially useful further approximation can
be made in the limitW!G, which appears to apply to the
experiments ona-~BEDT-TTF!2NH4Hg~NCS!4 in Ref. 3. In
this case, the detailedkz dependence of the velocity is no
longer important, and the broadened square velocity is given
approximately bynz

2@«8#}s2@«#. Furthermore, in this ex-
treme limit, the structure in the DOS arising from the dis-
persed band is of little importance and the DOS is
g2D[«,B]}(ns@«#. With g2D5g̃2D1ḡ2D, the contribution to
the conductivity from the Q2D portion of the Fermi surface
can then be approximated by

s2D's2D,0E
0

`S 112
g̃2D@«,B#

ḡ2D
1
g̃2D
2 @«,B#

ḡ2D
2 D f 8@«#d«,

~21!

where the background ~zero field! conductivity
s2D,0@0#5e2Nt tW/pmz«F can be found by taking the limit
of Eq. ~20! asG→`, and wheremz is the average mass of the
band in thekz direction. Finally, the contribution to the con-
ductivity from the Q1D band can also be included by sum-
ming the various components so that the total conductivity is
given bys5s2D1s1D.

Figure 8~b! shows the magnetoresistance calculated for
the temperaturesT50.4 and 4 K predicted by Eq.~20! using
the value t2150.831012 s21 deduced for
a-~BEDT-TTF!2NH4Hg~NCS!4 in Ref. 3, assuming that
g1D/ḡ2D;0.4 @as for a-~BEDT-TTF!2KHg~NCS!4#, and ig-

FIG. 8. ~a! The calculated magnetoresistance for in
a-~BEDT-TTF!2NH4Hg~NCS!4 assuming the model of Datars and
Sipe ~Ref. 29! for T50.4 K ~solid line! andT54 K ~dashed line!.
~b! The calculated magnetoresistance including the Landau level
broadening according to the Dingle temperature estimated by
Sandhuet al. ~Ref. 3!. The approximate intervalg over which the
chemical potential is pinned to a Landau level is also indicated.~c!
The corresponding measured magnetoresistance for
a-~BEDT-TTF!2NH4Hg~NCS!4 of Sandhuet al. ~Ref. 3!.
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noring the conductivity contribution from the Q1D portion of
the Fermi surface.~Note, however that the ratiog1D/ḡ2D has
been used to calculatem in the Fermi-Dirac distribution
function.! The curve calculated from Eq.~20! is indistin-
guishable from one calculated using the more approximate
Eq. ~21!, indicating that the latter simplified procedure may
be used with confidence in the case of
a-~BEDT-TTF!2NH4Hg~NCS!4 in high magnetic fields.

The calculated longitudinal magnetoresistance in Fig. 8~b!
shows a good resemblance to the data measured in Ref. 3,
which are shown for comparison in Fig. 8~c!; these are quali-
tatively similar to the data published in Ref. 4 for the
selenium-based salts which are thought to have similar ma-
terial parameters. The extent to which the Q1D band contrib-
utes to the longitudinal conductivity is not known, as the
Fermi surface warpings of the Q1D and Q2D components
have not yet been measured. Needless to say, there are con-
siderable differences between the Q2D and Q1D bands;
while the Q2D energy band experiences Landau level quan-
tization and therefore intersects with the chemical potential
at a single point, the Q1D band is not Landau quantized, and
therefore intersects the chemical potential for all values of
kz . For this reason, one might expect the nature of the scat-
tering to be different for the two bands. The similarity of Fig.
8~b! to the experimental data of Fig. 8~c! suggests that the
contribution of the Q1D band to the longitudinal conductiv-
ity is practically negligible.

The effect of introducing a small and constant contribu-
tion to the conductivity will be both to lower and to round
off the peaks in the magnetoresistance. However, qualita-
tively the greatest effect of the presence of the Q1D band
results from the effect of its DOS onm, which alters the
width of the magnetoresistance maxima; the width of the
shallow region between maxima roughly corresponds to the
interval g over which m is pinned. A comparison of the
model @Fig. 8~b!# and the data@Fig. 8~c!# therefore suggests
that the DOS of the Q1D component of the Fermi surface
may be somewhat less ina-~BEDT-TTF!2NH4Hg~NCS!4
than for a-~BEDT-TTF!2KHg~NCS!4. However, given the
approximations in deriving the model, it would be unwise to
make any quantitative estimates on the basis of this compari-
son.

One of the most striking observations from experimental
magnetoresistance studies has been the ‘‘apparent’’ increase
of the effective mass at high magnetic fields.3,4 In order to
make a more direct comparison of the above model with
experiment, in Fig. 9~filled square symbols! we have applied
conventional LK analysis by fitting the function
Rp5Xp/sinh[Xp] to the temperature dependence of the cal-
culated SdH oscillations; an example of a calculated trace at
0.4 K is shown as an inset. For comparison, we have also
determined the apparent effective masses for the calculated
magnetization~using the same material parameters valid for
a-~BEDT-TTF!2NH4Hg~NCS!4!. It is evident from Fig. 9
that the apparent effective masses determined from the cal-
culated magnetoresistance increase steadily with increasing
magnetic field, in a manner qualitatively similar to experi-
mental observations.3,4 In contrast, as discussed in Secs. III
and IV the apparent effective mass associated with the fun-
damental frequency of the magnetization is only slightly in-
creased.

Since the valuem*53 was used in the model calcula-
tions, we can therefore conclude that the apparent increase in
effective mass reflects the failure of the conventional LK
theory to describe the form of the temperature dependence of
the oscillations at high magnetic fields, and cannot be inter-
preted as a real increase of the effective mass. This apparent
effective mass depends not only on magnetic field, but also
on the degree of Landau level broadening. To illustrate this
point, in Fig. 9~circle symbols! we have also calculated the
apparent effective mass for the same material parameters, but
with the scattering rate reduced by 25%.

A higher apparent effective mass indicates that the oscil-
lations have a much stronger temperature dependence than
predicted by the LK theory. To further illuminate this point,
Fig. 10~a! shows the actual temperature dependence of the
amplitude of the fundamental frequency of the numerically
calculated magnetoresistivity@determined over the field in-
terval shown in Fig. 8~b!#. For comparison, Fig. 10~a! also
includes the amplitude according to the LK prediction. The
numerically calculated amplitude has been renormalized to
that of the LK prediction at higher temperatures, where the
two agree.@Such agreement is not unexpected; from Eq.~21!
it is evident that at low magnetic fieldsg̃2D/ḡ2D!1#. From
Fig. 10~a!, it is clear that the additional temperature depen-
dence responsible for the ‘‘enhanced’’ effective mass occurs
at the lower temperatures, and is due to a strong increase in
the magnetoresistance peaks. This effect is unique to the lon-
gitudinal magnetoresistance owing to the fact that it becomes
divergent when the chemical potential is situated in~or close
to! the gap between adjacent Landau levels.

Finally, Fig. 10~b! compares the calculatedp-p magne-
toresistancerp2p/r0 and the measuredp-p magnetoresis-
tance of Ref. 3. The close agreement between the two illus-
trates that Eqs.~20! and ~21! provide a good approximation
for the behavior of the magnetoresistance ofa-phase BEDT-
TTF salts. There exists, however, a scaling factor between

FIG. 9. The apparent effective masses versus magnetic field
obtained by fitting the LK temperature reduction factorRT to the
calculated magnetoresistance~filled squares! and the calculated
magnetization~open squares! for a-~BEDT-TTF!2NH4Hg~NCS!4.
To illustrate that the apparent effective mass is sensitive to other
parameters such as the scattering rate, we have also plotted the
apparent effective mass for the identical system but witht21 re-
duced by 25%~filled circles!. The inset shows an example of a
calculated magnetoresistance trace at 0.4 K.
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measured and calculated values ofrp2p/r0, which may be
due to additional series resistances or voltages contributing
to the measured signal. Additional nonoscillatory series re-
sistances could, for example, originate from layers of the
sample which are damaged or have a higher impurity con-
tent.

VI. SUMMARY

Using a combination of numerical methods and simple
physical models, we have been able to account for the de-
partures from conventional LK behavior which have been
observed recently in the quantum oscillations of organic con-
ductors in high magnetic fields. The calculations are based
on the thermodynamics of an ideal 2D electron gas, which is
found to be appropriate at high magnetic fields~B.20 T!.
The advantage of the numerical calculations is that both the
effects of finite temperature and Landau level broadening can
be correctly included, which has so far not been possible in
analytical calculations. The effect of the pinning of the
chemical potential to the Landau levels is found to have a
dramatic effect on the sign and temperature dependence of
the harmonics of the magnetization oscillations, and provides
an explanation for the apparent low effective masses which
have been observed for the harmonics in the high field state
of a-~BEDT-TTF!2KHg~NCS!4.

2 Furthermore, the presence
of additional states in the Q1D portion of Fermi surface is

found to have a pronounced influence on the wave form of
the oscillations. Comparison of the numerical calculations
with real measurements2 provides an opportunity to estimate
the DOS associated with the Q1D portion of Fermi surface,
which otherwise could not be measured.

A further result which emerges from the analysis is that
whilst the wave form of the oscillations is significantly per-
turbed by the effects of an oscillatory chemical potential, the
peak to peak amplitude of the free energy is independent of
this, and also therefore independent of the size of the DOS of
the Q1D portion of the Fermi surface. This provides a pro-
cedure by which the true effective mass and quasiparticle
scattering rates can be extracted from experimental data,
even in extreme 2D systems in high magnetic fields.

The main features of the longitudinal magnetoresistance
in quasi-two-dimensional organic conductors at high mag-
netic fields can be understood in terms of theories for the
conductivity which are normally applicable to semiconductor
superlattices.29 In particular, the strongly peaked~or diver-
gent! behavior of the magnetoresistance oscillations at high
magnetic fields and low temperatures are due to the chemical
potential lying in~or close to! the gap between two adjacent
Landau levels. The relatively short interval~in 1/B-space!
over which the chemical potential is situated in~or close to!
the gap is responsible for the sharpness of the oscillation
maxima. We believe that it is this effect which is responsible
for the anomalously high apparent effective masses which
have been observed in recent magnetoresistance measure-
ments on thea-phase organic conductors in high magnetic
fields.3,4

Note added in proof. After going to press we learned of de
Haas–van Alphen measurements carried out on
u-~BEDT-TTF!2I3 in magnetic fields of up to 25 T.34,35 The
Fermi surface of this material consists solely of a quasi-two-
dimensional cylinder and the samples studied have very long
scattering times. Consequently, the de Haas–van Alphen os-
cillations appear as a series of very sharp ‘‘saw teeth,’’ sat-
isfying similar to the predictions of the numerical calcula-
tions shown in the upper part of Fig. 3 (g1D50). We thank
Professor M. Tokumoto for pointing out these experimental
data.
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