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Nuclear-spin-lattice relaxation time measurements were made on29Si nuclei in a series of 2:1 natural clay
minerals. The magnetization recovery was found to be nonexponential. The nuclear relaxation arises from
coupling to fixed paramagnetic impurities in the absence of spin diffusion. A theory is developed in which the
nuclear spin relaxation behavior is expressed as an error function. These clays have very similar structures
which allow the relative concentration of paramagnetic centers to be obtained from the fit of the magnetization
recovery curves.@S0163-1829~96!03137-2#

I. INTRODUCTION

In the early stages of NMR Bloembergen proposed the
concept of nuclear relaxation via spin diffusion to paramag-
netic impurities to explain the abnormally short spin-lattice
relaxation times observed.1 Independently de Gennes2 and
Khutsishvili3 developed the concepts and mathematical
equations for spin difusion to relaxation centers, obtaining
the same results from slightly different starting assumptions.
Since those days, the concepts of spin diffusion, exponential
recovery of magnetization, and expressions forT1 under
conditions where spin diffusion operates are now well under-
stood and established. The relaxation rate is proportional to
the impurity concentration, to the spin-diffusion coefficient,
and to the relaxation length, whose value depends on the
behavior of the nuclear spins in the vicinity of the paramag-
netic centers. Nuclear-spin-lattice relaxation via paramag-
netic centers in the absence of spin diffusion is not as well
developed. Blumberg4 developed a model which predicts
that the nuclear magnetization grows ast1/2 following satu-
ration of the nuclear spins, wheret is the time after satura-
tion. More recently, Tse and Lowe5 followed by Tse and
Hartmann6 developed a multirelaxation-center model with
suppressed spin diffusion. Their theory predicts that the spin
system ultimately relaxes as exp@2(t/t1/2)#. This expression
reduces to Blumberg’st1/2 result at short times. This theory
has been extended to one- and two-dimensional systems by
replacing the 1/2 exponent byn, i.e., exp@2(t/t)n#, resulting
in a model generally known as a stretched exponential
model. The stretched exponential has been successfully used
to fit the spin-lattice relaxation of several different systems
containing paramagnetic impurities.7–9The value ofn ranges
between 0.5 and 1. Higher levels of fixed impurities should
tend to a limiting n50.5 stretched exponential relaxation
which agrees with Tse’s6 theory.

In this manuscript, we use approximations originating
with Fedderset al.10 to describe the relaxation of a spin-1/2
system in the absence of spin diffusion. In Fedders original
work, the experimental system of interest was relaxation by
rapidly relaxing protons or deuterons but the concept equally
applies to relaxation by paramagnets.

The physical model for Blumberg’s,4 Tse’s,5,6 Fedders,10

and our work is the same. The system consists of dilute,
randomly distributed, fixed relaxation sinks~paramagnets!.

The nuclear spins must interact only weakly between them-
selves so nuclear spin diffusion is effectively quenched. This
means that they must be separated by large distances due to
structure or magnetic dilution or must have very weak mag-
netic moments. Thus the primary nuclear relaxation is
through direct coupling between the nuclei and the paramag-
nets. Within this physical system, one arrives at an equation
similar to our Eq.~10a! ~vide infra!, Eq. ~12! in Blumberg,4

and Eq.~6! in Tse and Hartmann.6 The difference lies in the
approximations used to make this equation integrable. In our
work, we assume that the nucleus couples only to the nearest
paramagnetic center while Tse assumes that it couples to all
paramagnets in the volume of the sample. We predict that the
magnetization recovery is an error function.

Philosophically, we would like to point out that math-
ematical models for relaxation in these slowly relaxing sys-
tems are truly just models. The stretched exponential model
is a perfectly good model with its implicit model dependen-
cies and assumptions. Our single relaxation center model is
simply another way for an experimentalist to treat magneti-
zation recovery data. The disadvantage to our model is that it
may oversimplify the physics by considering only the nearest
paramagnetic center. However, the stretched exponential
function contains two highly correlated parameters,t and
n, in the exponential. Neither model is unique and ‘‘good-
ness of fit’’ cannot be used as proof of correctness because it
is clear that one can obtain a good fit with a polynomial with
sufficient terms but such an equation would give no physical
insight into the spin system considered. The advantages and
disadvantages of these models will be further discussed in
Sec. VI.

Our model was developed as the result of work on natural
clay minerals which contain paramagnetic impurities, par-
ticularly Fe31 and/or Fe21. To test the theory, we selected
several clays which are chemically representative of the 2:1
layer silicates with varying amounts of paramagnetic iron.
The structure of an idealized 2:1 layered clay can be de-
scribed as a layer of octahedrally coordinated cations sand-
wiched between two layers of tetrahedrally coordinated sili-
con atoms. The tetrahedra and octahedra have oxygen as the
charge balancing anions. Aluminum is the usual octahedral
action in which case, for charge balance, one-third of the
octahedral sites are vacant. Since each half unit cell contains
three octahedral sites these are referred to as dioctahedral
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clays. Trioctahedral silicates are constructed from divalent
octahedral cations, usually magnesium, thus all three octahe-
dral sites are occupied. Some of the octahedral cations may
be naturally replaced by Fe21 or Fe31. In this description,
the layers are electrically neutral but isomorphous replace-
ment of cations confers a net negative charge, e.g., replace-
ment of Si41 by Al 31 in the tetrahedral layer or Al31 by
Mg21 in the octahedral layer. The negative charge is com-
pensated by interlayer cations, usually Na1, K1, or Ca21.
We had originally embarked on a study of Li1 exchange and
diffusion in clays but discovered that it was critical to under-
stand the general properties of nuclear relaxation due to the
paramagnetic ions in these clay minerals. We chose to study
the magnetization recovery of29Si, instead of7Li because
29Si is a simpler spin system with an angular moment of
h/4p and thus no electric quadrupole moment to complicate
the nuclear spin relaxation. Additionally,29Si is only 4.70%
abundant which makes it a magnetically dilute nucleus.
Therefore each29Si nucleus is essentially isolated and spin
diffusion between29Si sites in the clay is negligible.

There are several other NMR experiments reported in the
literature where relaxation by paramagnets has been effec-
tively exploited. In particular, Devreux and co-workers11 de-
veloped a theory for obtaining fractal dimensionality from
the detailed magnetization recovery of29Si in synthethc sili-
cates. Sen and Stebbins12 used this theoretical approach to
obtain fractal dimensionality and information about phase
separation in glasses. These approaches are natural out-
growths of the work by Tse.

II. EXPERIMENTAL SECTION

A. Samples

Measurements were made on five natural clay minerals
and a synthetic barasym sample. All samples were obtained
from the Source Clay Repository of the Clay Minerals Soci-
ety except the talc sample which was obtained from Malink-
rodt Chemical Company. Table I lists representative chemi-
cal analysis, localities, and structural formulas for these
samples. Samples have iron contents ranging from 0.3

31019 to 931019 cm23. Hectorite~SHCa-1! is a trioctahe-
dral smectite with layer charge developed by the substitution
of Li 1 for Mg21 in the octahedral sheet. This material con-
tains carbonates as impurities which must be removed prior
to sedimentation of the clay fraction. A 10 g sample of
SHCa-1 was treated with pH55, sodium acetate/acetic acid
buffer to remove carbonates. The sample was washed with
deionized water to remove excess salts. The resulting
SHCa-1 clay was Na1 exchanged by several washes with
0.5 M NaCl and then washed free of excess salt by repeated
centrifugation with deionized water. The,2mm size frac-
tion was collected by centrifugation. The montmorillonite
samples, SAz-1, SWy-1, and STx-1, are dioctahedral smec-
tites with Al31 partially substituted by Mg21. The layer
charge ranges from 0.2 to 0.6, and most of the charge is
located in the octahedral layer. Na1 exchanged montmoril-
lonites were prepared using the procedure described for hec-
torite, except that these samples have negligible carbonate
content and were not washed with the buffered acetic acid.
Barasym is a pure synthetic dioctahedral clay with Si41 par-
tially substituted by Al31. Thus the layer charge is located in
the tetrahedral layers. The interlayer cation was exchanged
for Na1 using the same procedure described above. Talc is a
trioctahedral 2:1 clay with negligible layer charge. The
sample was used as received because it has a very small
exchange capacity. All samples were dried in a 60° C oven
overnight and then powdered in a mortar and pestle and
stored over phosphorus pentoxide for at least three days to
dry. The reason for careful and reproducible sample drying is
that these clays contain interlayer water which may provide
additional relaxation mechanisms via dipolar couplings to
mobile protons in the water. Although the procedure de-
scribed does not remove all water of hydration, the remain-
ing water is immobile and does not produce significant re-
laxation.

B. NMR procedures

The 29Si MAS NMR spectra were recorded on a Varian
Unity 400 Spectrometer operating at 79.459 MHz. A Varian

TABLE I. Characteristics of the 2:1 layer silicate samples used in this study. The symbolx1 in the
structural formula indicates a monovalent interlayer cation.

Mineral Origin Structural formula Impurity
name ~unit cell! concentrationNp in

1019 cm 23

SWy-1 Wyoming ~Si7.84 Al 0.16) ~Fe0.43 Al 3.17 9.24
Mg0.40) O20 ~OH!4 x0.68

1

SAz-1 Cheto, Arizona ~Si7.86 Al 0.14) ~Fe0.16 Al 2.84 3.53
Mg1.00) O20 ~OH!4 x1.14

1

STx-1 Texas ~Si7.84 Al 0.16) ~Fe0.07 Al 3.53 1.52
Mg0.40) O20 ~OH!4 x0.56

1

SHCa-1 Hector, ~Si7.98 Al 0.02) ~Al 0.04 Mg5.19 Li 0.66 2.02
California Fe0.11) O20 ~OH!4 x0.66

1

Talc Malinkrodt ~Mg3.81 Fe0.19) Si8 O20 ~OH!4 4.10
Chem. Company

Barasym NL ~Si6.4 Al 1.6) ~Al 3.98 Fe0.016) O20 0.34
SYN-1 industries ~OH!4x1.6

1
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MAS probe was used, with 7 mm rotors and spinning speeds
of about 6.2 kHz. Spectra were obtained with 2048 data
points, and a spectral width of 100 kHz. The 90° pulse width
was;6 ms. The inversion recovery method~180°2t290°!
was used for magnetization recovery experiments. Approxi-
mately fifteen recovery delays,t, were used ranging from
0.001 to 65 s. For each delay,;128 scans were accumu-
lated. For the montmorillonite SWy-1 sample, 4096 tran-
sients were collected per delay because of the poor signal to
noise ratio. The delay times,t, for the barasym sample var-
ied between 0.032 to 1048 s because of the slow magnetiza-
tion recovery in this sample. The recycle delay, between rep-
etitions of the inversion recovery pulse sequence, ranged
from 3 to 300 s depending on the magnetization recovery
rate for the particular sample. Chemical shifts were obtained
using tetramethylsilane as an external standard.

C. EPR spectroscopy

The spectrum of the sample with the highest concentra-
tion of iron ~SWy-1! was recorded on a Bruker ER 200
D-SRC EPR sepctrometer operating at 9.6 GHz.

III. BLUMBERG’S MODEL „NO SPIN DIFFUSION…

Blumberg4 proposed a model of a diffusionless spin sys-
tem relaxed by paramagnetic impurities. We use essentially
the same model but use different assumptions in the math-
ematical treatment and arrive at slightly different equations.
Since elements of Blumberg’s model are required in our
treatment we will summarize his description.

The system is described by very dilute paramagnetic im-
purities and nuclei with a large internuclear spacing or which
are magnetically dilute. He defines a barrier radius,b, as the
distance from the paramagnetic ion at which the magnetic
field due to the paramagnetism is equal to the local dipolar
field of the crystal. Nuclear spins within the barrier radius are
shifted and broadened so they do not contribute to the NMR
line and since they have different local fields, they do not
undergo mutual spin flips with neighboring spins. If the cor-
relation time for the electron spin,tc@T2, the transverse
relaxation time of the nucleus, thenb is given by

b5~mp /mn!
2/3a, tc@T2 . ~1!

When the reverse obtains, thez component of the electron
spin is motionally averaged andb is

b5~mP
2Bo /mnKT!1/3a, tc!T2 , ~2!

wherea is the characteristic lattice spacing between nuclei,
mn andmp are the nuclear and electron magnetic moments,
respectively,Bo is the applied magnetic field,tc is the cor-
relation time for the paramagnetic ion, andT2 is the trans-
verse relaxation time of the nucleus.

If the internuclear distances are large or the nuclei are
magnetically dilute, the effect of spin diffusion is negligible.
Thus the only change in nuclear magnetization is due to
direct interaction with the paramagnet which is assumed to
be a dipole-dipole interaction withr23 dependence. After
saturation or inversion, the nuclear magnetization grows by
direct relaxation with an initial rate proportional tot1/2,
wheret is the time after saturation. At very long times after

saturation, spin diffusion will start to contribute to the recov-
ery of magnetization, i.e., spin diffusion cannot be com-
pletely eliminated but it is negligible compared to direct re-
laxation at short times. Blumberg’s formula for the initial
magnetization recovery is

MZ~ t !5~4p3/2/3!NpC
1/2t1/2, when t.b6/C, ~3!

whereNp is the number of paramagnetic centers per unit
volume andC is a constant,

C5
3

2
gp
3gn

2S h

2p D sin2u cos2uS~S11!
2tc

11~vn
2tc

2!
, ~4!

whereu is the angle between the line joining the nucleus and
the paramagnet and the applied field direction,gn andgp are
the magnetogyric ratios of the nucleus and the paramagnet,
respectively.S is the spin quantum number of the paramag-
net,tc is the longitudinal electron relaxation time, andvn is
the Larmor frequency of the nucleus. The radial dependence
in Eq. ~4! is much stronger than the angular one so the an-
gular dependence can be neglected resulting in a simplified
equation:

C̄5
2

5
gp
2gn

2S h

2p D 2S~S11!
tc

~11vn
2tc

2!
. ~5!

Blumberg noted that it is possible to computeC̄ from a
nuclear magnetization recovery experiment and thus deter-
mine the electronic relaxation,tc , for the paramagnetic cen-
ter without doing a paramagnetic resonance experiment.

IV. SINGLE RELAXATION CENTER MODEL

The general diffusion equation to be solved for the behav-
ior of the nuclear spin system is1

]p

]t
5D¹2p2C̄~p2p0!S (

n
R2RnD 26

22Ap , ~6!

wherep(R,t) is the magnetization of a nuclear spin located
at a pointR, po is the thermal equilibrium value ofp, and
D is the spin-diffusion coefficient. It will be assumed that the
nuclear spins and the paramagnetic centers occupy fixed po-
sitions in space, i.e., there is no physical diffusion. The term
C(R2Rn)

26 represents the probability of transition due to
the nth impurity. Finally, the last term, 2Ap, is the probability
of transition due to a saturating radiofrequency field. The
constantC̄ is defined as in Eq.~5!.

If spin diffusion is negligible and in the absence of a
radiofrequency excitation equation~6! reduces to

]p

]t
5C̄~p2p0!S (

n
uR2Rnu D 26

. ~7!

The physical model used assumes that the paramagnetic cen-
ters are dilute and homogeneously distributed throughout the
sample. The simplifying assumption is made that each
nucleus under consideration is dipole coupled only to the
nearest paramagnet. This is justifiable in a system with very
dilute paramagnets and because of the strongr23 depen-
dence of the dipole coupling. Then, we can consider that
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each paramagnet influences all nuclei within a sphere with a
radius which is one-half the distance to the next paramagnet,
i.e., an average radiusR:

R5S 3

4pNp
D 1/3, ~8!

whereNp is the number of paramagnetic centers per unit
volume. In reality, the impurities are distributed randomly
over the lattice. If we now take the origin as the paramag-
netic center, the solution to Eq.~7! is

p02p~r ,t !5np0exp~2C̄t/r 6!, ~9!

where r is the distance of the nucleus under consideration
from the nearest paramagnetic center andn is equal to 1 or 2
depending on whether it is a saturation recovery or inversion
recovery experiment, respectively.

Conceptually, we note that the magnetization recovery of
a given nucleus is dependent on its distance from the nearest
paramagnet. Thus there is a distribution of exponential mag-
netization recovery rates and the overall nuclear magnetiza-
tion recovery will be nonexponential. The total magnetiza-
tion MZ(t) at any time is given by the following equation:

Mz~ t !5E p~r ,t !dv. ~10a!

As noted in the Introduction, this integral cannot be solved
analytically without making simplifying assumptions. Our
assumption of a single relaxation center places limits on the
integral from the barrier radius toR, the point at which the
next paramagnetic center becomes the relaxation center,

Mz~ t !

M0
52nKE

b

R

exp~2C̄t/r 6!4pr 2dr11. ~10b!

In this solution,M0 is the observed equilibrium magnetiza-
tion, the radius,b, is the barrier radius defined in Blumberg’s
model andK is a constant to be determined. The local field
due to the paramagnetic center broadens the NMR line for
nuclei within the critical radius,b, to the extent that their
contribution to the measured NMR signal is negligible. The
main difference between this model and Blumberg’s calcu-
lation is that the limits of the volume integral in Eq.~10b! are
different. In his model, the integral is carried out over the
entire crystal, excluding only nuclei that are inside the radius
b. Tse and Hartmann6 evaluated an integral similar to that in
Eq. ~10b!. However, in their model, they consider that all
impurity sites are important to the problem. They obtain a
complicated expression that reduces to exp@2(t/t1)

1/2# when
b→0, where (t1)

21/25(2.31p3/2NpC
1/2). The exponential

has been further generalized to exp@2(t/t1)
n#. This expres-

sion, known as a stretched exponential, has been used re-
cently to fit the relaxation of a nuclear spin system by para-
magnetic inpurities.7

For simplicity in the derivation below, we define two pa-
rameters:

a[C̄/b6 and c[b3/R3.

We note that the barrier radius,b, and the coupling constant,
C̄, are independent of the concentration of paramagnetic cen-

ters in the sample. Therefore,c is the only parameter that is
a function of the number of paramagnetic centers:

c5~4p/3!b3Np . ~11!

When t50, Eq. ~10! reduces to

Mz~ t !

M0
52nK

~12c!

Np
11. ~12!

Thus, to normalize Eq.~12!,

K5
Np

~12c!
.

The solution to Eq.~10! yields the magnetization at any time:

Mz~ t !5M0@12nG~ t !#, ~13a!

where

G~ t !5
cAat

12c
$F~cAat !2F~Aat !% ~13b!

and the functionF is defined as

F~s!5
exp~2s2!

s
1Ap erf~s!. ~13c!

In this notation, erf~s! is the standard error function. The
experimental data can be fit to these equations to estimate the
paramagnetic concentration,c, and the relaxation rate,a. In
general, we get excellent fits to these equations.

Since the magnetization within the barrier radius is not
observable, Eq.~13b! results in the constraint thatat.1.
The magnetization recovery is nearly complete when
c2at;2. When the concentration of paramagnets,c, is
greater than 0.2, a fit of the nuclear magnetization recovery
data provides a reasonable estimate of the paramagnetic re-
laxation rate,a, and concentration,c. However, the magne-
tization recovery does not fit the equations at very short
times. In a standard NMR saturation recovery experiment,
Eq. ~13a! reduces to Blumberg’s result whenb→0. Expand-
ing Eq. ~13a! and only keeping the constant and terms in
Aat results in

Mz~ t !'M0cApat ~14a!

or

Mz~ t !5M0S 4p3/2

3 DNpC̄
1/2t1/2. ~14b!

Also, there is a large magnetization at very short time.
Therefore, using Blumberg’s expression for largec without
accounting for the magnetization offset results in underesti-
mation ofc2a.

V. RESULTS AND DISCUSSION

A. Fitting the NMR data to different magnetization
recovery functions

Equation~13! above and the stretched exponential func-
tion are slightly different mathematical models, resulting
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from different assumptions in the mathematical solution for
nuclear magnetic relaxation due to coupling to dilute para-
magnetic impurities. Both can be used to described magne-
tization recovery in an NMR experiment. In Fig. 1, we plot
the magnetization recovery of29Si in hectorite and the non-
linear fits from Eq. ~13!, a stretched exponential with
n50.5, a ‘‘normal’’ exponential recovery, and a recovery
with t1/2. It can be seen that both the stretched exponential
and erf~s! functions do a credible job of fitting the data.
However, we should point out that Eq.~13! might not be a
good function to fit data whenat@1. In this case, the term
F(Aat) in Eq. ~13c! is essentially equal to 1 and conse-
quently thus the parametersa andc are very dependent on
one another. Similarly with the stretched exponential func-
tion, the values oft1 andn are often strongly correlated, so
there may be large errors in both parameters.13 One thing is
clear from Fig. 1: the magnetization does not follow an ex-
ponential recovery, indication that spin diffusion is not the
major mechanism for the overall relaxation process. Addi-
tionally, thet1/2 function works well at short recovery times
but not well at long recoveries, as is implicit in the assump-
tions in Blumberg’s derivation.4

Nonexponential relaxation is also known in the general
literature of chemical reactions and other physical relaxation
process in disordered systems such as glasses.14,15As an ex-
ample, Siebrand and Wildman14 relate nonexponential de-
cays to structural disorder. They propose an equation to de-
scribe the relaxation in disordered systems that is very
similar to the stretched exponential function, except at short
times. In the case considered in our work, the random distri-
bution of fixed paramagnetic centers introduces a structural
disorder. Since the electron-nuclear interaction is distance
dependent (1/r 3) and there is a distribution of nuclear-
paramagnet distances there will be a distribution of spin-

lattice relaxation times; one for each nuclear-paramagnet dis-
tance. Therefore the nonexponential relaxation is interpreted
as a linear superposition of exponentials, each arising from a
particular Si-paramagnet distance.

B. Dependence of the nuclear-spin-lattice relaxation time
on paramagnet concentration

The 29Si MAS-NMR spectra of all samples studied have a
single peak ranging from283 to298 ppm~except for bara-
sym!, depending on the sample. This suggests the existence
of only one environment for the Si atoms. The difference in
chemical shift between the samples is a consequence of both
structural distortions in the tetrahedral sheets and composi-
tional variations in the octahedral sheet.16 Chemical shifts
due to the composition of the octahedral sheet are the con-
sequence of substitutions, for example, the montmorillonites,
SAz-1, STx-1, SWy-1, have layer charges due to Mg21 sub-
stitution for Al31 in the octahedral sheet, while hectorite has
Li 1 partially substituting Mg21 as the octahedral cation.
Weisset al. discussed the effects of structural distortions on
29Si chemical shifts.16 These structural distortions can be
relatively large and arise because tetrahedral sheets are larger
than the octahedral ones and must be distorted to match at
the shared oxygen planes.17 Aluminum substitution in the
tetrahedral layer increases the distortion by increasing the
ideal dimensions of the tetrahedralb axis. In calculating
Np, the concentration of paramagnetic centers per cm3, we
have considered structural differences between the samples.
Although small, the structural differences change the volume
per unit cell and thus affect the concentrations significantly.
Unit cell dimensions,a, b, c axes, are taken from the
literature.16,18,19

The 29Si MAS-NMR spectrum of barasym has three com-
ponents at283,288, and292 ppm. Since all of the layer
charge in barasym is due to Al substitution in the tetrahedral
sheet, there exist four possible distinct environments for Si,
i.e., SiO4 surrounded by three SiO4, two SiO4, and one
AlO 4, one SiO4 and two AlO4, and three AlO4. These sites
have chemical shifts which increase in field~larger negative
values! as the number of Al next nearest neighbors
increases.20 In barasym the Si/Al ratio per unit cell is near 4
so statistically, the probability of an Si with three AlO4
neighbors is very low. Figure 2 shows29Si spectra of bara-
sym and talc. Talc has no Al substitution in the tetrahedral
layer and consequently all Si atoms have three Si next neigh-
bors, and a single29Si peak at298 ppm. The NMR lines for
talc are broader than for barasym due to a distribution of
dipolar couplings to the paramagnets.

The magnetization recovery curves for all clay samples
studied exhibited nonexponential decay. Results of the inver-
sion recovery experiments for these clay minerals are shown
in Fig. 3. The ordinate of Fig. 3 isMZ(t)/MZ(o), where
MZ(o) is the signal intensity at equilibrium mangetization.
The abscissa is plotted on a logarithmic scale. This method
of plotting the data is useful to see deviations from exponen-
tiality at short recoverty times. The sample with the highest
paramagnetic concentration, SWy-1, contains almost 27
times more iron than that with the lowest paramagnetic con-
centration~barasym!, and the recovery times span four de-
cades in magnitude. Although the29Si NMR spectrum of

FIG. 1. Magnetization recovery vs log10 of time in a
29Si inver-

sion recovery experiment with hectorite. The open circles are the
experimental data. Curves representing the fit ofMZ(t) were ob-
tained using four different functions: (2•2•2) 5 single exponen-
tial , ~—! 5 Eq. ~13!, (222) 5 stretched exponential, and
@•••#5t1/2.
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barasym shows three peaks, they all have the same ‘‘spin-
lattice relaxation time.’’ The six experimental curves were
nonlinearly fit to Eq.~13! using IGOR.21 The parametera
should not depend on the paramagnetic concentration and
although there are structural differences between dioctahe-
dral and trioctahedral samples,a is primarily related to mi-
nor structural differences in angles, not distances@see Eq.
~4!#. Therefore, we helda fixed between fitting the different
curves in Fig. 3. The best value ofa that fits all samples,
especially those with relatively high paramagnetic concentra-
tion, isa5280 s21. In addition, the fit of each curve gives a
different value for the parameterc, which is related to the
number of paramagnetic centers per unit volume. Figure 4
contains the values ofc at 300 K plotted against the concen-
tration of paramagnets obtained from chemical analyses,
Np . The dependence is approximately linear. From Eq.~11!
the dependence should be linear with a slope of (4p/3)b3.
From this data, we obtain a value for the barrier radius,b, of
the order of 10 Å. Using the value for the barrier radius,b, it
is possible to estimate a value for the coupling constantC̄.
Since this factor involves the electron relaxation timetc as
the only unknown, it may be used to obtaintc . Using Eq.
~5!, C̄ and tc are calculated to be 2.8310240 cm6/s and
831029 s, respectively.

There are a number of relevant observations about the
paramagnetic relaxation in these systems. First, we assume
that all of the iron in the chemical analysis of the samples
except talc is in the form of Fe31. Several papers in the
literature indicate that such is the case.22-24However, assum-
ing that the iron in talc is all in the ferric state made it an
outlier on Fig. 4. A more careful analysis of the iron in talc
resulted in an Fe21 concentration of 2.731019/c.c. and
Fe31 of 2.231019/c.c. There are several EPR studies of
clays, none of which explicitly addresses the question of the
electron relaxation times.25,26 However, there are clear sig-
nals from Fe31 and no signals from Fe21 because the relax-
ation time for the latter is extremely short. In an NMR ex-
periment where the nuclear relaxation is determined by
dipole coupling to a paramagnet and the time dependence
causing relaxation is the relaxation of the paramagnet, the
most effective nuclear relaxation occurs when the paramag-
netic relaxation time is approximately the same as the

nuclear Larmor frequency (T1 minimum!.27 Thus Fe21 is
not an effective relaxation center for29Si nuclei because the
electron relaxation times are too short. We have only in-
cluded the concentration of Fe31 in Fig. 4 and subsequent
calculations. The electronic relaxation time,tc , is the longi-
tudinal relaxation time which, to our knowledge, has not
been measured for clay systems such as these.

We can roughly estimate the electronT1 by assuming that
the longitudinal and transverse relaxation times are nearly
equal and that the transverse electronic relaxation time is
given by the linewidth of an EPR spectrum. We measured an
EPR spectrum of the most concentrated sample~SWy-1!
which consists of two peaks: a broad resonance atg52.0 and
a sharper signal atg54.2. In the literature, the resonance at
g54.2 is assigned to iron~III ! ions occupying distorted oc-
tahedral sites within the clay structure,28 whereas the broad

FIG. 3. Nuclear magnetization recovery vs log10 of time from
inversion recovery experiments for the six samples studied:~1!
barasym, (3) hectorite,~* ! STx-1, (h) SAz-1, (d) Swy-1, and
(s) talc. The solid lines represent the fit ofMz(t)/Mz(0) using Eq.
~13!.

FIG. 2. 29Si MAS NMR spectra of~a! bara-
sym and~b! talc.
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signal reflects Fe-O-Fe groupings within the lattice.25 The
linewidth of the sharper peak is about 380 g, so thattc is of
the order of 4.7310210 s. Although the agreement is not
perfect, this is reasonably close to the value of 831029 ob-
tained from the fit of the NMR magnetization recovery
curves using Eq.~12!. Part of the difference may arise be-
cause of inhomogeneous broadening in the EPR signal which
contributes to the total width but is not due to relaxation.

VI. CONCLUSIONS

The 29Si relaxation times in many materials, including
most minerals is likely determined by distant coupling to
paramagnetic centers. The dilute nature of29Si, due to both
isotopic and chemical dilution, means that spin diffusion will
be very limited. We propose a model to describe the nuclear-
spin-lattice relaxation through coupling to paramagnets

where the paramagnets are dilute and nuclear spin diffusion
is quenched. Using this model the recovery of nuclear mag-
netization is described by an error function rather than a
‘‘normal’’ exponential function. This model allows us to ob-
tain the relative concentration of paramagnetic centers from
the fit of the magnetization recovery curves. Tse and Hart-
mann used fewer simplifying assumptions in the mathemati-
cal treatment of the model for nuclear relaxation by coupling
to dilute paramagnets, in the absence of spin diffusion. Their
model results in a stretched exponential function for the
magnetization recovery. The primary difference between
their model and ours is the fact that they consider that a
given nucleus interacts with all paramagnets in the sample
while we restrict the interaction to the single nearest para-
magnet. Both the stretched exponential and error function
produce excellent fits to all of our data so there is no reason,
based in ‘‘goodness of fit’’ to select one over the other. We
believe that our model has certain advantages in that we can
extract the concentration of paramagnets from fitting the
NMR magnetization recovery curves. Additionally, in our
hands the stretched exponential function results in a high
correlation between two parameterst1 andn in the fit. This
means that good fits can be obtained with a very different
value of one parameter simply by changing the other one.
Thus it is difficult to assign physical meaning to these pa-
rameters. To take this a bit farther, this correlation between
parameters makes it difficult to obtain unique values of the
exponentn, which can be correlated to the fractal dimension
of the system. However, Tse and Hartmann’s assumption of
coupling to all electron spins in the sample may be more
physically realistic. To some extent the choice of which
model to apply is at the liberty of the experimentalist and
may depend on the detailed nature of the sample and what
physical interpretation or picture she would like to obtain
from the data.
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