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The possibility of macroscopic quantum-mechanical coherent oscillation between two chirality states of a
domain wall separated by the energy barrier due to a transverse anisotropy is quantitatively discussed. The
frequency of the oscillation is calculated for the case of weak transverse anisotropy. The chirality variable is
shown to be canonically conjugate to the position of the domain wall. The stronger the pinning of the domain
wall is, the more strongly the chirality fluctuates and the larger the frequency becomes.
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I. INTRODUCTION

A domain wall in a ferromagnet contains a
~semi-!macroscopic number of spins, the width of the wall
being 10;1000 Å, depending on the material. Being mac-
roscopic, the wall has usually been treated as a classical ob-
ject. For instance, the depinning of a wall from a pinning
center at high temperatures is described as a classical process
of the wall overcoming the pinning energy by the thermal
fluctuation. However, even for a macroscopic wall there
should be a finite probability of depinning due to thequan-
tumfluctuation. In fact this quantum depinning was theoreti-
cally studied four years ago and was shown to be probable at
sufficiently low temperatures.1,2 Experimental studies such
as measurements of magnetic relaxation3 and
magnetoresistance4 suggest that this phenomenon indeed oc-
curs at temperatures typically below a few Kelvin. The quan-
tum depinning has the significance of being a tunneling of a
macroscopic object.5,6 Possibility of a coherent tunneling
through a periodic pinning potential has also been discussed
recently.7

In addition to the translational motion, a domain wall can
have internal degrees of freedom because it has a spatial
structure. In the presence of a transverse anisotropy, two
types of stable walls are possible;right-handedand left-
handedwalls in which the spins rotate in the opposite senses.
These configurations are separated by the energy barrier due
to the transverse anisotropy. Thischirality is not a true in-
ternal degree of freedom such as the spin of a particle, since
as we shall see it is conjugate to the position of the wall.
Nonetheless, if a strong pinning is present, the chirality be-
haves as if it were a true internal degree of freedom of a
particle ~i.e., the wall! fixed at the pinning center. In this
case macroscopic quantum coherence~MQC! between the
two chiralities will occur, which is the subject of this paper.
It turns out that a strong pinning and weak transverse anisot-
ropy lead to strong fluctuation of chirality; observation of the
MQC will be easier in such cases. In particular experiments
with magnetic junctions where a thin layer of magnetic ma-
terial with strong anisotropy~such as SmCo5) is inserted
between magnets with moderate anisotropy~such as Ni!

would be interesting. In the opposite case of weak pinning
and strong transverse anisotropy, the position of the wall
may tunnel through a barrier owing to its large fluctuation;
this is the quantum depinning.

II. FORMULATION

We consider a ferromagnet consisting of a spinS of mag-
nitudeS at each site of a quasi-one-dimensional crystal, say
cubic, of lattice constanta. The magnet is assumed to have
an easy axis and a hard axis in thez and thex direction,
respectively, and to be described by the Hamiltonian

Ĥ52(
^ i , j &

J̃Ŝi•Ŝj2
1

2(i ~KŜz,i
2 2K'Ŝx,i

2 !1Vpin~$Ŝz,i%!,

~1!

where the indexi runs over the lattice sites,^ i , j & runs over
nearest-neighbor pairs, andJ̃ is the exchange coupling con-
stant, andK andK' are longitudinal and transverse anisot-
ropy constants, respectively, which incorporate the effect of
the demagnetizing field8 ~see the caption of Fig. 1!; J̃, K, and
K' are all positive. The last termVpin denotes an additional
localized anisotropy energy to be specified later. We shall
work with the functional-integral formalism9,10 by use of the
spin coherent state.11 The latter is denoted by

un&5~11uzu2!21/2exp~zŜ2!uS&, ~2!

where n is a unit vector (nx5sinu cosf,
ny5sinu sinf, nz5cosu), z[eiftan(u/2), and uS& is the
eigenstate ofŜz with eigenvalueS. These states form an
overcomplete set and possess, among others, the following
properties:

^nuŜun &5Sn , ~3!

^n8u~Ŝ•e!2un&

^n8un&
5S 12

1

2SD S ^n8uŜ•eun&

^n8un&
D 21 S

2
, ~4!

wheree is an arbitray unit vector. The last equation can be
derived, for instance, from Eq.~6.15! of Ref. 11, or can be
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read off the Appendix of Ref. 10. We shall be interested only
in those spin configurations whose scale of spatial variation
is much larger thana. Accordingly we arrive at the con-
tinuum Lagrangian

L5E d3x

a3 F\Sḟ~cosu21!2H JS22 ~¹n!21
1

2
KSSS2

1

2D
3sin2u1

1

2
K'SSS2

1

2D sin2u cos2fJ G2Vpin@u#, ~5!

which is to be used in the functional integral. HereJ[ J̃a2,
(¹n)2 is to be read as (¹u)21sin2u(¹f)2, andVpin@u# is a
functional of u which comes from the last term ofĤ. The
factor of (S2 1

2) in the anisotropy-energy terms ensures the
vanishing of the anisotropy energy for the case ofS5 1

2; in
that caseŜx

25Ŝy
25Ŝz

25 1
4 in the operator formalism. A quasi-

one-dimensional magnet being in consideration, we shall ne-
glect the spatial variation over the cross section, which is
taken to lie in theyz plane.

We consider only the case of weak transverse anisotropy,
a[K' /K!1, and study the dynamics to the lowest order in
a. To O(a0) and in the absence ofVpin , our model has a
static domain wall of widthl[$JS/K(S2 1

2)%
1/2 as a classi-

cal solution. ~Since we are considering a quasi-one-
dimensional magnet, it is a planar wall lying in theyz plane.!
The solution centered atx5Q is given by u5u0(x2Q),
f5f0, where

cosu0~x!5tanh
x

l
, sinu0~x!5

1

cosh
x

l

, ~6!

andf0 is an arbitrary constant.f0 is a quantitative measure
of the chirality of the domain wall with respect to thex axis;
the wall is maximally right handed iff05p/2 and maxi-
mally left handed iff052p/2, while it has no chirality if
f050 ~Fig. 1!.

Fluctuation aroundu0 can be expanded in terms of the
eigenmodes$hn(x)% obeying the Schro¨dinger-type eigen-
value equation

@2l2¹21cos2u0~x!#hn~x!5vn
2hn~x!, ~7!

with $vn
2un50,1,2, . . .% being eigenvalues. The lowest

modeh0(x) is a zero mode (v050) corresponding to the
uniform translation of the wall, and is given by¹u0(x).
Thus the fieldu can be expressed in the form

u~x,t !5u0@x2Q~ t !#1S8cn~ t !hn@x2Q~ t !#, ~8!

whereS8 denotes summation over positive modes (n>1).
The wall center Q as well as the real coefficients
$cnun51,2, . . .% are now regarded as dynamical variables.12

Similarly we decomposef into a certainweighted spatial
averagef0 and fluctuation around it as

f~x,t !5f0~ t !1w@x2Q~ t !,t#, ~9!

and regardf0 and w as dynamical variables. The variable
f0 is the collective coordinate representing the chirality of
the domain wall. By the weighted spatial average, we mean
that

f0~ t ![E dx

a
f~x,t !sin2u0@x2Q~ t !#, ~10!

or equivalently

E dx

a
w~x,t !sin2u0~x!50. ~11!

Use of an average weighted over the wall rather than a uni-
form average is reasonable, since the behavior off far away
from the wall, whereu;0 or p, should be irrelevant. The
virtue of the particular weight adopted above shall be ex-
plained shortly.

Putting Eqs.~8! and ~9! in the Lagrangian and keeping
terms up to the second order in fluctuations and the first
order ina andVpin , we obtainL5L01L1 with

L0[2
\SN

l
Qḟ02

1

2
KSSS2

1

2DNa cos2f02Vpin~Q!,

~12!

L1[2
1

4
KSSS2

1

2DNS8vn
2cn

2

2E d3x

a3 F\Sẇ~x!sinu0~x!S8cnhn~x!

1
1

2
JS2@¹w~x!#2sin2u0~x!

1\SH 12 ḟ0@S8cnhn~x!#2cosu0~x!2Q̇S8cnhn~x!

3@¹w~x!#sinu0~x!J G , ~13!

where Vpin(Q)[Vpin@u0(x2Q)#, which acts as a pinning
potential for the center of the domain wall, and

FIG. 1. Domain walls with three chiralities;~a! right-handed wall
(f05p/2), ~b! left-handed wall (f052p/2), and~c! wall with no chirality
(f050). Circles in~a! and ~b! drawn to guide the eye lie in theyz plane,
while the spins lie in thezx plane in~c!. The quasi-one-dimensional direc-
tion of the crystal is here aligned with the spin hard axis for ease of visual-
ization. A different alignment, which may be the case for a real magnet,
does not affect the content of the text; for instance, one would rotate all the
spins byp/2 around they axis if the dominant anisotropy originates from
the demagnetizing field.
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N[*(d3x/a3)sin2u0(x)52Al/a3 (A being the cross sectional
area of the wall! is the number of spins in the wall. Terms of
the first order inw and$cn% are absent by virtue of Eq.~11!.

In so far as we are interested in low-frequency motions of
f0 andQ, the last two terms ofL1 may be neglected. Thus
L0 andL1 are mutually decoupled. Therefore the dynamics
of Q andf0 can be discussed withL0 alone.

The first term of Eq.~12! indicates thatf0 andQ are
canonically conjugate to each other. If the pinning is weak
and the transverse anisotropy is strong,f0 may be integrated
out by use of the Gaussian approximation to yield an effec-
tive Lagrangian forQ.1,2,5,7 By contrast in this article we
focus attention on the opposite case of a strong pinning and
a weak anisotropy. The inertial mass to be associated with
the chirality variablef0 is then determined by the pinning
potential forQ. Let us approximate the pinning potential as
harmonic;Vpin(Q)5(Mw/2)n

2Q2, wheren is a positive con-
stant of dimension of frequency andMw([\2N/aJ) is the
domain wall mass.2,5 Then the integration overQ results in

L5
1

2
Mfḟ0

22
1

2
Mfn2cos2f0 , ~14!

whereMf[NS(S2 1
2)Ka/n2. Due to the transverse anisot-

ropy, there are two stable values off0, namely
f056p/2, corresponding to the maximally right- and left-
handed chirality, respectively. The instantonf0(t) that con-
nects these two chilarities in the imaginary timet is given by

cosf0~t!56
1

coshnt
, sinf0~t!5tanhnt, ~15!

where @f0(2`),f0(`)# is equal to (2p/2,p/2) in the
upper-sign instanton and to (2p/2,23p/2) in the lower-
sign one. The frequencyD of the quantum coherent oscilla-
tion between the two chiralities is calculated within the semi-
classical approximation13 as

D5
8

p S pMfn

\ D 1/2n expS 2
2

\
Mfn D

5
8

p FpNSSS2
1

2D K\n
a G1/2

3n expF22NSSS2
1

2D K

\n
a G . ~16!

Thus a largen is favorable to the quantum coherence, which
is a consequence of the fact that the strong pinning ofQ
implies a strong fluctuation of the conjugate variablef0; this
behavior is similar to the case of depinning of the wall,
where a largea ~strong pinning off) leads to a strong
fluctuation of the postion of the wallQ.1,2,14Since the ther-
mal hopping rate at temperatureT is given by
D th;n exp(21

2Mfn2/kBT) (kB is the Boltzmann constant!,
the quantum coherence will be seen forT&T* , where
T* ([\n/4kB) is the crossover temperature.

III. DISCUSSION

The result~16! is interesting from an experimental point
of view; one can make the MQC of chirality easier to ob-

serve by choosing a strong pinning center. Strong pinning
will be realized by putting a thin layer of impurities with
a strong longitudinal anisotropy as seen as follows.
Such a layer producesVpin(Q)5*(d3x/a3) 12@K8(x)S(S
2 1

2)cos
2u0(x2Q)], whereK8(x) is a positive function whose

support is localized in the range much smaller thanl. If
K8(x) is peaked atx50 with the rangeNpa(!l), we have
Vpin(Q)5@NpNK8S(S2 1

2)a/4l](Q/l)2, where K8 is the
anisotropy energy of the impurity per site. The frequencyn
in this case is given by

n5
AS~S21/2!

\
ANpKK8a

a

2l
. ~17!

The exponent of D is then given by

2NAS(S2 1
2 )A(K/NpK8)a(2l/a). Therefore if, for in-

stance, we put a layer of SmCo5 (K8;10 K! with thickness
of Np;100 in Ni wire @K;0.1K, l;500 Å ~Refs. 4 and 5!
anda52.5 Å# and ifa;1025, we haven/2p;23 MHz and
2S(S2 1

2)Ka/\n;8.931024 ~we have chosenS51).
Hence for a mesoscopic wall ofN;104, we expect that
D/2p;0.093 MHz andT*;0.3 mK. In an actual experi-
ment, it is preferable to apply an external magnetic field in
the x direction, which will enhanceD and increaseT* .

15

This circumstance is the same as in the case of magnetization
reversal.16

So far we have not considered the effect of geometrical
phase which comes from the first term in Eq.~5!. The phase
associated with the instantons~15! turns out to be6pS
modulo 2pS if the wall centerQ coincides with a lattice
point of the crystal, while it vanishes modulo 2pS if Q is at
a middle of two neighboring lattice points. In the former case
the MQC frequency~16! has to be multiplied byucospSu.
Note that this is not a consequence of the Kramers theorem;
the chiral doublet under consideration is not a time-reversal
doublet.

In general MQC of magnetization may be affected by
environment. However, the couplings of the magnetization to
phonons are known to be so weak that their effect is negli-
gibly small.17 Couplings to magnons are also expected to be
small if T,Tgap,

1,5,15wherekBTgap is the anisotropy gap of
the magnon spectrum;Tgap5c/lkB (;0.2 mK! with
c[(S2 1

2)a
1/2lK/\ being the magnon velocity. In metallic

magnets the electron environment gives rise to strong dissi-
pation in the case of a thin domain wall with width of about
a few times the lattice constant or less, but for a thicker wall
the effect is negligible.14 On the other hand, nuclear spins
have been claimed to suppress MQC significantly.18,19

Hence, to observe the MQC of chirality, isotopically purified
samples with few nuclear spins~such as 58Ni and 60Ni!
might be better.

In conclusion, we have pointed out a possibility of mac-
roscopic quantum coherence~MQC! of the chirality of a do-
main wall in ferromagnets. The chirality variable isf0, the
azimuthal angle of the spin averaged over the wall, and the
energy barrier forf0 is due to the transverse anisotropy. The
effective inertial mass off0 arises from the fluctuation of the
position of the wall in the pinning potential. Hence, as the
pinning of the wall becomes stronger the fluctuation off0
becomes larger, and the tunneling rate increases. Thus this
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MQC will be easier to observe in a system with a weak
transverse anisotropy and a strong pinning center.

Note added. We have become informed of Refs. 7 and 15,
the latter of which also briefly discusses tunneling between
opposite chiralities. Since this latter work does not give a
derivation of the effective Lagrangian nor stipulates the defi-
nition of the chirality variable, we cannot make a detailed

comment on it except that the effective mass for the chirality
variable mentioned there appears to be different from ours.
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