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Macroscopic quantum coherence of chirality of a domain wall in ferromagnets
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The possibility of macroscopic quantum-mechanical coherent oscillation between two chirality states of a
domain wall separated by the energy barrier due to a transverse anisotropy is quantitatively discussed. The
frequency of the oscillation is calculated for the case of weak transverse anisotropy. The chirality variable is
shown to be canonically conjugate to the position of the domain wall. The stronger the pinning of the domain
wall is, the more strongly the chirality fluctuates and the larger the frequency becomes.
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[. INTRODUCTION would be interesting. In the opposite case of weak pinning
and strong transverse anisotropy, the position of the wall
A domain wall in a ferromagnet contains a may tunnel through a barrier owing to its large fluctuation,
(semiymacroscopic number of spins, the width of the wall this is the quantum depinning.
being 10~1000 A, depending on the material. Being mac-
roscopic, the wall has usually been treated as a classical ob- Il. FORMULATION
ject. For instance, the depinning of a wall from a pinning

center at high temperatures is described as a classical procenslﬁ\ﬁz g%?séiiLaS:grgfrgaggggﬁ ggzl-ztilrmir?;iir?;ﬂfrrg?gl_ a
of the wall overcoming the pinning energy by the thermal q ystal, say

fluctuation. However, even for a macroscopic wall thereCUb'C’ of lattice constard. The magnet is assumed to have

should be a finite probability of depinning due to tipgan- ~ &" €8sy axis and a hard axis in theand thex direction,

tum fluctuation. In fact this quantum depinning was theoreti—reSpeCt'Vely' and to be described by the Hamiltonian

cally studied four years ago and was shown to be probable at _ _— 1 R R R

sufficiently low temperatures” Experimental studies such  H=- JS-§— 5> (KS2;—K, S2)+V,({S.)),

as measurements of magnetic relaxationand ({0 24 ' ' '
magnetoresistantsuggest that this phenomenon indeed oc- @
curs at temperatures typically below a few Kelvin. The quan-where the indesx runs over the lattice site¢i,j) runs over
tum depinning has the significance of being a tunneling of Ghearest-neighbor pairs, addis the exchange coupling con-
macroscopic object? Possibility of a coherent tunneling stant, andK andK are longitudinal and transverse anisot-
through a periodic pinning potential has also been discussqq)py constants, respectively, which incorporate the effect of

recently’ o . _
In addition to the translational motion, a domain wall cant?e greem;fjgggiztzcg fﬁ?&itﬂgﬁpuggnOJtZ;g;ﬁgg&iﬁgﬁl al
. . : . pin
have internal degrees of freedom because it has a Sp"’ml%r::alized anisotropy energy to be specified later. We shall

structure. In the presence of a transverse anisotropy, tW\(R/ork with the functional-integral formalistrt® by use of the
types of stable walls are possibleght-handedand left- spin coherent stafe The latter is denoted b
handedwalls in which the spins rotate in the opposite senses. P ' y

These configurations are separated by the energy barrier due _ 2\ -1 c

to the transverse anisotropy. Thikirality is not a true in- [M)=(L+[¢*) " Pex(£S)]S), @
ternal degree of freedom such as the spin of a particle, sinoghere n is a unit vector (,=singcosp,

as we shall see it is conjugate to the position of the wallny=sind sing, n,=cos), (=€e'*tan(9/2), and|S) is the
Nonetheless, if a strong pinning is present, the chirality beeigenstate ofS, with eigenvalueS. These states form an
haves as if it were a true internal degree of freedom of @vercomplete set and possess, among others, the following
particle (i.e., the wal) fixed at the pinning center. In this properties:

case macroscopic quantum cohereRE)C) between the

two chiralities will occur, which is the subject of this paper. <n|é|n »y=3Sn, (3)
It turns out that a strong pinning and weak transverse anisot- R R

ropy lead to strong fluctuation of chirality; observation of the (n'|(S e)2|n> 1\ ((n'|S ¢n) 2 g

MQC will be easier in such cases. In particular experiments W: TS W + 5 (4)

with magnetic junctions where a thin layer of magnetic ma-
terial with strong anisotropysuch as SmCg is inserted wheree is an arbitray unit vector. The last equation can be
between magnets with moderate anisotrdgyuch as Ni  derived, for instance, from E6.15 of Ref. 11, or can be
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eigenmodes{ ,(x)} obeying the Schuinger-type eigen-
value equation

@ @@@@@@@@@@@@ [—A2V2+cos2y(X)] m(x) = wpmn(x), ()

with {w?In=0,1,2, ..} being eigenvalues. The lowest

mode 74(X) is a zero mode go=0) corresponding to the
(b) @@@@@@@@@‘@@@ uniform translation of the wall, and is given by 6y(x).

Thus the fieldd can be expressed in the form

A AR 00X,1)= o[ x— Q)]+ 3 o) 7 [ X~ Q(D],  (8)

where2,’ denotes summation over positive modes=(1).
FIG. 1. Domain walls with three chiralitiesi@ right-handed wall The wall center Q as well as the real coefficients
(o= 7/2), (b) left-handed wall o= — 7/2), and(c) wall with no chirality {Cn| n=1,2, .. } are now regarded as dynamica| Varia%s_

(¢o=0). Circles in(@ and (b) drawn to guide the eye lie in thez plane, Similarly we decompose into a certairweighted spatial
while the spins lie in thex plane in(c). The quasi-one-dimensional direc- d fl . di
tion of the crystal is here aligned with the spin hard axis for ease of visual-averaged’o an uctuation around It as

ization. A different alignment, which may be the case for a real magnet,
does not affect the content of the text; for instance, one would rotate all the D(X,1) = (1) + o[ X=Q(1),t], 9
spins by#/2 around they axis if the dominant anisotropy originates from
the demagnetizing field.

z Fluctuation aroundd, can be expanded in terms of the
Q
X

and regardg¢, and ¢ as dynamical variables. The variable
¢, is the collective coordinate representing the chirality of
read off the Appendix of Ref. 10. We shall be interested onlyi"€ domain wall. By the weighted spatial average, we mean
in those spin configurations whose scale of spatial variatiohhat

is much larger thara. Accordingly we arrive at the con- dx

tinuum Lagrangian ¢)0(t)5j ;q&(x,t)sinzeo[x—Q(t)], (10

3 2 .

L=fd§;{ﬁ8¢(0099—1)—[—\]28 (Vn)2+%KS(S— %) or equivalently
dx

1 f Ecp(x,t)sinzao(x):O. (11

i
sm20+2

KLS( S— %) Sirte cos’-¢] ~Vil 61, (5)

Use of an average weighted over the wall rather than a uni-
which is to be used in the functional integral. Helejaz, form average is reasonable, since the behaviab tir away

vn)2 is to b d 24 SiPO(V )2, andV.. : fr_om the wall, wh_ere0~0 or , should be irrelevant. The

( n). 1S 10 be rea asN )"+ simo(Ve)', and Vi 6] is a virtue of the particular weight adopted above shall be ex-
functional of & which comes from the last term &f. The plained shortly

factpr .Of (S—2) in the anisotropy-energy terms ensijrgs the Putting Egs.(8) and (9) in the Lagrangian and keeping
vamshmgzof Er;e gglsczt.ropy energy for the cgseSeﬁfz, In . terms up to the second order in fluctuations and the first
that caseS; = = S;= 7 in the operator formalism. A quasi- qrder ina andV,;,, we obtainL = Lo+ L, with
one-dimensional magnet being in consideration, we shall ne-

glect the spatial variation over the cross section, which is ASN . 1 1

taken to lie in theyz plane. Lo=——"Q¢o~ §KS( S— 5) Na coS ¢ho— Viin(Q),
We consider only the case of weak transverse anisotropy, (12)

a=K | /K<1, and study the dynamics to the lowest order in

@. To O(a®) and in the absence &fyin, our model has a 1 1

static domain wall of widthh ={JSK(S— 1)} as a classi- Ly=— ZKS< S— E) N3’ w3c?

cal solution. (Since we are considering a quasi-one-

dimensional magnet, it is a planar wall lying in the plane) 3y ) _
The solution centered at=Q is given by = 65(x—Q), —f? fSe(X)siNdo(X) 2 €y 77n(X)
¢= o, Where
1
X 1 + EJSZ[ch(x)]Zsinzeo(x)
cosﬂo(x)ztanry, sinfg(Xx) = — (6)
cosh- 1. s 2 ey
+AS) 5 hol 2" Cr7n(X)]°COSH(X) — Q" Crn(X)
and ¢, is an arbitrary constantp, is a quantitative measure _
of the chirality of the domain wall with respect to theaxis; X[V<P(X)]Sln90(x)} : (13

the wall is maximally right handed itho= /2 and maxi-
mally left handed if¢o=— /2, while it has no chirality if ~where V,;,(Q)=V, 0o(x—Q)], which acts as a pinning
¢o=0 (Fig. 1. potential for the center of the domain wall, and
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N= [ (d3x/a®)sirPd,(x)=2AN/a’ (A being the cross sectional Serve by choosing a strong pinning center. Strong pinning

area of the wallis the number of spins in the wall. Terms of Will be realized by putting a thin layer of impurities with

the first order inp and{c,} are absent by virtue of Eq11). @ strong longitudinal anisotropy as seen as follows.
In so far as we are interested in low-frequency motions ofSuch a layer produces/,(Q)=[(d*x/a®)3[K'(x)S(S

$o andQ, the last two terms of, may be neglected. Thus — 3)coS6(x—Q)], whereK'(x) is a positive function whose

Lo andL, are mutually decoupled. Therefore the dynamicssupport is localized in the range much smaller thanif

of Q and ¢, can be discussed with, alone. K’(x) is peaked ak=0 with the rangeN,a(<\), we have
The first term of Eq.(12) indicates thatp, and Q are  Vpin(Q) =[N NK'S(S—3)a/4\](Q/\)?, where K’ is the

canonically conjugate to each other. If the pinning is weakanisotropy energy of the impurity per site. The frequemcy

and the transverse anisotropy is strog,may be integrated in this case is given by

out by use of the Gaussian approximation to yield an effec-

tive Lagrangian forQ.27 By contrast in this article we JS(5-1/2) a

focus attention on the opposite case of a strong pinning and v= T\/NPKK’aZ

a weak anisotropy. The inertial mass to be associated with

the chﬁrality variableg, is thep determingd py the pin'ning The exponent of A is then gven by

potential forQ. Let us approximate the pinning potential as 1 : ) )

harmonicVyin(Q) = (M,,/2)’Q?, wherev is a positive con- 2N VS(S— 3)V(K/NpK)a(2\/a). Therefore if, for in-

stant of dimension of frequency aid,(=%?N/aJ) is the  stance, we put a layer of Smg¢K'~10 K) with thickness

domain wall mas&® Then the integration ove® results in ~ Of N,~100 in Ni wire[K~0.1K, A ~500 A (Refs. 4 and 5
anda=2.5 A] and if a~10"°, we havev/27~ 23 MHz and

S| ) 2S(S—YHKalhv~8.9x10"% (we have chosenS=1).
L= §M¢¢0_ §M¢V co'¢po, (14 Hence for a mesoscopic wall dfi~10%, we expect that
A/27~0.093 MHz andT,~0.3 mK. In an actual experi-
whereM ,=NS(S-3)Ka/v? Due to the transverse anisot- ment, it is preferable to apply an external magnetic field in
ropy, there are two stable values of, namely the x direction, which will enhance\ and increaser, .°
o= *m/2, corresponding to the maximally right- and left- This circumstance is the same as in the case of magnetization
handed chirality, respectively. The instantgg(7) that con-  reversaf®
nects these two chilarities in the imaginary time given by So far we have not considered the effect of geometrical
phase which comes from the first term in Ef). The phase
; _ associated with the instantor{$5) turns out to bex 7S
singo(7)=tantvr, (19 modulo 27S if the wall centerQ coincides with a lattice
point of the crystal, while it vanishes modular3 if Q is at
a middle of two neighboring lattice points. In the former case

(17)

Cospo(r) =+ coshvr’
where [ ¢g(—=),dg(°)] is equal to ¢ w/2,7/2) in the

upper-sign instanton and to—(w/2,—3#/2) in the lower- o
sign one. The frequencd of the quantum coherent oscilla- the MQC frequency(16) has to be multiplied bycosrS.

tion bet the t hiralities i lculated within th . Note that this is not a consequence of the Kramers theorem;
lon between the two chiralilies 1S calculated within the SeMiy, o opira) doublet under consideration is not a time-reversal
classical approximatidn as

doublet.

8 (7M. v\ 12 2 In general MQC of magnetization may be affected by
= _( ¢ v ex;{ ——M ¢y) environment. However, the couplings of the magnetization to

77 h h phonons are known to be so weak that their effect is negli-

8 1\ K ]2 gibly small’ Couplings to magnons are also expected to be
=—[ wN'S( S— —)—a small if T<Tgqp,>*°WherekgT 4o is the anisotropy gap of

™ 2/hy the magnon spectrumTg,=c/Akg (~0.2 mK) with

1 c=(S—3)aY\K/# being the magnon velocity. In metallic
X vexp{ —2NS( S— 2175, (160  magnets the electron environment gives rise to strong dissi-

pation in the case of a thin domain wall with width of about

Thus a larger is favorable to the quantum coherence, whicha few times the lattice constant or less, but for a thicker wall

is a consequence of the fact that the strong pinningof the effect is negligiblé! On the other hand, nuclear spins

implies a strong fluctuation of the conjugate varialg this ~ have been claimed to suppress MQC significattfy.

behavior is similar to the case of depinning of the wall, Hence, to observe the MQC of chirality, isotopically purified

where a largea (strong pinning of¢) leads to a strong samples with few nuclear spinsuch as®®Ni and ®Ni)

fluctuation of the postion of the wa).}?* Since the ther- might be better.

mal hopping rate at temperaturdl is given by In conclusion, we have pointed out a possibility of mac-

Ay~ vexp(—3M 412/kgT) (kg is the Boltzmann constant ~ roscopic quantum coherenéQC) of the chirality of a do-

the quantum coherence will be seen fo=T,, where main wall in ferromagnets. The chirality variable ¢, the

T, (=% vldkg) is the crossover temperature. azimuthal angle of the spin averaged over the wall, and the

energy barrier fokp is due to the transverse anisotropy. The

effective inertial mass op, arises from the fluctuation of the

position of the wall in the pinning potential. Hence, as the
The result(16) is interesting from an experimental point pinning of the wall becomes stronger the fluctuationgef

of view; one can make the MQC of chirality easier to ob-becomes larger, and the tunneling rate increases. Thus this

[ll. DISCUSSION
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MQC will be easier to observe in a system with a weakcomment on it except that the effective mass for the chirality

transverse anisotropy and a strong pinning center. variable mentioned there appears to be different from ours.
Note addedWe have become informed of Refs. 7 and 15,
the latter of which also briefly discusses tunneling between ACKNOWLEDGMENTS

opposite chiralities. Since this latter work does not give a One of us(S.T) would like to thank T. Nakamura for
derivation of the effective Lagrangian nor stipulates the defivaluable discussions and K. Sasaki for a simple method of
nition of the chirality variable, we cannot make a detailed deriving the formula(16).
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