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The axial hysteresis loop of highly magnetostrictive amorphous wires shows a perfect square shape, with a
single large Barkhausen jump due to its particular domain structure. When wires of this type are placed in
proximity, the corresponding axial hysteresis loop exhibits a number of Barkhausen jumps equal to the number
of wires, the form of the loop not being stable in time. We analyze this type of loop as resulting from
magnetostatic interaction among the wires. The instability of the loop results from the lack of simultaneous
magnetization reversal in each wire when the magnetic field is applied. This unstable behavior is interpreted
considering the theory of chaos.@S0163-1829~96!03437-6#

I. INTRODUCTION

Amorphous wires have been a subject of deep study in the
past decade owing to their outstanding magnetic properties,
useful for technological applications, like magnetic sensors1

~due to their soft magnetic character! and stress sensors2 ~by
virtue of their magnetoelastic properties!. Amorphous ferro-
magnetic wires are commonly prepared by means of the in-
rotating-water quenching technique.3 This procedure in-
volves a very high cooling rate from the molten alloy,
producing internal stresses that couple with the magnetic
moments via the magnetostriction, giving rise to strong local
magnetoelastic anisotropies.4 The distribution of these
anisotropies determines the magnetization process and the
domain structure, in particular for those wires with high
magnetostriction constant. These latter wires are largely
magnetized through a single Barkhausen jump, giving rise to
square hysteresis loops.5 The axial magnetization process
presents the following characteristics:~i! The demagne-
tized state cannot be reached but two well defined stable
remanent states are found,~ii ! upon application of an axial
field anti-parallel to the remanent magnetization a small and
reversible decrease of the magnetization is firstly detected
and for a critical or switching field, the magnetization sud-
denly reverses its direction so that a square loop is observed,
and ~iii ! if the applied field is further increased, the magne-
tization increases monotonously and reversibly up to its satu-
ration along the field direction.

The magnetization process and the square loop can be
roughly understood if we take into account the domain struc-
ture proposed for these wires:6 a single-domain inner co-
axial core with the magnetization axially oriented and a mul-
tidomain external shell where the magnetization is
perpendicular to the axis of the wire. The magnetization re-
versal inside the inner core is then responsible for the square
loop while the final reversible approach to saturation is de-
termined by the continuous reduction of the transverse mag-
netization at the shell.

A refinement of that model has been proposed to account
for the disappearance of that outstanding loop for wires
shorter than a critical length.7,8 It consists of including a
closure domain structure at the ends of the wires, and con-

sequently of the core, to reduce the otherwise quite strong
magnetostatic energy. The nucleation of that closure domain
structure requires on the other hand some magnetoelastic en-
ergy. The balance between magnetoelastic and magnetostatic
energies determines the domain structure at the ends of the
wire and, consequently, its behavior when an external mag-
netic field is applied. The influence of that magnetostatic
energy in the reversal process was analyzed elsewhere.9

For example, in the case of Fe-rich amorphous wires the
magnetostriction constant,l, is high and positive
~l5331025!. The order of magnitude experimentally
determined7,8,10 of the internal stresses,s, is 102 MPa. Ac-
cordingly, the magnetoelastic energy density,Es , takes the
order of magnitude of 103 J m23 @Es5~3/2!ls#. On the other
hand, an average magnetic energy density,EH , due to the
macroscopic demagnetizing field created by the magnetic
poles is evaluated to be around 10 J m23 ~EH5m0NM s

2,
where m054p31027 H m21 is the vacuum permeability,
Ms;106 A/m is the saturation magnetization, andN;1025

is the demagnetizing factor!. The relatively large intensity of
the magnetoelastic anisotropy makes attaining a perfect com-
pensation of stray fields very hard so that a final net magnetic
poles density is expected to be distributed near the ends of
the wire. When two wires are placed in proximity and an ac
external magnetic field is applied, the stray fields couple the
magnetizations of the wires affecting the magnetic state of
each wire. The overall magnetization exhibits a nonperiodic
evolution that leads to an unstable hysteresis loop.

The aim of this work is to analyze the characteristics of
this interaction and its effect on the hysteresis loop corre-
sponding to a number of magnetostatically coupled wires. It
is also considered that a system ofn coupled amorphous
ferromagnetic wires submitted to an oscillating magnetic
field can exhibits a chaotic dynamic behavior.

II. EXPERIMENT

As-cast amorphous wires of nominal composition
Fe77.5Si7.5B15, kindly supplied by Unitika Inc., have been
used in the measurements, their diameter and length being
131mm and 11.7 cm~or 31 cm!, respectively. Axial hyster-
esis loop was measured by means of a conventional induc-
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tion method. The field is provided by a 32 cm long drive coil
with a constant of 1856 A m21/A. Inside its middle part, a
pickup coil is placed with 340 turns of copper wire, whose
diameter is 0.1 mm, rolled in an albumin tube, being 1.5 mm
in diameter and 8 cm in length.

The amorphous wires to be measured were placed inside a
1 mm diameter quartz tube holding the wires parallel and in
contact. This tube is then placed inside the pickup coil. An ac
axial magnetic field is applied by the drive coil with various
amplitudes, frequencies and wave forms~sinusoidal and tri-
angular!. The voltage induced in the pickup coil was elec-
tronically integrated and displayed on a Philips PM 3335
digital oscilloscope together with the drive coil current.
These two signals determine the hysteresis loops. The digital
oscilloscope stores these signals for processing by a personal
computer, using theHYPERPLTprogram for Fourier analysis.

III. RESULTS AND DISCUSSION

Figure 1~a! shows the hysteresis loop obtained for a single
wire of length 11.7 cm. The frequency of the sinusoidal mag-
netic field was 40 Hz. A remanent magnetization of 0.71 T
and a coercive force of 10.03 A/m was obtained. The ob-
served magnetic transition is clearly a single Barkhausen
jump. Furthermore, the loop isstable in time. Now, if a set
of two wires is placed inside the quartz tube, it might be
expected that theinduced signal from the wires would simply
double, and the loop keep its square shape. Nevertheless, as
Fig. 1~b! shows the loop which contains two well defined
jumps, with the remanent magnetization 0.69 T, nearly the
same as for the single wire~the induced signal is double but
the total volume of the samples is also double, then the rem-
anent magnetization will be the same!. The most important
characteristic of this loop is itsunstable characterwith the
time, switching between those shown in Figs. 1~b! and 1~c!,
which differ only in their time of measurement. Similarly,
with three, four, six, and eight wires, we observe three, four,
six, and eight Barkhausen jumps. These jumps appear and
disappear in a seemingly random way.

A. Magnetostatic interaction between wires

The results shown in Figs. 1~b! and 1~c! can be under-
stood by taking into account a magnetostatic interaction be-
tween the two wires caused by the magnetic field of the poles
at the ends of the wire. Consider a simple theoretical model.
First, we simulate the square hysteresis loop of a single wire,
assuming only two magnetization states,1M and 2M
~m0M50.7 T!. The applied field isH(t)5H0sin ~2pnt!. The
transition between these two states occurs when the external
magnetic field reaches the valueHc . Denote byM (H) the
hysteresis loop of a single wire, byM1 the magnetization
state of wire 1 and byH12 the field created by the wire 1 at
wire 2.

We assume

H125KM1 , ~1!

whereK is dimensionless in the mks system. Similarly de-
fine H215KM2 . The hysteresis loop of each wire~i51,2!
becomes

Mi5Mi~H2Hji ! ~2!

assumingHji has direction opposite the external fieldH,
whenM j is parallel toH. Figure 2 shows this configuration.
Initially, we have two wires~the drawing only represents the

FIG. 1. Axial hysteresis loops for iron rich amorphous
wires: ~a! one wire ~remanence,m0Mr50.71 T and coercive
force, Hc510.03 A/m!; ~b! and ~c! two wires ~m0Mr50.69 T,
Hc57.16 A/m!.

FIG. 2. Schematic view of the magnetostatic interaction be-
tween wires~see text!.
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magnetization in the inner domain! magnetized in the same
direction, the external magnetic field being applied in the
opposite direction@Fig. 2~a!#. IncreasingH, one of the two
wires reverses magnetization first@Fig. 2~b!# and modifies
with its own field the strength of the total magnetic field
sensed by the wire that has not yet reversed magnetization.
The total magnetization for the two wires,
M5~1/2!~M11M2!, is then determined by

M15M1~H2H21!5M1~H2KM2!, ~3!

M25M2~H2H12!5M2~H2KM1!. ~4!

Substituting Eq.~4! into Eq. ~3!

M15M1„H2K@M2~H2KM1!#…. ~5!

Solutions to equations of the formM15g(M1) may be
obtained by the fixed point iteration method,11M2 following
from Eq.~4! whenM1 is obtained. Figure 3 shows the results
obtained forHc53 A/m, H0510 A/m, andn51 Hz. Each
loop corresponds to ten cycles. Figure 3~a! shows the result
of M (H) for a single wire. The loop for a set of two wires
without interaction~K50!, is given in Fig. 3~b!. For nonzero
interaction~i.e., K51!, the loop is shown in Fig. 3~c!. Its
similarity to the experimental result observed in Fig. 1~b! is
to be remarked. It is important to mention that the length of
the horizontal section atM50 is proportional to the value of
K. Consequently, the experimental value ofK could be
evaluated from this length. The appearance of two well de-
fined Barkhausen jumps is then a consequence of the nonsi-
multaneity in the magnetization reversal at each wire which
results from the magnetic interaction between wires.

B. Why the wires do not reverse magnetization simultaneously

Magnetization reversal is achieved when the reversed
magnetic field reaches the switching field,H* . At tempera-
tures different from absolute zero, the magnetic moments
have thermal fluctuations. Like any macroscopic magnitude,
the fieldH* can be described by an average value,^H* &, and
fluctuation ^~H*2^H* &!2&. These fluctuations are in prin-
ciple a reason to cause one wire to randomly switch first.

But most probably, the answer seems to be related itself
with the presence of closure domain at the ends. In finite
wires, the reversal magnetization depends on the depinning
of closure domains walls at the ends of the wire. The depin-
ning in each end depends on the strength and direction of the
applied magnetic field.5 Anyway, it is reasonably impossible
to count on the exactly equal domain structure at both ends
as it has been experimentally shown.12,13

C. Why the hysteresis loop corresponding to some wires
placed together are unstable

Figure 4 shows schematically the configuration for a set
of three wires. In Fig. 4~a!, all the wires are magnetized in
the same direction. When a reverse magnetic field is applied,
one of them reverses first the magnetization as shown in Fig.
4~b!. When the magnetic field goes through another cycle a
different configuration may result@Fig. 4~c!#. Intuitively,

some relation must exist between the nonsimultaneousness
of the Barkhausen jumps and the frequency and strength of
the external magnetic field. Experimentally, we have found
the following results independently of the number of
wires: ~i! An unstable loop becomes stable~but not square!
for frequencies of the magnetic field above 500 Hz;~ii ! for
high field strengths the instability of the loop disappears.

If the applied magnetic field is large enough and the mag-
netization is in the opposite direction to the field, the high
magnetic energy will cause all the wires to reverse simulta-
neously. The increase of the field frequency leads to a loss of
squareness as the coercive field increases as a consequence
of the increasing opposite field induced by the eddy currents.

We can conclude that there is a dynamical magnetostatic
interaction between the amorphous wires arising from the
magnetic state of each wire which arises from the nonsimul-
taneousness in the change of magnetization direction when
an ac external magnetic field is applied.

FIG. 3. Theoretical hysteresis loops:~a! one wire; ~b! two
wires without interaction~K50!; ~c! two wires with interaction
~K51!.
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D. Analysis of the instability of the loops
from a point of view of chaos

The instability experimentally detected in the hysteresis
loops of multiple coupled wires can be also simulated by
using the theoretical model described above. Consider two
wires with interactionK51. The amplitude of the applied
sinusoidal field isH0510 A/m and the coercive force is
Hc53 A/m. Figure 5 shows the results obtained for different
values of the frequency of the field:n51.20 Hz@Fig. 5~a!#;
n51.94 Hz @Fig. 5~b!#; n51.96 Hz @Fig. 5~c!#. The loops
shown in Fig. 5 correspond to ten cycles. Comparing these
loops with the loop shown in Fig. 3~c!, the shape is very
similar but those in Fig. 5 show fluctuations. The fluctuations
observed in these theoretical loops come from the different
values of the magnetization in each wire~initial conditions!
for a given value of the sinusoidal applied field, that is, there
is no synchronicity between the frequency of the field and
the period to build a hysteresis. The model used is only valid
if the wire is bistable. Experimentally, the bistability is lost if
the frequency is increased: in this case, when the instability
disappears, the model is not useful. Since the behavior of the
loop changes qualitatively with frequency, the frequency can
be used as control parameter.

In hysteretic magnetic materials, the magnetizationM is
not uniquely determined byH. In the case of a single wire,
for each value ofH, there are two possible values of mag-
netizationM . For a system composed of various interacting
wires something more complex is expected around the coer-
civity. One possibility is to consider deterministic chaotic
behavior in the temporal of the magnetization. Far from be-
ing equivalent to randomness, deterministic chaos describes
a complexity in which exists a structure generated by a de-
terministic law.14,15

Deterministic chaos refers to the description of dynamical
dissipative systems having asymptotic stability and local in-
stability. Such a behavior is described in phase space~system
in which each coordinate represents a degree of freedom of
the dynamical system! by terms of strange attractors, geo-

metrical structure that exhibits fractal properties, that is, au-
tosimilarity at different scales.16 In recent years, chaos has
become a useful framework for explaining some experimen-
tal results, seemingly anomalous.

Where chaos comes from in our system? The answer to
this question is related to the depinning of the closure do-
mains wall at the ends of the wire, that can be considered as
a nonlinear process due to the nonlinear dependence of the
density of energy of the wall with the radial coordinate~tak-
ing into account a cylindrical coordinate system! as a conse-
quence of the radial variation of the internal stresses gener-
ated during the fabrication process of the wires.4 In the
depinning process, the closure domain wall can be consid-
ered as a forced nonlinear oscillator. We are trying to obtain
a differential equation that permits to describe the process in
order to analyze accurately the dynamical singularities of the
system.

From a technical point of view, the behavior of a system
is called chaotic if exhibits the so called ‘‘sensitive depen-

FIG. 4. Schematic view corresponding to no simultaneousness
of the Barkhausen jumps.

FIG. 5. Theoretical hysteresis loops for two interacting wires
~K51! as a function of the frequency,n, of the applied magnetic
field: ~a! n51.20 Hz;~b! n51.94 Hz;~c! n51.96 Hz.
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dence to initial conditions,’’ that is, the exponential diver-
gence of temporal evolutions arbitrary close in the initial
time. This property has two consequences:~i! the temporal
evolution is determined by a continuous frequency spectrum
and ~ii ! it exhibits fractal properties.17 The fractality of an
experimental signal is not easy to determine since it is nec-
essary to use very long time of measurement in order to have
large enough number of experimental points in every tempo-
ral scale so that the autosimilarity of the signals at different
scales can be checked. Our experimental setup can store only
four thousand points, which is generally not sufficient. On
the other hand, the fractality of the attractor is not a good
characterization of a chaotic behavior. Chaotic behavior can
be characterized by calculating the Lyapunov exponents,18

this permits to measure the sensitive dependence to initial
conditions by computing the evolution with time of the dif-
ference of two magnetization which were close at one time.
Experimentally, it is very difficult to do this due to the limit
imposed by the experimental accuracy that characterizes the
setup that measures and stores the data: the experimental
accuracy limits drastically the possibility to obtain two sig-
nals sufficiently close in the initial time. On the other hand, it
is not easy to obtain the Lyapunov exponent by considering
a single signal.19 Nevertheless, we are trying to improve the
measuring conditions in order to obtain these exponents. We
investigate the possibility of chaos by analyzing the fre-
quency spectrum and the autocorrelation function,C, that
denotes the average value in a temporal interval [t1 ,t2] of
the product of the signalM (t), with the same signal at
t1t,M (t1t), formally:17

C~t!5
1

t22t1
E
t1

t2
M ~ t !M ~ t1t!dt. ~6!

We use this function to study the complexity ofM (t). For
t50, the productM (t)M (t1t) is always positive while for
tÞ0, the productM (t)M (t1t) can be either positive or
negative, depending ontP[ t1 ,t2]. In the former case,C~0!
will be positive having its maximum value and in the latter
C~t! can be positive or negative. IfM (t) involves many
frequencies the productM (t)M (t1t) changes sign even for
very small values oft so thatC~t! approaches to zero start-
ing on a certain valuet0. This means thatM (t) and
M (t1t0) are not correlated. IfM (t) is periodic,C~t! will be
oscillating. The functionC~t! is normalized to unity, and the
Wiener-Khintchine’s theorem17 ensures that the power spec-
trum of M (t) is proportional to the Fourier transform of
C~t!.

A useful, visual description of the dynamics of these sys-
tems is an attractor in phase space. The construction of such
an attractor is not easy when we do not know all the degrees
of freedom~x,y,z,..! that describe the behavior of the sys-
tem. In the present case, we have only a temporal signal
M (t). In order to determine the attractor we have used the
technique due to Grassberger and Procaccia20 ~but originally
developed by Packard, Ruelle, and Tackens14,21! by means of
which a phase space whose coordinate axis arex,y,z,..., can
be replaced by an equivalent one with coordinatesM (t),M (t
1T),M (t12T),..., whereT is a time that depends ont0
@time starting fromC~t! is zero# and on the embedding di-
mension of the attractor.19 This technique uses the possibility

of reconstructing the dynamics of the system from the infor-
mation contributed by a single variable, which in our case
corresponds to the axial component of the total magnetiza-
tion of the wires. Taking into account that the value of this
variable depends on the rest of variables characterizing the
system its dynamics can be studied. For sufficiently adequate
value ofT, the quantitiesM (t),M (t1T),..., are linearly in-
dependent and it is possible to correctly reconstruct the phase
space, or more precisely, its projection on a phase subspace
having a smaller dimension. Due to the difficulty of calcu-
lating accurately the embedding dimension~that is the lowest
integer larger than the fractal dimension of the attractor!, we
choose by inspection some value ofT. Using this value, we
can determine an attractor having some topological deforma-
tion in the phase space with regard to the real attractor. In the
following we are going to apply these techniques to analyze
the measured signalsM (t) coming from the total magnetiza-
tion of multiple coupled wires.

FIG. 6. Frequency spectrum of the temporal variation of the
total magnetization of two wires, for maximum applied fields,
Hmax: ~a! Hmax514.32 A/m; ~b! Hmax513.91 A/m, and ~c!
Hmax513.30 A/m.
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Analysis of the frequency spectrum

Consider two wires whose nominal composition is
Fe77.5Si7.5B15, of diameter 131mm and length 31 cm. We
measure the ac hysteresis loop by applying a triangular wave
field whose frequency is 40 Hz. The strength of the field is
measured by means of the intensity of current passing
through the coil. The root mean square value of this inten-
sity, I rms is measured accurately using a multimeter FLUKE
8842A. Making use of the digital oscilloscope, the temporal
variation of the magnetization for different values ofI rms is
recorded. The Fourier transform of the signals allows us to
study the involved frequencies. In Fig. 6~a! the spectrum for
I rms54.455 mA~this value corresponds to a maximum field,
peak to peak,Hmax514.32 A/m! is observed for which the
loop is stable. The largest peak is at the fundamental fre-
quency while the other peaks correspond to harmonics of this
fundamental frequency. Decreasing the maximum value of
the magnetic field~I rms54.326 mA→ Hmax513.91 A/m! the
loop becomes unstable. Figure 6~b! shows the new spectrum,
that is more complex than that in Fig. 6~a!. It shows clearly
the presence of a duplication of period: it appears a new
peak at 20 Hz, half of the fundamental frequency. There also
appear peak of frequencies not present in Fig. 6~a!. If we
further decrease the magnetic field~I rms54.137 mA
→Hmax513.30 A/m! the spectrum becomes compact and
dense. Note that when decreasing the value of the maximum
applied magnetic field the height of peaks becomes smaller,
being the available energy redistributed into the new fre-
quencies.

We have numerically analyzed the relations between the
frequencies. It is noticeable that when comparing Figs. 6~a!
and 6~b!, a new peak is observed in Fig. 6~b! between each

pair of peaks in Fig. 6~a!. This suggests a quasiperiodic be-
havior. In quasiperiodicity, the frequencies that appear are
linear combinations of fundamental frequencies and in the
present case such fundamental frequencies can be ascribed to
the oscillation of the magnetization in each wire at 40 Hz,
the frequency of the field. The rest of frequencies that appear
are linear combinations of this fundamental frequency. The
frequency spectrum that appears in Fig. 6~c! is more compli-
cated than in the previous cases. For frequencies smaller than
100 Hz, the spectrum is practically continuous, that is, peaks
corresponding to all frequencies are detected and they cannot
be determined simple by linear combinations of fundamental
frequencies. Nevertheless, the peak corresponding to 40 Hz
is the largest, that is, the system continues oscillating pre-
dominately at this frequency. It can be correlated to the fact
that in spite of the instability of the loop, its shape is roughly
kept.

Figure 6 suggests a route to chaos from quasiperiodicity
at two frequencies when the strength of the applied magnetic
field decreases. Nevertheless, the fully chaotic behavior is
not reached~there is always a predominant frequency!. This
can be a case ofweak chaos, i.e., where the chaos is local-
ized in the phase space.

FIG. 7. Autocorrelation function for different frequencies,n,
and maximum applied field,Hmax: ~a! n540 Hz, Hmax512.51
A/m; ~b! n5200 Hz,Hmax517.77 A/m.

FIG. 8. Reconstruction of the attractor:~a! M (t1T) versus
M (t), ~b! M (t12T) versusM (t), ~c! M (t12T) versusM (t1T),
with T50.005 sec andM (t) the temporal variation of the magne-
tization corresponding to a set of two wires.
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Autocorrelation function

Figure 7 shows two autocorrelation functions for the sig-
nals corresponding to a set of two amorphous wires whose
length is 11.7 cm. The applied magnetic field has triangular
wave form. We have selected two different frequencies and
maximum values of the field in order to induce instability or
stability in the loop and in order to compare the correspond-
ing autocorrelation functions.

Figure 7~a! corresponds to a frequency,v540 Hz, and a
field ~peak to peak!, Hmax512.51 A/m. In this case the hys-
teresis loop is unstable. The frequency spectrum is similar to
that shown in Fig. 6~c!. C~t! is zero for t050.0675 sec.
After a second zero crossing,C~t! is substantially zero after
0.2 sec. This implies a nearly continuous frequency spec-
trum, a necessary condition for the presence of chaos. In a
fully chaotic state~reached if the shape of the loop disap-
pears! C~t! will be zero fort.t0 ~takingt0 a value different

that in the former case!. Figure 7~b! shows the autocorrela-
tion function for v5200 Hz andHmax517.77 A/m. In this
case, the hysteresis loop of the two wires is only slightly
unstable, and the autocorrelation function is oscillating.

Reconstruction of the attractor

We now reconstruct the attractor for the conditions in
which the loop is unstable. A set of two 11.7 cm long wires
were used. The magnetic field has triangular wave form, with
v5326 Hz andHmax518.52 A/m. The frequency spectrum is
similar to that of Fig. 6~c!. Figure 8 display the image of the
attractor in various perspectives. Figure 8~a! shows the value
of magnetization,M (t1T), in arbitrary units~the signal is
taken directly from the digital oscilloscope!, versusM (t),
takingT50.005 sec. Figures 8~a! and 8~b! showM (t12T)
versusM (t) andM (t12T) versusM (t1T), respectively.
Notice that for a periodic or quasiperiodic evolution ofM (t),

FIG. 9. Hysteresis loops for a set of six wires, measured at 40
Hz ~sinusoidal wave form!, for different values of the maximum
applied field,Hmax: ~a! Hmax552.39 A/m;~b! Hmax537.11 A/m;
~c! Hmax527.37 A/m.

FIG. 10. dM(t)/dt versusM (t) for a set of six wires for differ-
ent values of the maximum applied field,Hmax. The frequency of
the field is n540 Hz and the wave form is sinusoidal:~a!
Hmax552.39 A/m;~b! Hmax537.11 A/m;~c! Hmax527.37 A/m.
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the lines in the attractor~that connect the points representing
the state of the system for different values oft! must coin-
cide.

E. Other studies

(i) Dynamic for a set of six wires.Chaos is an asymptotic
effect, that is, it appears at a steady state when all transitory
effects are over. In order to appreciate this, we consider a
signal that involves many oscillation periods of the magnetic
field. For this purpose, we record and store the signal in the
digital oscilloscope using an adequate time scale. We mea-
sure the hysteresis loop for a set of six 11.7 cm long wires
using a sinusoidal wave form magnetic field with a fre-
quency of 40 Hz. The use of triangular or sinusoidal wave
form does not alter substantially the characteristic of the
loop. We record the signals corresponding to the total mag-
netization and the applied field. We plot one variable as a
function of the other to obtain loops with two thousand
points resolution. Figure 9~a! shows the loop for the maxi-
mum applied magnetic fieldHmax552.39 A/m. The loop is
stable and six Barkhausen jumps are observed. If the field is
decreased toHmax537.11 A/m, the loop becomes unstable
@Fig. 9~b!#. This instability is more evident forHmax527.37
A/m @Fig. 9~c!#. It is clear that in consecutive oscillation
periods of the magnetic field, the value of the magnetization
is not the same.

By using the signalM (t) and its derivativedM/dt, we
can construct a kind of phase space. This is not the real one,
but a topological deformation of this.17 In this case, the split-
ting of the ‘‘attractor’’ can be demonstrated. For
Hmax552.39 mA @Fig. 10~a!# all the points lie on the same
curve ~that contains six undulations up and six down!. For
Hmax537.11 A/m @Fig. 10~b!# there is a deformation of the
figure and some points do not lie in the same curve for suc-
cessive oscillation periods of the magnetization. The situa-
tion is even more complex forHmax527.37 A/m@Fig. 10~c!#
where no clear undulations are detected.

(ii) Effect of low temperature, tensile stress, and change
of composition.We have measured the possible influence of
other variables in order to get further information on the
complex behavior. No significant changes were detected by
measuring at lower temperature~77 and 160 K! as well as

under applied tensile stress of up to 150 MPa. On the other
hand, the behavior observed in Fe-rich wires is not detected
in the nonbistable Co-rich wires, that have a less value of the
remanent magnetization~0.3 T for Co-rich and 0.7 for Fe-
rich wires2,22! and a nearly zero magnetostriction,
l520.0831026.

IV. CONCLUSIONS

The hysteresis loop of magnetostically-coupled amor-
phous wires has been experimentally measured, the number
of Barkhausen jumps being equal to the number of wires. For
maximum applied fields near the coercive force of a single
wire, the loop becomes unstable, the Barkhausen jumps ap-
pearing and disappearing in a seeming random way. The
shape and instability of the loops have been analyzed from
the point of view of a magnetostatic interaction between the
wires and a nonsimultaneousness in the change of the direc-
tion of the magnetization due to small differences in the
coercive force of each wire~arising from the depinning
strength of closure domain walls at the ends of the wire!. The
total magnetization has a nonperidoc temporal variation, and
the analysis of the Fourier spectrum suggests a quasiperiodic
behavior and a transition to a nearly chaotic behavior~weak
chaos! when the maximum magnetic field applied is slightly
larger than the coercive force of the single wire. The exact
nature of the dynamics involved is still to be determined
more precisely. For this, it is necessary to improve the ex-
perimental measurements and develop a mathematical model
more ambitious. The experimental results suggest that the
origin of the instability lies mainly in the magnetically
bistable character of the loops rather than to the magneto-
static interactions. Nevertheless the interaction among the
different wires acts as an element enhancing the instability.
This effect can be used for practical purposes~magnetic field
sensor! and for a better understanding of the reversal mag-
netization process in amorphous ferromagnetic wires.
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J. Appl. Phys.73, 5357~1993!.
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