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Using the density matrix renormalization group and a bosonization approach, we study a spin-1/2 antifer-
romagnetic Heisenberg chain with near-neighbor couplingJ1 and frustrating second-neighbor couplingJ2,
particularly in the limitJ2@J1. This system exhibits both dimerization and incommensurate spiral spin cor-
relations. We argue that this system is closely related to a doped, spin-gapped phase of the one-dimensional
Kondo lattice.@S0163-1829~96!01034-X#

I. INTRODUCTION

Relatively little is known about the behavior of frustrated
antiferromagnetic quantum spin systems, in comparison with
their unfrustrated counterparts. In general, frustration reduces
antiferromagnetic correlations and the tendency towards
Néel order. In the presence of sufficiently strong frustration,
classical systems often develop noncollinear sublattice mag-
netizations. The classical antiferromagnetic Heisenberg trian-
gular lattice, for example, has three different sublattices with
magnetization directions in a plane at 120° angles. The be-
havior of the corresponding quantum system is still contro-
versial. Quantum systems may, instead, dimerize in the pres-
ence of frustration, as exemplified by the exactly soluble
one-dimensional Majumdar-Ghosh model1 ~see below!. Yet
another possibility is some sort of spin-liquid state, without
dimerization or sublattice magnetization, examples being
one-dimensional nearest-neighbor systems and possibly the
Kagomélattice. For a number of reasons, frustrated systems
tend to be difficult to study—for example, quantum Monte
Carlo typically cannot be used because the frustration intro-
duces a minus sign problem.

In this paper, we study a one-dimensional spin-1/2
Heisenberg system, with near-neighbor couplingsJ1 and
frustrating next-neighbor couplingsJ2. This system can also
be considered a two-chain lattice with diagonal, or ‘‘zigzag’’
couplings, as shown in Fig. 1, and we will refer to the system
as the ‘‘zigzag’’ chain. The model is described by the Hamil-
tonian

H5(
i

@J2SW i•SW i111J2TW i•TW i111J1SW i•~TW i1TW i11!#,

~1.1!

whereSW i andTW i represent thes51/2 operators on the two
chains. We are particularly interested in the case where
J2.J1.

Besides a general interest in understanding frustrated
quantum systems, there are several additional motivations
for studying this system. As we discuss below, a bosoniza-
tion treatment of a generalized version of the one-
dimensional Kondo lattice shows a close relationship be-
tween the spin degrees of freedom of that system when
doped, and the zigzag chain. The evidence we present below
for a spin gap in the zigzag chain may also indicate a spin-
gapped phase in a Kondo chain. Physically, zigzag arrange-
ments of atoms are common and this model is appropriate
for real systems such as SrCuO2, studied in Ref. 2.

This model exhibits some similarities, but also marked
differences from the standard two-chain spin ladder,3–7

shown in Fig. 2. While interchain coupling is relevant in the
ladder model, producing a gap which scales linearly~up to
logarithmic corrections! for either sign of the coupling, it is
marginal for the zigzag chain, producing a gap only for the
antiferromagnetic sign, which scales exponentially with cou-
pling, D}exp(2constJ1 /J2). The marginal nature of the in-
terchain coupling in our model is reminiscent of weakly
coupled two-chain Hubbard systems.8,9 However, the renor-
malization group analysis of our model is both simplified by
the absence of charge excitations and complicated by the
presence of irrelevant intrachain operators with coupling
constants ofO(1). Unlike in the spin-ladder model, our nu-
merical results for the spin-spin correlation functions indi-
cate that dimerization is present for allJ1,J1c'4J2 and
incommensurate spiral correlations are present for all
J1,2J2.

From the numerical point of view, for a one-dimensional

FIG. 1. The zigzag spin ladder. FIG. 2. The spin ladder.
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~1D! or quasi-1D system, this model is quite challenging. As
mentioned above, quantum Monte Carlo methods are not
useful. Because of the very long correlation lengths, exact
diagonalization is not useful for the range of parameters in
which we are interested. The model can be studied with the
density matrix renormalization group10 ~DMRG!, but it is
still a difficult system for several reasons. The exceptionally
long correlation lengths mean that very long systems must be
studied—in some cases we have studied systems with thou-
sands of sites. Furthermore, the system, particularly for large
J2, has two properties which slow the convergence of
DMRG with the number of states kept per block:~1! the
correlation length is long, and~2! it is composed of nearly
independentchains. The slower convergence of DMRG with
nearly independent chains is known from the two-chain spin
ladder case. ForJ2 /J152, for example, it was necessary to
keep about 400 states per block for an adequate calculation
of the spin-spin correlation function. In contrast, similar ac-
curacy can be obtained in theS51 Heisenberg chain keep-
ing 50 to 80 states. The calculations presented here were
only possible because of new developments in the DMRG
algorithms, resulting in increased computational capabilities
by nearly 2 orders of magnitude, which will be mentioned
here but discussed in more depth elsewhere.

Previous studies of this system include the exact diago-
nalization work of Tonegawa and Harada,11 the recent work
of Bursill et al.12 using DMRG and a coupled cluster
method, and the DMRG study of Chitraet al.,13 who consid-
ered a more general model which included a dimerization
term. This work extends and improves upon the previous
work in several ways. Particularly for the difficultJ2.J1
regime, we have been able to obtain improved numerical
results, which are consistent with the previous calculations.
We have presented the first field theory treatment of the zig-
zag chain in theJ2@J1 regime, as far as we know, and found
general agreement with the numerical results. In addition, we
point out a potentially important connection between the zig-
zag chain and the generalized Kondo lattice.

This paper is organized as follows. In Sec. II, we discuss
a bosonization and renormalization group approach for the
zigzag chain. In Sec. III, we discuss the DMRG methods
used in the numerical calculations. In Sec. IV, we present
numerical results for a variety of properties. In Sec. V we
discuss the relationship of the spin ladder and the zigzag
chain to the half-filled and non-half-filled Kondo lattice, re-
spectively. Section VI contains conclusions.

II. BOSONIZATION AND RENORMALIZATION GROUP
TREATMENT OF THE ZIGZAG SPIN CHAIN

Quite different field theory treatments of the zigzag spin
chain are appropriate depending on the ratioJ1 /J2. For small
values ofJ2 /J1 it is appropriate to treat the model as a single
chain. Extensive discussion of this model may be found in
Refs. 14–16. The conclusion is that the model is gapless for
J2<J2c'0.241 167.17,18 We briefly review the conclusions
here. The low energy effective theory is a free massless bo-
son with SU~2! symmetry, or equivalently a levelk51
Wess-Zumino-Witten~WZW! nonlinears model. The uni-
form and staggered components of the spin operators are
represented in terms of the left- and right-moving density

operatorsrW L,R and the SU~2! matrix field g of the WZW
model as

SW j'~rW L1rWR!1const~21! j tr~sW g!. ~2.1!

As well as the WZW or free boson Hamiltonian, there is
an additional marginal interaction controlled byJ2:

H int}~J22J2c!rW L•rWR . ~2.2!

This is marginally irrelevant forJ2,J2c ; that is it renormal-
izes to zero at long length scales but produces logarithmic
corrections to the simple scaling behavior of the free boson
model. ForJ2.J2c it is marginally relevant; that is, it renor-
malizes to large values producing an exponentially small gap
and inverse correlation length:

D5vs /j}e2constJ1 /~J22J2c!. ~2.3!

This massive phase is spontaneously dimerized. The order
parameter

d5^SW 2i21•SW 2i&2^SW 2i•SW 2i11&}^trg&. ~2.4!

Since trg has scaling dimension 1/2 it follows that:

d}AD. ~2.5!

As J2 /J1 is increased further the correlation length decreases
and the field theory description becomes less accurate. At the
point J2 /J150.5 the exact ground states become the simple
dimer configurations of Fig. 3, as pointed out by Majumdar
and Ghosh.1 Here the correlations extend only to a distance
of one lattice spacing; a rigorous proof of a gap has been
given in this case.19

As J2 /J1 is increased further, we expect the correlation
length to increase again. Eventually, whenJ2@J1, it is more
appropriate to think of two spin chains with a weak zigzag
interchain coupling, as shown in Fig. 1. AtJ150, we obtain
two decoupled chains with vanishing gap and inverse corre-
lation length. For smallJ1 /J2 we expect the gap and inverse
correlation length to be small so we may perturb around the
point J150 using a field theory approximation. Only the low
energy degrees of freedom of each chain are relevant. We
may represent these as in Eq.~2.1!, introducing two sets of
fieldsgi , rW L,i , andrWR,i wherei51,2 labels the two chains.
The difference between the ladder and the zigzag chain be-
comes evident upon bosonizing the interchain coupling.

In the ladder model we obtain a coupling of the alternat-
ing spin components:

H inta}J2tr~sW g1!tr~sW g2!. ~2.6!

This has dimension 1, so we expect it to produce a gap
proportional toJ2 ~up to logarithmic corrections associated
with the marginal operators!. To check explicitly that all de-

FIG. 3. The two dimer ground states of the Majumdar-Ghosh
model.
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grees of freedom are gapped it is convenient to switch over
to an Abelian bosonization notation. The SU~2! fieldsgi can
be written in terms of the free spin bosons,fsi as

gj}S eiA2pfs j eiA2pf̃s j

2e2 iA2pf̃s j e2 iA2pfs j
D . ~2.7!

Heref̃ is the field dual tof @*2`
x dx8P(x8)#. ~The subscript

s for spin is redundant here but we keep it to distinguish
these fields from the charge boson that arises in the discus-
sion of the Kondo lattice in Sec. V.! Thus the alternating spin
operators are

tr~sW gi !}~sinA2pf̃si ,1cosA2pf̃si ,sinA2pfsi!.
~2.8!

Introducing the sum and difference spin bosons

fs,6[
fs16fs2

A2
, ~2.9!

H inta becomes:

H inta}2cos~A4pfs1!1cos~A4pfs2!1cos~A4pf̃s2!.
~2.10!

Thus we obtain decoupled Hamiltonians for the two fields
fs6 . The interactions are expected to produce gaps for both
bosons for either sign ofJ2, proportional touJ2u.

20–22

In the zigzag model the coupling of alternating spin com-
ponents cancels, and we are left only with the marginal cou-
pling of uniform components:

H intu52J1~rW L11rWR1!•~rW L21rWR2!. ~2.11!

The term (rW L1•rW L21rWR1•rWR2) does not renormalize to low-
est order; we will assume it can be ignored, apart from a
small velocity renormalization. The remaining Hamiltonian
is Lorentz invariant. Note that the unperturbed spin Hamil-
tonian separates into four terms for left- and right-moving
spin bosons of types 1 and 2. Thus we may interchange
rWR1 with rWR2, so that the interaction becomes diagonal in the
index i , labeling the two species of spin bosons. This inter-
action is then precisely two copies of the one which occurs
for a single s51/2 chain, Eq.~2.2!. ~This decoupling is
spoiled by irrelevant operators.! Thus we conclude that, for
ferromagnetic zigzag coupling, the interaction renormalizes
logarithmically to zero and there is no gap. For antiferromag-
netic coupling there is an exponentially small gap:

D5vs /j}e2constJ2 /J1. ~2.12!

We might again expect a broken discrete translational sym-
metry. Since the marginally relevant interaction couples left
and right movers on the two chains, it is natural to expect
that the order parameter is

d[^SW 2i•~TW 2i2TW 2i11!&, ~2.13!

as shown in Fig. 4. Note that, when we regard the model as
a single chain with first- and second-nearest-neighbor inter-
actions, this is the same nearest-neighbor dimer order param-
eter that was discussed above. Thus there need be no other

phase transition forJ2c'0.25J1,J2,`. In two-chain field
theory language, the order parameter is tr(sW g1)•tr(sW g2).
This has dimension one, so it should scale linearly withD,

d}D}e2constJ2 /J1, ~2.14!

unlike in the other limit, discussed above whered}AD. Note
that, in this phase, the much stronger intrachain correlations

^TW i•TW i11& are translationally invariant; only the very weak
interchain correlations break translational symmetry.

In addition to the long-range dimer order, there is also
finite-range Ne´el order, with correlation lengthj. j becomes
very long whenJ2 is only slightly larger thanJ2c'0.25 and
again whenJ2@J1. NearJ2c this long but finite-range order
is of standard Ne´el type:

^SW i•SW j&}~21! i2 je2u i2 j u/j. ~2.15!

In the other limit,J2@J1, the spins on each chain exhibit
finite-range Ne´el order:

^SW i•SW j&}^TW i•TW j&}~21! i2 je2u i2 j u/j. ~2.16!

Note that from the single-chain point of view, it is the
second-nearest-neighbor spins which are Ne´el ordering.

Further insight into the behavior of this model can be
obtained from solving the classical problem. This gives a
spiral order with pitch angleu. u is the angle between neigh-
boring spins in the single-chain description. The classical
energy per unit length is

E~u!5J1cosu1J2cos2u. ~2.17!

ForJ2<0.25J1 the solution is the standard Ne´el state, but for
J2.J1 the pitch angle is given by

cosu52J1/4J2 . ~2.18!

This angle varies fromp at J2→0.25J1 to p/2 at
J2 /J1→`. Of course, true Ne´el order is presumably impos-
sible in a one-dimensional quantum antiferromagnet, even at
zero temperature. However, we might expect the classical
result to give a guide to possible finite-range order. Note
that, in the caseJ2@J1, the spins on different chains are
almost decoupled,u^SW i•TW i&u!1, so classically we may re-
gard these spins as orthogonal. This is consistent with the
p/2 pitch angle predicted classically. We expect that the de-
viation of the pitch angle fromp/2 defines a characteristic
wavelength, which we expect to be proportional toj: i.e.,

u2p/2}1/j ~J2@J1!. ~2.19!

For smaller values ofJ2 /J1, Chitra et al.
13 showed~using

DMRG! that the spiral correlations are only present for
J2 /J1.0.5, in agreement with the earlier work of Tonegawa

FIG. 4. Dimerization in the zigzag spin chain.
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and Harada.11 Between the critical point and the Majumdar-
Ghosh point, the pitch angle isp.

III. THE DENSITY MATRIX RENORMALIZATION
GROUP APPROACH

The DMRG method is discussed in some detail in Refs.
10 and 23. Here we discuss specifics of our calculations, as
well as mentioning some recent improvements to DMRG
which are implemented in our calculations.

The numerical results were based on finite-system studies
of systems with as many as 600 sites, and on infinite-system
results for systems up to 7000 sites. We obtain the total
energies, bond energies, and the equal-time spin-spin corre-
lation functions of the ground state. The accuracy of the
calculations depend on the number of statesm kept per
block, as well as the value ofJ2 /J1. In these calculations we
used values ofm up to 700. Large values ofm were neces-
sary only for large values ofJ2 /J1. Near the Majumdar-
Ghosh point,J2 /J150.5, very small values ofm sufficed;
exactly at the Majumdar-Ghosh point, exact results for the
ground state could be obtained withm52. Truncation errors,
given by the sum of the density matrix eigenvalues of the
discarded states, ranged from zero to O(1028) for
J2 /J152.5. This discarded density matrix weight is directly
correlated with the absolute error in the energy.10 We apply
open boundary conditions to the lattice because the DMRG
method is most accurate for a given amount of computational
effort with these boundary conditions.

We have been able to perform much more extensive cal-
culations, both in terms of system size and number of states
kept, than in previous DMRG studies. This is not because of
more extensive computational resources—these calculations
were performed almost entirely on a Digital AlphaStation
200 4/166 with 96 megabytes, rated at 135 SPECfp 92. The
primary reason for the improved capabilities are some recent
improvements to the DMRG algorithms. The main improve-
ment involves a transformation of the wave function from
the previous DMRG step to the current DMRG step, provid-
ing an excellent starting point for the sparse matrix diagonal-
ization procedure. These improvements will be reported
elsewhere.24 In addition, the calculations were performed us-
ing a highly optimized C11 program, which, for example,
translates all matrix operations into calls to a very efficient
basic linear algebra subroutine~BLAS! library. This program
keeps in memory only what is necessary at each step; every-
thing else is written to disk.

IV. RESULTS

The spin gap was calculated forJ2 /J1 ranging from 0.4 to
2.0. The gap is defined as the difference in energy between
the lowestSz50 state and the lowestSz51 state. For each
value of J2 /J1, this energy difference was calculated for a
set of finite systems with open boundary conditions with
different sizesL, with L typically ranging from 32 to 200.
~We consider the system to be anL32 lattice, so the number
of sites is actually 2L.! The gaps were extrapolated to
L→` using a polynomial fit of the form

DL5D1a2 /L
21a3 /L

31•••, ~4.1!

and also including ana1 /L term. The extrapolation was
much more problematic than, for example, in the Heisenberg
S51 chain, where thea1 /L term should be omitted.25 For
the zigzag chain, thea1 /L term appeared to be thedominant
behavior except for exceptionally long systems. We dealt
with this problem by using very long chains, so that the
extrapolation itself was small. Our results are shown in Fig.
5.

We define the dimerization to be the absolute value of the
difference of adjacent interchain bond strengths, given ex-
plicitly by Eq. ~2.13!. We calculated the dimerization using
the infinite system DMRG method, extrapolating in the num-
ber of states kept per blockm. The ground state is doubly
degenerate, corresponding to a shift in the dimerization by
one site. Ordinarily we expect to get a ground state with a
fully broken dimerization symmetry, but it is possible nu-
merical effects could produce an intermediate value for the
dimerization. To prevent this, we add a very small dimeriza-
tion field, proportional to Eq.~2.13!, to the Hamiltonian,
with the coefficient taken as 1025. A very long calculation
was performed, starting with a relatively smallm. Once the
dimerization converged with system size for this value of
m, m was increased, and allowed to converge again. Figure
6 shows the most difficult case we studied,J2 /J152.5. A
maximum ofm5700 was used in this calculation, but sub-
stantially smaller values ofm were necessary for most values
of J2 /J1. The plateau values are shown as a function ofm in
Fig. 7. These can be fit very well with an exponential form,
allowing the extrapolation tom→`. ~Near the Majumdar-

FIG. 5. The spin gap.

FIG. 6. The dimerization during an infinite system DMRG cal-
culation as a function of the DMRG stepl . The numbers labeling
each plateau are the number of states kept per block; once conver-
gence was reached, the program was signaled to keep additional
states.
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Ghosh point, this procedure was not necessary: nearly exact
results were easily obtained using small values ofm.! The
final results, corresponding tom→` andL→`, are shown
in Fig. 8.

One interesting feature of these results is that the maxi-
mum dimerization does not occur at the Majumdar-Ghosh
point, which one normally considers to be fully dimerized,
with dimerization 3/4. A maximum of 0.790 613 5 occurs at
approximatelyJ2 /J150.5781. ~For the calculation of the
maximum we reduced the value of the dimerization field to
1028.! A dimerization greater than 3/4 is possible if one of
the bonds is slightlyferromagnetic. Consequently, a maxi-
mum dimerization of unity would be possible if the two
bonds were independent. Since they are not independent, the
maximum possible dimerization is reduced. We can obtain
the maximum possible dimerization by considering a model
with the dimerization order parameter as its Hamiltonian

H5(
i
SW 2i•~TW 2i2TW 2i11!. ~4.2!

The ground state of this system has the maximum possible
dimerization. DMRG converges very rapidly for this Hamil-
tonian, yielding a dimerization of 0.824 516 5. Returning to
the original zigzag Hamiltonian, we find that the weaker
bond is ferromagnetic over a broad region: from
0.5,J2 /J1,2.5. The upper limit is somewhat uncertain,
since we do not have reliable results forJ2 /J1.2.5. For
large values ofJ2 /J1, the dimerization can be fit very well

by the functiond52.283exp(21.622J2 /J1), as predicted in
Eq. ~2.14!, which is shown as the dotted line in the figure.

The spin-spin correlation functionC( i2 j )5^SW i•SW j& was
calculated as a function ofi2 j using the finite system
method, withi and j chosen symmetrically about the center
of the system. The correlation function exhibits incommen-
surate behavior. This behavior is clearly seen in Fig. 9,
where we plotC( l ) divided by the asymptotic form of the
Lorentz invariant free massive boson propagator, to elimi-
nate the dominant decay behavior of the function.

The correlation lengthj was chosen to make the maxi-
mum in the ‘‘beat’’ amplitudes as constant as possible. The
equal-time free boson propagator is

E dvdk
~2p!2

eikl

v2/v21k21j22

}E dk eikl
Ak21j22

→
j@j

l21/2e2 l /j. ~4.3!

The fit was also performed without the factor ofl 1/2, with
noticeably poorer results. Our results for the correlation
length are subject to greater errors than, for example, the
dimerization, both because a precise fitting function is not
known and the errors in correlation functions are greater than
in local measurements in DMRG calculations.

The resulting values forj are shown in Fig. 10. For com-
parison we show similar results for the ladder system shown
in Fig. 2. The correlation length grows much more rapidly in
the zigzag chain than in the ladder system.~These lengths
correspond to considering the zigzag chain anL32 system.

FIG. 7. The dimerization plateau values from Fig. 6. The solid
line is a fit of the formy50.040510.031 44exp(2m/208).

FIG. 8. The dimerization as a function ofJ2 /J1. The solid line
is a spline fit to the data, and the dotted line forJ2 /J1.2.5 is an
exponential fitd52.283exp(21.622J2 /J1).

FIG. 9. The correlation functionC( l )5^SW •SW &, multiplied by
l 1/2el /j, where the correlation length isj517.1. The system size
was 20032, andm5350 states were kept per block.

FIG. 10. The correlation length as a function ofJ2 /J1.
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If we consider it a single chain, these lengths would be mul-
tiplied by two.! Figure 11 shows the same results as a semi-
log plot. It appears that for the accessible values ofJ2 /J1,
the correlation length does not yet grow exponentially with
J2 /J1.

By fitting l 1/2el /jC( l ) to a sinusoidal function with an
arbitrary wavelength and phase, we were able to extract the
incommensurate angleu, which is shown in Fig. 12. In Fig.
13, we plotu2p/2 versus 1/j, for which we expect linear
behavior near the origin. The solid line corresponds to

~2j!215
u

p/2
21. ~4.4!

Given the uncertainties in our procedures for extractingu
and j, our data points are reasonably consistent with this
behavior.

V. KONDO LATTICE

We consider a generalized one-dimensional Kondo lattice
Hamiltonian:

H5(
i

S 2t~ci
†ci111H.c.!1JSW i•ci

†sW

2
ci1KSW i•SW i11D .

~5.1!

Hereci ,s annihilates an electron of spins at sitei andSW i is
a spin-1/2 operator. Sums over spin indices are implicit. We
include an explicit nearest-neighbor spin coupling,K. This
~and longer-range terms! would be generated by conduction
electron exchange~the RKKY mechanism!. It could also
arise from other exchange mechanisms in some cases as for

instance in the organic chain compound CuPC~I!.26,27 We
include it here because it allows for straightforward applica-
tion of bosonization techniques.

In fact the limit to which our method applies isJ!t,K. In
this limit, we are only concerned with the low energy de-
grees of freedom of the conduction electrons (ci) and the
spin chain. These can be represented in bosonized form, in-
troducing spin (fs1) and charge (fc) bosons to represent the
conduction electrons and an additional spin boson (fs2) to
represent the spin chain. This approach was attempted inde-
pendently in Ref. 28 but we disagree with their conclusions
as explained below. The two-spin bosons turn out to be very
similar to the ones discussed for two-spin chains above. The
spin bosons may equivalently be represented by the matrix
fields gi . For J50, we obtain simply three decoupled free
boson Hamiltonians~plus various irrelevant interactions in-
volving fs2). The velocities arevF52t for fc andfs1 and
vs5pK/2 for fs2. We note that the theory is not Lorentz
invariant due to the difference of velocities. To bosonize the
Kondo interaction we need the bosonic representations for
the conduction electron spin operator and the localized spin
operators,SW i . These are given by

cj
†sW

2
cj'~rW L11rWR1!1const@e2ikF j tr~sW g1!e

iA2pfc1H.c.#,

SW j'~rW L21rWR2!1const~21! j tr~sW g2!. ~5.2!

Note that, away from half-filling, the continuum limit Hamil-
tonian only contains a marginal coupling of the currents:

H intu5J~rW L11rWR1!•~rW L21rWR2!. ~5.3!

At half-filling, the 2kF oscillation becomes commensurate
with the alternating localized spin operator and an additional
relevant~dimension-3/2! term occurs:

H inta5ltr~sW g1!•tr~sW g2!cos~A2pfc!, ~5.4!

wherel}J.
The strong analogy with the two-chain spin system is now

clear. The half-filled Kondo lattice resembles the standard
spin-ladder model, with a relevant interchain interaction.
Away from half-filling the Kondo lattice is very closely
analogous to the zigzag spin chain model. In this case there
are no relevant charge interactions so we may expect a de-
coupled massless charge sector. The field theory describing

FIG. 11. A semilog plot of the correlation length as a function of
J2 /J1.

FIG. 12. The angleu vs J2 /J1.

FIG. 13. u2p/2 vs 1/j.
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the spin sector is identical to that occurring in the zigzag spin
chain, except for the difference of spin-wave velocities for
the two chains. In fact, this situation could also easily be
realized in the zigzag spin chain by having different coupling
constantsJ2 and J28 for the two chains. It is also clear that
adding Hubbard interactions for the electrons does not
change things very much, particularly away from half-filling.
The charge excitations still decouple and remain gapless in
that case. The scaling dimensions of various operators
change with the Hubbard interaction strength, associated
with rescaling the charge boson, in the standard way.

At half-filling we expectH inta , which couples charge and
spin modes, to produce a gap for all charge and spin excita-
tions. The gaps should scale asJ2 for either sign ofJ. This is
different from the form exp@2const(t/J)# predicted when
J.0 andK50.29 If we assume that the charge boson devel-
ops a gap and hence^cos(A2pfc)&Þ0, then the interaction
in the spin sector reduces to the same one that occurs for the
spin ladder, Eq.~2.10!. As argued above, this should gap
both spin excitations. A different conclusion was reached in
Ref. 28, where it was claimed thatf1 does not appear in the
interaction and hence remains massless. This incorrect con-
clusion was obtained because of a missing minus sign in the
transformation from non-Abelian to Abelian bosons, Eq.
~2.7!. The necessity for the minus sign in the lower left ma-
trix element can be seen by observing that the constraint
detg51 is not obeyed and tr(sW g) is not purely anti-
Hermitean, without it.~The ‘‘note added in proof’’ in Ref. 28
reflects a realization of this error.30!

Away from half-filling, where the charge boson is mass-
less, we may analyze the spin sector much as for the zigzag
chain. In particular, the Kondo interaction renormalizes to
zero in the ferromagnetic case, leaving all spin excitations
gapless. In the antiferromagnetic case, we expect an expo-
nentially small spin gap:

D}e2const~vF1vs!/J. ~5.5!

Fujimoto and Kawakami28 assumed instead thatJ renormal-
ized to some sort of strong coupling critical point corre-
sponding to vanishing spin gap for one branch of spin exci-
tations. This assumption seems rather unlikely from the point
of view of the RG analysis, in light of the above comments,
but was motivated by physical considerations. That is, it
would seem that somehow the left-moving spin excitations
from the localized spins interact with the right-moving spin
excitations of the conduction electrons~and vice versa! to
form a gap. While this seems reasonable at half-filling, it
becomes difficult to understand away from half-filling. If we
consider the strong Kondo coupling limit, then localized
spins form singlets with on-site conduction electrons. This
clearly produces a gap at half-filling where there is one con-
duction electron for each localized spin. However, below
half-filling there is an excess of localized spins which may
produce gapless excitations. In fact, for the ordinary Kondo
lattice model (K50) at strong coupling,J@t, it has been
shown by Sigristet al.31 that these leftover spins form a
~gapless! ferromagnetic ground state. At weaker coupling Si-
grist et al. found a nonferromagnetic phase whose properties
were not very well characterized. Fujimotoet al.28 assumed

that this phase corresponded to a single species of gapless
spin excitations~as well as gapless charge excitations!.

We do not find this argument convincing and think that a
spin-gap phase may occur at weak coupling. Evidence for
this is provided by our analysis of the zigzag spin chain in
the previous sections. Note that in that case also a transition
to a gapless phase occurred for sufficiently largeJ, i.e.,
J1.J1c'4J2.

A related phase with a spin gap but no charge gap has
been found numerically in thet-J model away from half-
filling, at J of order t. In this case, it is apparently not asso-
ciated with any spontaneous discrete symmetry breaking,
and may be thought of as a dimer fluid state.32 The absence
of spontaneous symmetry breaking is a consequence of the
gapless charge excitations. The dimer order parameter also
contains a charge factor which has vanishing expectation
value when the charge gap vanishes.

There is actually a limit of the generalized Kondo lattice
model, below half-filling, which is essentially equivalent to
the t-J model:

J@t, K@t2/J. ~5.6!

The largeJ condition forces all conduction electrons to form
singlets with localized spins. The unpaired localized spins
can effectively hop around via the hopping term. Their pre-
dominant interaction is the Heisenberg term,K. In addition
they have various weak induced interactions31 of O(t2/J).
These are the interactions responsible for ferromagnetism in
the pure Kondo lattice model at strong coupling. In the spin-
gap phase of thet-J model these interactions cannot change
the behavior provided that they are small enough compared
to the gap. This essentially constitutes a proof~given the
numerical results on thet-J model! that the generalized
Kondo lattice model has a spin-gap phase somewhere in its
phase diagram away from half-filling. How large a region of
parameter space is in the spin-gap phase and whether it in-
cludes the pure Kondo lattice model for some range of dop-
ing andJ/t are open questions which we are investigating
numerically.33

It was argued independently by Zacharet al.34 that the
Kondo lattice should have a spin gap away from half-filling
using a different type of bosonization based on perturbing
around a different limit of the model where the Kondo inter-
action is strongly anisotropic.

VI. CONCLUSIONS

The zigzag spin chain is gapless for weak ferromagnetic
interchain coupling, but has an exponentially small gap for
small antiferromagnetic coupling. This phase has a weak
spontaneous dimerization, or broken translational symmetry
along with a finite-range incommensurate magnetic order.

Although we have presented results for a wide range of
J2 /J1, our primary focus has been on the largeJ2 /J1 region,
where the system is best thought of as two weakly coupled
chains. Most previous work has focused on smaller values of
J2 /J1. Our results help to explain the behavior of the quasi-
one-dimensional antiferromagnet, SrCuO2, studied in Ref. 2.
This compound is believed to be well described by the zig-
zag spin chain~with very weakly coupled pairs of chains!
with J2'1000 K anduJ2 /J1u in the range 10–1000. The
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susceptibility appears to go to a finite constant asT→0,
apart from a lowT upturn attributed to impurities. This in-
dicates the absence of a gap. This is to be expected from the
results obtained here since the gap vanishes exponentially
with J2 /J1 and should be completely negligible for this
range of couplings. Note that, if the interchain coupling had
been of ladder type rather than zigzag type, this gap would
have been much larger and perhaps observable in the avail-
able temperature range. We find that the gap is approxi-
mately 0.42J8 whereJ8 is the interchain coupling in the spin
ladder, forJ8!J. Thus the gap might have been as large as
40 K in the spin-ladder case and could have shown up in the
susceptibility measurements which went down to 1.7 K.

The field theory description of the zigzag spin chain in the
limit J2@J1 is closely related to the field theory description
of the decoupled spin sector in the doped generalized Kondo
lattice in the limit K,t@J. Our results on the zigzag spin
chain suggest the existence of a spin-gapped phase in the

doped Kondo lattice. However, it is clear that a number of
different phases exist in the generalized Kondo model away
from half-filling. Numerical results33 will probably be neces-
sary to determine whether or not the spin-gap phase persists
down toK50, the ordinary Kondo lattice model.
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