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Dimerization and incommensurate spiral spin correlations in the zigzag spin chain:
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Using the density matrix renormalization group and a bosonization approach, we study a spin-1/2 antifer-
romagnetic Heisenberg chain with near-neighbor couplipgand frustrating second-neighbor couplidg,
particularly in the limitJ,>J,. This system exhibits both dimerization and incommensurate spiral spin cor-
relations. We argue that this system is closely related to a doped, spin-gapped phase of the one-dimensional
Kondo lattice.[S0163-182606)01034-X]

| INTRODUCTION whereS andT; represent thes=1/2 operators on the two
chains. We are particularly interested in the case where

Relatively little is known about the behavior of frustrated j,>J,.
antiferromagnetic quantum spin systems, in comparison with Besides a general interest in understanding frustrated
their unfrustrated counterparts. In general, frustration reduceguantum systems, there are several additional motivations
ar]tiferromagnetic correlations and the tendency towardsor studying this system. As we discuss below, a bosoniza-
Neel order. In the presence of sufficiently strong frustration,tion treatment of a generalized version of the one-
classical systems often develop noncollinear sublattice magtimensional Kondo lattice shows a close relationship be-
netizations. The classical antiferromagnetic Heisenberg trianween the spin degrees of freedom of that system when
gular lattice, for example, has three different sublattices withdoped, and the zigzag chain. The evidence we present below
magnetization directions in a plane at 120° angles. The befor a spin gap in the zigzag chain may also indicate a spin-
havior of the corresponding quantum system is still controgapped phase in a Kondo chain. Physically, zigzag arrange-
versial. Quantum systems may, instead, dimerize in the presnents of atoms are common and this model is appropriate
ence of frustration, as exemplified by the exactly solublefor real systems such as SrCuGstudied in Ref. 2.
one-dimensional Majumdar-Ghosh modédee below. Yet This model exhibits some similarities, but also marked
another possibility is some sort of spin-liquid state, withoutdifferences from the standard two-chain spin ladtiér,
dimerization or sublattice magnetization, examples beinghown in Fig. 2. While interchain coupling is relevant in the
one-dimensional nearest-neighbor systems and possibly thgdder model, producing a gap which scales lineduly to
Kagomelattice. For a number of reasons, frustrated systemsogarithmic correctionsfor either sign of the coupling, it is
tend to be difficult to study—for example, quantum Monte marginal for the zigzag chain, producing a gap only for the
Carlo typically cannot be used because the frustration introantiferromagnetic sign, which scales exponentially with cou-
duces a minus sign problem. pling, Axexp(—constJ; /J,). The marginal nature of the in-

In this paper, we study a one-dimensional spin-1/2terchain coupling in our model is reminiscent of weakly
Heisenberg system, with near-neighbor couplifgsand  coupled two-chain Hubbard systeftsHowever, the renor-
frustrating next-neighbor couplingls. This system can also malization group analysis of our model is both simplified by
be considered a two-chain lattice with diagonal, or “zigzag” the absence of charge excitations and complicated by the
couplings, as shown in Fig. 1, and we will refer to the systenpresence of irrelevant intrachain operators with coupling
as the “zigzag” chain. The model is described by the Hamil-constants ofd(1). Unlike in the spin-ladder model, our nu-

tonian merical results for the spin-spin correlation functions indi-
cate that dimerization is present for all <J;.~4J, and
H= [J1,S-Si1+ 3T Tioq+ S (Ti+ T, incommensurate spiral correlations are present for all
i J,<2J,.

1.9 From the numerical point of view, for a one-dimensional

J, —o—0o—0o —o o

o oo o e

J [l : 1 1 1 [l

Ig . 9o ' WY N L A S——

FIG. 1. The zigzag spin ladder. FIG. 2. The spin ladder.
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(1D) or quasi-1D system, this model is quite challenging. As _— — — — —
mentioned above, quantum Monte Carlo methods are not
useful. Because of the very long correlation lengths, exact

diagonalization is not useful for the range of parameters in e —
which we are interested. The model can be studied with the . ‘
density matrix renormalization grot&)(DMRG), but it is FIG. 3. The two dimer grOUnd states of the Ma]umdar'GhOSh

still a difficult system for several reasons. The exceptionallymodel-

long correlation lengths mean that very long systems must be .

studied—in some cases we have studied systems with tho@peratorsp; g and the S{2) matrix field g of the WZW
sands of sites. Furthermore, the system, particularly for larggiodel as

J,, has two properties which slow the convergence of R . L

DMRG with the number of states kept per bloqi) the S~(pL+pr)+const—1)'tr(oQ). (2.9
correlation length is long, an®) it is composed of nearly
independenthains. The slower convergence of DMRG with
nearly independent chains is known from the two-chain spi
ladder case. Fad,/J,;=2, for example, it was necessary to Ho o (3= o) p 2.2
keep about 400 states per block for an adequate calculation m* (J2=Jzc)pL- pr- '

of the spin-spin correlation function. In contrast, similar ac-This is marginally irrelevant fod,<J,.; that is it renormal-
curacy can be obtained in ti#&=1 Heisenberg chain keep- izes to zero at long length scales but produces logarithmic
ing 50 to 80 states. The calculations presented here wekgorrections to the simple scaling behavior of the free boson
only possible because of new developments in the DMRGnodel. Ford,> J,, it is marginally relevant; that is, it renor-
algorithms, resulting in increased computational capabilitiesnalizes to large values producing an exponentially small gap
by nearly 2 orders of magnitude, which will be mentionedand inverse correlation length:

here but discussed in more depth elsewhere.

Previous studies of this system include the exact diago- A=vg/goxecOnst1/0I27J2), 2.3
nalization work of Tonegawa and Haratlahe recent work
of Bursill etall® using DMRG and a coupled cluster
method, and the DMRG study of Chitea al,* who consid-
ered a more general model which included a dimerization T 2 2 &
term. This work extends and improves upon the previous d=(Szi-1"521) = (Sai* Sai+ 1) *(1r)- 24
work in several ways. Particularly for the difficulb,>J;  Since tg has scaling dimension 1/2 it follows that:
regime, we have been able to obtain improved numerical
results, which are consistent with the previous calculations. doc /A (2.5
We have presented the first field theory treatment of the zig

As well as the WZW or free boson Hamiltonian, there is
/N additional marginal interaction controlled By:

This massive phase is spontaneously dimerized. The order
parameter

a0 chain in the.> J. regime. as far as we know. and found As J,/J, is increased further the correlation length decreases
Y 2>J1 [€gIME, ' and the field theory description becomes less accurate. At the

general agreemer_n Wit.h the numerical re_sults. In addition, .W%ointJ /J;=0.5 the exact ground states become the simple
point out a potentially important connection between the zig- 27V

zag chain and the generalized Kondo lattice. dimer configurations of Fig. 3, as pointed out by Majumdar

; . : . and GhosH. Here the correlations extend only to a distance
This paper is organized as follows. In Sec. Il, we discuss

a bosonization and renormalization group approach for th of one lattice spacing; a rigorous proof of a gap has been

. . : iven in this casé®
zlgzag chain. In S?C' ll, we Q|scuss the DMRG method As J,/J, is increased further, we expect the correlation
used in the numerical calculations. In Sec. IV, we presenf

. : . ength to increase again. Eventually, whks J,, it is more
numerical results for a variety of properties. In Sec. V We_ sropriate to think of two spin chains with a weak ziqza
discuss the relationship of the spin ladder and the zigza pprop P gzag

chain to the half-filled and non-half-filled Kondo lattice, re- ?xgrgggg”ucfe%p'c'ﬂg}nass shownin Hg. 1. 40, we obtan
spectively. Section VI contains conclusions. P g 9ap

lation length. For smalll; /J, we expect the gap and inverse
correlation length to be small so we may perturb around the
Il. BOSONIZATION AND RENORMALIZATION GROUP pointJ; =0 using a field theory approximation. Only the low
TREATMENT OF THE ZIGZAG SPIN CHAIN energy degrees of freedom of each chain are relevant. We
may represent these as in Eg.1), introducing two sets of

< . . . fieldsg;, oL , and or . Wherei =1,2 labels the two chains.
chain are appropriate depending on the rajitJ,. For small The d?flferf()alﬁlce bet\l/)vFgen the ladder and the zigzag chain be-
values ofJ,/J it is appropriate to treat the model as a single

: . . ! . .comes evident upon bosonizing the interchain coupling.
chain. Extensive discussion of this model may be found in"™ " =\ 440 Jdel we obtain a coupling of the alternat-

Refs. 14-16. The conclusion is that the model is gapless fo : .
J,<J,.~0.241 167218 We briefly review the conclusions Ihg spin components:
here. The low energy effective theory is a free massless bo- - -
. . H; . 2.
son with SU2) symmetry, or equivalently a levek=1 inta* Jotr(0g1)tr(ogz) (2.6)
Wess-Zumino-WittenfWZW) nonlinearo model. The uni- This has dimension 1, so we expect it to produce a gap
form and staggered components of the spin operators agroportional toJ, (up to logarithmic corrections associated
represented in terms of the left- and right-moving densitywith the marginal operatorsTo check explicitly that all de-

Quite different field theory treatments of the zigzag spin
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grees of freedom are gapped it is convenient to switch over < -®
to an Abelian bosonization notation. The @Ufieldsg; can 2N RO AN

be written in terms of the free spin bosomrs,; as AN N AR

o > »

e \Zmdsj Qi \Zmds

g~ (2.7

o iVZThs @ iVZmds) |
e o€ > FIG. 4. Dimerization in the zigzag spin chain.

Here is the field dual tap [[* ,.dx'II(x')]. (The subscript = o

s for spin is redundant here but we keep it to distinguishphase transition fod,c~0.25); <Jy <. In_t\ivo-chalrlfleld
these fields from the charge boson that arises in the discu§?eory language, the order parameter isrgy)-tr(ogp).
sion of the Kondo lattice in Sec. ¥Thus the alternating spin  This has dimension one, so it should scale linearly with

operators are doc A ccgconstz Iy (2.14

tr(og;) = (SiNV27 i, +COSV27 s, SINV27 ). unlike in the other limit, discussed above where\/A. Note
(2.8 that, in this phase, the much stronger intrachain correlations

Introducing the sum and difference spin bosons (T;-Ti+1) are translationally invariant; only the very weak
interchain correlations break translational symmetry.

Pt ds 29 In addition to the long-range dimer order, there is also
b5, == \/5 ' (2.9 finite-range Nel order, with correlation lengt. £ becomes
very long whenl, is only slightly larger thard,.~0.25 and
Hinta Decomes: again whenJ,>J,. NearJ,. this long but finite-range order
is of standard Nel type:
Hina — oS A s, )+ cos ATy )+ cos VAmdhs ). P
(2.10 (S-§jyor(—1)iTleliile, (2.15

Thus we thaln Qecoupled Hamiltonians for the two fields n the other limit, J,>J;, the spins on each chain exhibit
¢s+ . The interactions are expected to produce gaps for both _. . i
: : . 20-22 nite-range Nel order:
bosons for either sign af,, proportional to|J,|.
In the zigzag model the coupling of alternating spin com-

3.8 T.. T —1)i—ig-li-illg
ponents cancels, and we are left only with the marginal cou- (S-Sp(Ti- (1) e ' (216

pling of uniform components: Note that from the single-chain point of view, it is the
. . . . second-nearest-neighbor spins which arelNedering.
Hinw=2J1(pL1+ pr1) - (PL2 T PR2)- (2.11 Further insight into the behavior of this model can be

-~ - - - . obtained from solving the classical problem. This gives a
The term p ;- p o+ pra- pro) does not renormalize o low-  gyirg) order with pitch angl@. 6 is the angle between neigh-

est order; we will assume it can be ignored, apart from &,,ing spins in the single-chain description. The classical
small velocity renormalization. The remaining Hamiltonian energy per unit length is

is Lorentz invariant. Note that the unperturbed spin Hamil-

tonian separates into four terms for left- and right-moving E()=J,cos9+J,c0s24. (2.17

spin bosons of types 1 and 2. Thus we may interchange o )

pry With pros SO that the interaction becomes diagonal in the 0" J2=0.25); the solution is the standard Hlestate, but for

index i, labeling the two species of spin bosons. This inter-J2=J1 the pitch angle is given by

action is then precisely two copies of the one which occurs B

for a singles=1/2 chain, Eq.(2.2). (This decoupling is COY=—Jy/4J;. (218

spoiled by irrelevant operatojsThus we conclude that, for This angle varies from# at J,—0.25); to w/2 at

ferromagnetic zigzag coupling, the interaction renormalizeg, /3, . Of course, true Ne order is presumably impos-

logarithmically to zero and there is no gap. For antiferromagsiple in a one-dimensional quantum antiferromagnet, even at

netic coupling there is an exponentially small gap: zero temperature. However, we might expect the classical

_ —consi /J result to give a guide to possible finite-range order. Note

A=vs/é=e 2 (2.12 that, in the casel,>J,, the spins on different chains are

We might again expect a broken discrete translational symalmost decoupled|,<§i-fi>|<1, so classically we may re-
metry. Since the marginally relevant interaction couples lefigard these spins as orthogonal. This is consistent with the
and right movers on the two chains, it is natural to expectr/2 pitch angle predicted classically. We expect that the de-
that the order parameter is viation of the pitch angle fromr/2 defines a characteristic
wavelength, which we expect to be proportionakta.e.,

d=(S, - (Ta—Ta11)), (213

as shown in Fig. 4. Note that, when we regard the model as

a single chain with first- and second-nearest-neighbor intefFor smaller values 08,/J,, Chitra et al.> showed(using
actions, this is the same nearest-neighbor dimer order parar®MRG) that the spiral correlations are only present for
eter that was discussed above. Thus there need be no othkr/J;>0.5, in agreement with the earlier work of Tonegawa

0— w2 1lg (3,3 dy). 2.19
|.13
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and Harada! Between the critical point and the Majumdar- 0.5 : : :
Ghosh point, the pitch angle is.
04
Il. THE DENSITY MATRIX RENORMALIZATION 03 r
GROUP APPROACH 3 -
The DMRG method is discussed in some detail in Refs.
10 and 23. Here we discuss specifics of our calculations, as 0.1
well as mentioning some recent improvements to DMRG . . .
which are implemented in our calculations. 0'00,0 0.5 1.0 15 20
The numerical results were based on finite-system studies LA,
of systems with as many as 600 sites, and on infinite-system
results for systems up to 7000 sites. We obtain the total FIG. 5. The spin gap.

energies, bond energies, and the equal-time spin-spin corre-
lation functions of the grOUnd state. The accuracy of th%nd also inc|uding arallL term. The extrap0|ation was
calculations depend on the number of stateskept per  much more problematic than, for example, in the Heisenberg
block, as well as the value d&/‘]l In these calculations we S=1 chain, where th@]_/l_ term should be 0m|tt965 For
used values ofn up to 700. Large values oh were neces- the zigzag chain, tha, /L term appeared to be thminant
sary only for large values of,/J;. Near the Majumdar- pehavior except for exceptionally long systems. We dealt
Ghosh point,J,/J;=0.5, very small values ofn sufficed; with this problem by using very long chains, so that the
exactly at the Majumdar-Ghosh point, exact results for theaxtrapolation itself was small. Our results are shown in Fig.
ground state could be obtained with=2. Truncation errors, 5,
given by the sum of the density matrix eigenvalues of the e define the dimerization to be the absolute value of the
discarded states, ranged from zero to O®0 for difference of adjacent interchain bond strengths, given ex-
J,/3,=2.5. This discarded density matrix weight is directly plicitly by Eq. (2.13. We calculated the dimerization using
correlated with the absolute error in the enefgWe apply  the infinite system DMRG method, extrapolating in the num-
open boundary conditions to the lattice because the DMRGer of states kept per bloak. The ground state is doubly
method is most accurate for a given amount of computationajegenerate, corresponding to a shift in the dimerization by
effort with these boundary conditions. one site. Ordinarily we expect to get a ground state with a
We have been able to perform much more extensive cakully broken dimerization symmetry, but it is possible nu-
culations, both in terms of system size and number of stategerical effects could produce an intermediate value for the
kept, than in previous DMRG studies. This is not because oflimerization. To prevent this, we add a very small dimeriza-
more extensive computational resources—these calculation®n field, proportional to Eq(2.13, to the Hamiltonian,
were performed almost entirely on a Digital AlphaStationwith the coefficient taken as 16. A very long calculation
200 4/166 with 96 megabytes, rated at 135 SPECfp 92. Th@as performed, starting with a relatively smail Once the
primary reason for the improved capabilities are some recerdimerization converged with system size for this value of
improvements to the DMRG algorithms. The main improve-m m was increased, and allowed to converge again. Figure
ment involves a transformation of the wave function fromg shows the most difficult case we studigg/J;=2.5. A
the previous DMRG step to the current DMRG step, provid-maximum ofm=700 was used in this calculation, but sub-
ing an excellent starting point for the sparse matrix diagonalstantially smaller values ah were necessary for most values
ization procedure. These improvements will be reportecyf 3,/3,. The plateau values are shown as a functioman
elsewheré” In addition, the calculations were performed Us-Fig. 7. These can be fit very well with an exponential form,

ing a highly optimized G+ program, which, for example, ajiowing the extrapolation ton—. (Near the Majumdar-
translates all matrix operations into calls to a very efficient

basic linear algebra subroutifBLAS) library. This program

keeps in memory only what is necessary at each step; every- 010
thing else is written to disk.
0.08 |
IV. RESULTS -
The spin gap was calculated fdg/J, ranging from 0.4 to 0.06 |
2.0. The gap is defined as the difference in energy between
the lowestS,=0 state and the lowe&,=1 state. For each

value of J,/J;, this energy difference was calculated for a 0.04
set of finite systems with open boundary conditions with

different sizesL, with L typically ranging from 32 to 200.

(We .cons.lder the system to be aix 2 lattice, so the number FIG. 6. The dimerization during an infinite system DMRG cal-
of sites _'s actually 2'_) The gaps were extrapolated to culation as a function of the DMRG stdp The numbers labeling
L—co using a polynomial fit of the form each plateau are the number of states kept per block; once conver-

gence was reached, the program was signaled to keep additional
A =A+a,/L%+ag/L3+ -, (4.1  states.

0 1000 2000 3000 4000
I
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FIG. 7. The dimerization plateau values from Fig. 6. The solid  F|G. 9. The correlation functioi€(l)=(S-S), multiplied by
line is a fit of the formy=0.0405+0.031 44expt m/208). |%!/¢, where the correlation length §=17.1. The system size
was 200x 2, andm= 350 states were kept per block.
Ghosh point, this procedure was not necessary: nearly exact
results were easily obtained using small valuesrof The  py the functiond=2.283exp{-1.622,/J;), as predicted in
final results, corresponding to— andL—, are shown Eq. (2.14), which is shown as the dotted line in the figure.

in Fig. 8. _ _ . The spin-spin correlation functioB(i —j)=(S-S;) was
One interesting feature of these results is that the MaXiz5iculated as a function of—j using the finite system

. hich I o be fully dimeri dhnethod, withi andj chosen symmetrically about the center
pqlnt, which one normaly considers to be fully dimerized, ¢ ¢ system. The correlation function exhibits incommen-
with dimerization 3/4. A maximum of 0.790 613 5 occurs atgrate behavior. This behavior is clearly seen in Fig. 9,

appr'oximaterJZ/le0.5781. (For the cqlcula}tion of'the where we plotC(1) divided by the asymptotic form of the
m*?;'m“m we r.edL!ced the value of the.dlmerlgatm.n field 10 yrentz invariant free massive boson propagator, to elimi-
107°.) A dimerization greater than 3/4 is possible if one of o:a the dominant decay behavior of the function.

the bonds is slightlyferromagnetic Consequently, a maxi- The correlation length was chosen to make the maxi-
mum in the “beat” amplitudes as constant as possible. The

mum dimerization of unity would be possible if the two
bonds were independent. Since they are not independent, t}éﬁual-time free boson propagator is
maximum possible dimerization is reduced. We can obtain

the maximum possible dimerization by considering a model dwdk oikl

with the dimerization order parameter as its Hamiltonian f (2m)2 0o+ K2+ & 2

ikl
ocf dk—85— . |V lE (43
K2+ g2 17¢
The fit was also performed without the factor 132, with
The ground state of this system has the maximum possiblgoticeably poorer results. Our results for the correlation
dimerization. DMRG converges very rapidly for this Hamil- length are subject to greater errors than, for example, the
tonian, yielding a dimerization of 0.824 516 5. Returning todimerization, both because a precise fitting function is not
the original zigzag Hamiltonian, we find that the weakerknown and the errors in correlation functions are greater than
bond is ferromagnetic over a broad region: fromin local measurements in DMRG calculations.
0.5<J,/J;<2.5. The upper limit is somewhat uncertain,  The resulting values fof are shown in Fig. 10. For com-
since we do not have reliable results fdg/J;>2.5. For  parison we show similar results for the ladder system shown
large values ofl,/J;, the dimerization can be fit very well in Fig. 2. The correlation length grows much more rapidly in
the zigzag chain than in the ladder systgifhese lengths
correspond to considering the zigzag chainLan2 system.

szi So (Tai—Tais1). (4.2

0.8 T T
0.6 | § 30 T .
= 04 r 1 20 | ®—= Ladder Pat
o——e Zigzag chain ./
0.2 f 1
0.0 : ;
0.0 1.0 2.0 3.0

5/,

FIG. 8. The dimerization as a function d§/J,. The solid line
is a spline fit to the data, and the dotted line 3grJ;>2.5 is an
exponential fitd=2.283exp(-1.622),/J,). FIG. 10. The correlation length as a functionXf/J;.
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FIG. 11. A semilog plot of the correlation length as a function of FIG. 13. 6— w/2 vs 1£.

3,13,

instance in the organic chain compound CaR€?" We

:f vl\./edcgns{lder ||t:.a S'nglli C?]am' tthhese lengths V\I/tould be mu'.‘lnclude it here because it allows for straightforward applica-
iplied by two) Figure 11 shows the same results as a SeMiz oo of bosonization techniques.

log plot. It appears that for the accessible VaIUES]?df‘Jl’ . In fact the limit to which our method appliesJds<t,K. In
the correlation length does not yet grow exponentially WlththiS limit, we are only concerned with the low energy de-

NPYNLY .
- . . . . grees of freedom of the conduction electroms) (and the
bBY fitting |1|/29”"CCh:(I) dto f? sinusoidal fung;uon With an gy chain. These can be represented in bosonized form, in-
ar ltrary wavelength an E ﬁs.e, v;/‘e were E. € ltg elxtrFa'ct th‘f?oducing spin (s1) and charge ¢.) bosons to represent the
T;ommersurate/gngl@ whic ;S S ?]Wrr: INFg. 1o ? '9- " conduction electrons and an additional spin boseg) to
b 'hW? P Ow_z vgr_susTslg, orll(\j/vl}c we expec(; inear represent the spin chain. This approach was attempted inde-
ehavior near the origin. The solid line corresponds to pendently in Ref. 28 but we disagree with their conclusions
P as explained below. The two-spin bosons turn out to be very
(2¢) l=—x—1. (4.4  similar to the ones discussed for two-spin chains above. The
w2 spin bosons may equivalently be represented by the matrix
Given the uncertainties in our procedures for extracting fields g;. ForJ=0, we obtain simply three decoupled free

and &, our data points are reasonably consistent with thid?0son Hamiltoniangplus various irrelevant interactions in-
behavior. volving ¢g,). The velocities are =2t for ¢, and ¢4 and

vs=wK/2 for ¢5,. We note that the theory is not Lorentz
V. KONDO LATTICE invariant due to the difference of velocities. To bosonize the
Kondo interaction we need the bosonic representations for
We consider a generalized one-dimensional Kondo latticéhe conduction electron spin operator and the localized spin

Hamiltonian: operatorsS, . These are given by
_ t < 10 g & Lo - - Keitr( Ca. ) ol V27
H= Z ~UCiCit T H.C)+IS ¢/ 5Ci+KS Sy ) c, Ecjm(p,_ﬁpm)vtcons{ez' Fltir(og,)e 2™+ H.c],
(5.9
Herec; , annihilates an electron of spin at sitei and$; is Sj~(pL2+ pro) +cONSt—1)'tr(0gy). (5.2

a spin-1/2 operator. Sums over spin indices are implicit. We\ste that, away from half-filling, the continuum limit Hamil-

include an explicit nearest-neighbor spin couplifg, This  tonjan only contains a marginal coupling of the currents:
(and longer-range termsvould be generated by conduction

electron exchangéthe RKKY mechanism It could also o2 >N >
arise from other%xchange mechanisms in some cases as for Hinw=J(pL1F pr1) - (PL2 T PR2)- (5.3
At half-filling, the 2kg oscillation becomes commensurate
120 : : with the alternating localized spin operator and an additional
relevant(dimension-3/2 term occurs:
Ho Hina=Mr(0gy) - tr(0go)co8\2md), (5.4
® where «J.
100 ¢ The strong analogy with the two-chain spin system is now
clear. The half-filled Kondo lattice resembles the standard
20 . 4 spin-ladder model, with a relevant interchain interaction.
0.5 1.0 1.5 2.0 Away from half-filling the Kondo lattice is very closely

A, analogous to the zigzag spin chain model. In this case there
are no relevant charge interactions so we may expect a de-
FIG. 12. The angl® vs J,/J;. coupled massless charge sector. The field theory describing
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the spin sector is identical to that occurring in the zigzag spirthat this phase corresponded to a single species of gapless
chain, except for the difference of spin-wave velocities forspin excitationgas well as gapless charge excitatipns
the two chains. In fact, this situation could also easily be We do not find this argument convincing and think that a
realized in the zigzag spin chain by having different couplingspin-gap phase may occur at weak coupling. Evidence for
constantsl, andJ, for the two chains. It is also clear that this is provided by our analysis of the zigzag spin chain in
adding Hubbard interactions for the electrons does nothe previous sections. Note that in that case also a transition
change things very much, particularly away from half-filling. to a gapless phase occurred for sufficiently ladyei.e.,
The charge excitations still decouple and remain gapless id;>J;.~4J,.
that case. The scaling dimensions of various operators A related phase with a spin gap but no charge gap has
change with the Hubbard interaction strength, associatedeen found numerically in the-J model away from half-
with rescaling the charge boson, in the standard way. filling, at J of ordert. In this case, it is apparently not asso-
At half-filling we expectH;,,, which couples charge and ciated with any spontaneous discrete symmetry breaking,
spin modes, to produce a gap for all charge and spin excitaand may be thought of as a dimer fluid stétdhe absence
tions. The gaps should scale Xsfor either sign of). Thisis  of spontaneous symmetry breaking is a consequence of the
different from the form exjp—constt/J)] predicted when gapless charge excitations. The dimer order parameter also
J>0 andK =0.2° If we assume that the charge boson devel-contains a charge factor which has vanishing expectation
ops a gap and hendeos(/27$.))# 0, then the interaction value when the charge gap vanishes.
in the spin sector reduces to the same one that occurs for the There is actually a limit of the generalized Kondo lattice
spin ladder, Eq(2.10. As argued above, this should gap model, below half-filling, which is essentially equivalent to
both spin excitations. A different conclusion was reached irthe t-J model:
Ref. 28, where it was claimed thét, does not appear in the 2
interaction and hence remains massless. This incorrect con- >t K>t (5.6

clusion was obtained because of a missing minus sign in thehe JargeJ condition forces all conduction electrons to form
transformation from non-Abelian to Abelian bosons, EQg.singlets with localized spins. The unpaired localized spins
(2.7). The necessity for the minus sign in the lower left ma-can effectively hop around via the hopping term. Their pre-
trix element can be seen by observing that the constraifiominant interaction is the Heisenberg tein, In addition
deg=1 is not obeyed and tefg) is not purely anti- they have various weak induced interactiinsf O(t%/J).
Hermitean, without it(The “note added in proof” in Ref. 28 These are the interactions responsible for ferromagnetism in
reflects a realization of this errdf) the pure Kondo lattice model at strong coupling. In the spin-
Away from half-filling, where the charge boson is mass-gap phase of the-J model these interactions cannot change
less, we may analyze the spin sector much as for the zigzape behavior provided that they are small enough compared
chain. In particular, the Kondo interaction renormalizes toto the gap. This essentially constitutes a prégifen the
zero in the ferromagnetic case, leaving all spin excitationsiumerical results on thé-J mode) that the generalized
gapless. In the antiferromagnetic case, we expect an exp&ondo lattice model has a spin-gap phase somewhere in its
nentially small spin gap: phase diagram away from half-filling. How large a region of
parameter space is in the spin-gap phase and whether it in-
cludes the pure Kondo lattice model for some range of dop-

—constvg+uvg)/J
A=e e (5.9 ing andJ/t are open questions which we are investigating
numerically>3
Fujimoto and Kawakani? assumed instead thatrenormal- It was argued independently by Zachetral®* that the

ized to some sort of strong coupling critical point corre- Kondo lattice should have a spin gap away from half-filling
sponding to vanishing spin gap for one branch of spin exciusing a different type of bosonization based on perturbing
tations. This assumption seems rather unlikely from the poinaround a different limit of the model where the Kondo inter-
of view of the RG analysis, in light of the above comments,action is strongly anisotropic.

but was motivated by physical considerations. That is, it

would seem t_hat sorr_]eh(_)w the Ief_t-moving spin excitatio_ns VI. CONCLUSIONS
from the localized spins interact with the right-moving spin
excitations of the conduction electrofand vice versato The zigzag spin chain is gapless for weak ferromagnetic

form a gap. While this seems reasonable at half-filling, itinterchain coupling, but has an exponentially small gap for
becomes difficult to understand away from half-filling. If we small antiferromagnetic coupling. This phase has a weak
consider the strong Kondo coupling limit, then localized spontaneous dimerization, or broken translational symmetry
spins form singlets with on-site conduction electrons. Thisalong with a finite-range incommensurate magnetic order.
clearly produces a gap at half-filling where there is one con- Although we have presented results for a wide range of
duction electron for each localized spin. However, belowJ,/Jq, our primary focus has been on the ladgeJ, region,
half-filling there is an excess of localized spins which maywhere the system is best thought of as two weakly coupled
produce gapless excitations. In fact, for the ordinary Kondachains. Most previous work has focused on smaller values of
lattice model K=0) at strong couplingJ>t, it has been J,/J;. Our results help to explain the behavior of the quasi-
shown by Sigristet al®! that these leftover spins form a one-dimensional antiferromagnet, SrCy@®tudied in Ref. 2.
(gaplessferromagnetic ground state. At weaker coupling Si- This compound is believed to be well described by the zig-
grist et al. found a nonferromagnetic phase whose propertiegag spin chainwith very weakly coupled pairs of chains
were not very well characterized. Fujimoéo al?® assumed  with J,~1000 K and|J,/J,| in the range 10—-1000. The
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susceptibility appears to go to a finite constantTas0, doped Kondo lattice. However, it is clear that a number of
apart from a lowT upturn attributed to impurities. This in- different phases exist in the generalized Kondo model away
dicates the absence of a gap. This is to be expected from theom half-filling. Numerical result§ will probably be neces-
results obtained here since the gap vanishes exponentialjary to determine whether or not the spin-gap phase persists
with J,/J; and should be completely negligible for this down toK=0, the ordinary Kondo lattice model.
range of couplings. Note that, if the interchain coupling had
been of ladder type rather than zigzag type, this gap would
have been much larger and perhaps observable in the avail-
able temperature range. We find that the gap is approxi-
mately 0.43' whereJ’ is the interchain coupling in the spin I.A. thanks S. Coppersmith for interesting him in this
ladder, forJ’<J. Thus the gap might have been as large agproblem and M. P. A. Fisher, A. Sikkema, and H. J. Schulz.
40 K in the spin-ladder case and could have shown up in th&e thank D. Sen for pointing out an error in an early version
susceptibility measurements which went down to 1.7 K. of this paper. S.R.W. acknowledges support from the Office
The field theory description of the zigzag spin chain in theof Naval Research under Grant No. N00014-91-J-1143, and
limit J,>J, is closely related to the field theory description from the NSF under Grant No. DMR-9509945. The research
of the decoupled spin sector in the doped generalized Kondof I.A. was supported in part by NSERC of Canada. Some of
lattice in the limit K,t>J. Our results on the zigzag spin the calculations were performed at the San Diego Supercom-
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