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Using a Green’s function technique we have studied the spin dynamics in the one-dimensional ferromagnetic
CsNiF3 with an external field. Taking into account damping effects, the longitudinal mode becomes purely
imaginary and the transverse mode is underdamped for low temperatures and overdamped near and above the
critical temperature. The spin wave energy and the damping strongly depend on the anisotropy energy and the
magnetic field. We have calculated the dynamic structure factorsSxx, Syy, andSzz via the imaginary part of the
Green’s functions. The coupling between the transverse mode and the relaxing longitudinal mode produces a
central peak in the dynamic structure factor, i.e., we obtain two spin wave scattering components and a central
component. The temperature, magnetic field, anisotropy energy, and wave vector dependence of the three
peaks are discussed and compared with the experimental data.@S0163-1829~96!06738-0#

I. INTRODUCTION

One of the important recent developments in solid state
physics was the introduction of nonlinear aspects into this
field. The soliton concept stimulated extensive theoretical
and experimental work to elucidate characteristic features of
this concept,1,2 so for example, the appearance of the central
peak in the energy spectrum of slow neutrons scattered on
the quasi-one-dimensional~1D! ferromagnets CsNiF3 and
antiferromagnets@~CH3!4N#MnCl3. It was clear from the be-
ginning, that such features should be most prominent in low
dimensional solids, since there long-range order is sup-
pressed and short-range order dominates, which, if it be-
comes strong enough can give rise to nonlinear behavior. In
this frame 1D systems are of special importance. The group
of the 1D magnets appears to be most suitable for the study
of the above mentioned nonlinear effects.

Detailed neutron scattering studies on different systems
have revealed that all experimental results in zero magnetic
field obtained for quasiclassical systems~S>1! can be de-
scribed by the results of linear classical theories. The situa-
tion is different in an external field. Restricting discussion on
systems with more than one spin dimensionn ~n>2!, then an
external field will introduce a gapE0 at the zone center for
the spin wave dispersion. For low temperatures,kT,E0 , we
expect linear theory with corrections to be applicable, that
means one has to deal with single spin wave and two spin
wave processes but can neglect nonlinear effects. For higher
temperatures,kT@E0 , in addition to the one and two spin
wave processes one has to consider nonlinear effects espe-
cially the contribution of thermally excited solitons to the
dynamics as was pointed out by Mikeska.3

CsNiF3 is one of the most studied quasi-1D magnetic sys-
tems. Its magnetic properties have been studied by different
experimental techniques, as well as by means of different
theoretical approaches.4 Recently three different experimen-
tal techniques revealed results in CsNiF3, which were inter-
preted using nonlinear effects: optical measurements of spin

waves,5 NMR measurements,6 and magnetic specific heat
measurements.7 Steiner et al.8 have demonstrated that the
spin dynamics of the 1D easy plane Heisenberg ferromagnet
CsNiF3 in a symmetry broken field is a combination of one
and two spin wave processes and solitonlike excitations. De-
spite the fact that CsNiF3 does not completely fulfill the re-
quirements for sine-Gordon in theT andH range used, the
nonlinear excitations seen inSxx have properties very much
like the sine-Gordon solitons. Their results suggest that one
and two spin wave processes without mutual interaction
dominate the low temperature,T<ESW, spin dynamics,
whereas at high temperatures,ESW,T, nonlinear excitations,
which are very similar to sine-Gordon solitons are necessary
to describe the experimental results.

Since the experimental results obtained for CsNiF3 in an
external field,8 which were interpreted in terms of Mikeska’s
soliton picture, there has been a steady increase of theoretical
results on this problem indicating that the interpretation9

might not be completely justified in the sense that two spin
wave processes could explain part of the results.10–16

In order to understand and to elucidate the different con-
tributions to the dynamics of the 1D ferromagnet CsNiF3 in
an external field we have carried out a detailed study of this
system, using a Green’s function technique of
Tserkovnikov,17 which goes beyond the random phase ap-
proximation~RPA! ~or the Tyablikov decoupling! and takes
into account the correlation functions and the damping ef-
fects. We shall discuss, what is the main aim of this paper;
namely, the analysis of the central peak as found in the en-
ergy spectra of the scattered neutrons.8

II. MODEL AND METHOD

The present work is mainly concerned with CsNiF3, in
which the Ni21 ions are ferromagnetically coupled in chains,
along with the F2 ions. The chains are well separated from
each other by large Cs1 ions and are coupled by antiferro-
magnetic interactions. This arrangement causes a large an-
isotropy between the Ni ions, which is thus present in the
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magnetic properties. Such 1D magnets are usually described
by the Hamiltonian:

H522J(
i
Si•Si111A(

i
~Si

z!22gmBH(
i
Si
x . ~1!

As defined in Eq.~1! Sx andSy are in the easy plane and
would behave identically without an external field, whereas
the Sz component behaves differently as a result of the an-
isotropy. If a magnetic field alongx is applied the correlation
functionsSxx andSyy will behave differently. The positive
anisotropy energyA.0 keeps the spins perpendicular to the
chain axis and the positive exchange energyJ.0 tries to
align the spins within the chains parallel to each other. Spin
correlations between different chains can be neglected. In
zero field, the results are described by~1! with J/kB511.8 K,
A/kB54.5 K, S51, g52.4, anda52.6 Å.3,4

In the ferromagnetic phase we have^Sx&Þ0; therefore it
is appropriate to choose a new coordinate system by rotating
the original one used in~1! by an angleq5p/2 in the xz
plane,

Si
z852 1

2 ~Si
11Si

2!,

Si
x85Si

z ,

Si
y85Si

y . ~2!

We have in the new coordinate system the order parameter
^Sz8&5s.

The retarded Green’s function to be calculated is defined
in matrix form as

G̃k~ t !52 iQ~ t !^@Bk~ t !,Bk
1#&. ~3!

The operator Bk stands symbolically for the set
Sk

1 ,Sk
2 ,Sk

z . For an approximate evaluation of this Green’s
function, we use Tserkovnikov’s method,17 which is appro-
priate for spin problems. After a formal integration of the
equation of motion for the Green function, one obtains

G̃k~ t !52 iQ~ t !^@Bk ,Bk
1#&exp@2 iEk~ t !t#, ~4!

where

Ek~ t !5ek2
i

t E0
tS ^@ j k~ t !, j k

1~ t8!#&
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1~ t8!#&

2
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1~ t8!#&^@Bk~ t !, j k
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^@Bk~ t !,Bk
1~ t8!#&2 D ~5!

with the notationj k5@Bk ,Hint#. The time-independent term

ek5^@@Bk ,H#,Bk
1#&/^@Bk ,Bk

1#& ~6!

gives the spin wave energy in the generalized Hartree-Fock
approximation. The time-dependent term includes the damp-
ing effects.

III. THE SPIN WAVE SPECTRUM

The energy of the coupled system can be obtained from
the following equation:

~ek
332E!@~ek

12!22~ek
11!21E2#22E~ek

13!250 ~7!

with the matrix elements
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whereh5gmBH. s(T) is the relative magnetization:

s5
1

N (
k
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1
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~12!

For the transverse spin wave energy we have

Ek
tr56A~ek

11!22~ek
12!2[6Ek ~13!

and for the longitudinal spin wave energy

Ek
l 5ek

33 ~14!

with the correlation functions

n̄q5^Sq
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13!2#~F11F2!

1vqeq
11~F12F2!%, ~15!

m̄q5^S2q
2 Sq

2&5^Sq
1S2q

1 &5
2s

2vq
2 @vqeq

12~F12F2!

2~eq
13!2~F11F2!#, ~16!

^Sq
zS2q

z &5~112n̄q12n̄q
2!/~113n̄q13n̄q

2!, ~17!
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zSq
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112eq
12!
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Further we have used the abbreviations

vq5A~Eq
tr !212~eq

13!2, F15exp~vq /T!21,

F25@exp~2vq /T!21#21.

If we neglect the transverse correlation functions~15!,
~16!, and ~18!, and if we decouple the longitudinal correla-
tion function ^Sq

zS2q
z &→^Sz&2dq0, then we get the result of

the RPA~i.e., the Tyablikov approximation!:
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ek
115h1s@4~J02Jk!12A#, ~19!

ek
1252sA, ~20!

ek
3350, ~21!

ek
1350, ~22!

whereJk5J coska. There is a solution withe3350. It cor-
responds to the longitudinal mode, i.e, a relaxation of the
spin components parallel to the mean field. In the RPA we
obtain no coupling between the transverse and the longitudi-
nal mode, because ofe1350.

We have studied the temperature dependence of the trans-
verse spin wave energyEk

tr from Eq. ~13! using following
model parameters for CsNiF3 ~Ref. 3!: J/kB511.8K,
A/kB54.5, andS51. The results of the temperature depen-
dence ofEk for different wave vector values,k5~0,0,kc!,
kc50 ~lower curve! andkc50.05~upper curve! are shown in
Fig. 1. We obtain a very good agreement between the experi-
mental data~points and circles! obtained by Steineret al.8

FIG. 1. Temperature dependence of the spin wave energyEk for
A/kB54.5, h510 kOe and for differentkc values:kc50 ~lower
curve! andkc50.05~upper curve!. Points and circles are the experi-
mental data from Steineret al. ~Ref. 8!.

FIG. 2. Wave vector dependence of the spin wave energyEk for
T512 K andA/kB54.5 K. The points are the experimental data
from Steineret al. ~Ref. 8!.

FIG. 3. The spin wave energyEk as a function of the anisotropy
constantA for T52 K, kc50 andh510 kOe.

FIG. 4. The spin wave energy as a function of the magnetic field
h for T52 K, A/kB54.5 K andkc50.
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with inelastic neutron scattering and the calculated data us-
ing the Green’s function method in this paper~solid line!.
The spin wave energy increases withkc ~Fig. 2!. In this
figure the circles represent the experimental data from
Steineret al.8

Ek depends very strongly on the anisotropy energyA
~Fig. 3!. With increase ofA, the spin wave energy increases
too. The spin wave energy grows with increase ofh for

T5const~Fig. 4!, which is in agreement with Steiner.2 The
critical temperature increases with the increase of the mag-
netic field h, which is in agreement with the results of
Haradaet al.18 for the 1D magnetTMMC, ~CH3!4NMnCl3.

Taking into account damping effects, we obtain for the
spin wave energy in the simplest approximation

E1/2~k!56Ek
tr2 igk

11, ~23!

E3~k!52 igk
33, ~24!

whereEk is from Eq.~13!. The complex energy~23! belongs
to the damped motions of the spins processing in a spin wave
around the mean field. Equation~24! gives the relaxation of
the spin components parallel to the mean field. The longitu-
dinal mode is therefore of diffusive type for all temperatures.

Calculations yield the following expressions for the trans-
verseg11 and longitudinalg33 damping, respectively,

g11~k!5
p

N2 (
q,p

@4~Jq2Jk2q!12A#

3@4~Jq2Jk2q1Jk2q2p2Jq1p!14A#

3@ n̄p~s1n̄p1q1n̄k2q!2n̄p1qn̄k2q#

3d~Ep1q2Ep1Ek2q2Ek!

1
4pA

N2 (
q,p

@4~Jq2Jk2q!12A#m̄k2q~ n̄p2n̄p1q!

3d~Ep1q2Ep1Ek2q2Ek! ~25!

and

FIG. 5. Temperature dependence of the transverse dampingg11
for differenth andA values.

FIG. 6. Temperature dependence of the longitudinal damping
g33 for differenth andA values.

FIG. 7. The transverse dampingg11 as a function of the anisot-
ropy constantA/kB .
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g33~k!5
p

Ns (
q

~Jq2Jk1q!@4~Jq2Jk1q!~ n̄q2n̄k1q!

12A~m̄q2m̄k1q!#d~Ek1q2Eq2Ek!

1
pA

2Ns (
q

@2~Jq2Jk2q!~m̄k2q2m̄q!

1A~s1n̄q1n̄k2q!#d~Ek2q1Eq2Ek!. ~26!

We have studied the temperature, anisotropy constant,
wave vector, and magnetic field dependence of the magnon
damping. AtT50 Eqs.~25! and ~26! simplify to

g11~T50!50, ~27!

and

g33~T50!5~p/2!A2d~Ek2q1Eq2Ek!. ~28!

Provided that thed function can be satisfied, we obtain a
longitudinal damping atT50 due to the anisotropy energyA.
g11 and g33 are very small at low temperatures, then they
grow on with increasing temperature~Figs. 5 and 6!. Taking
into account the damping, the longitudinal mode becomes
purely imaginary~24! and the transverse mode is under-
damped for low temperatures and overdamped near and
above the critical temperature. The transverse damping is
much greater compared with the longitudinal damping,
g11@g33.

For k50 we obtain the following expressions:

g11~k50!5
8pA2

N2 (
q,p

@ n̄p~s1n̄p1q1n̄k2q!2n̄p1qn̄k2q

1m̄k2q~ n̄p2n̄p1q!]d~Ep1q2Ep

1Ek2q2Ek! ~29!

and

g33~k50!5
pA2

2Ns (
q

~s1n̄q1n̄k2q!d~Ek2q1Eq2Ek!.

~30!

FIG. 8. The longitudinal dampingg33 as a function of the an-
isotropy constantA/kB .

FIG. 9. Magnetic field dependence of the transverse damping
g11 for different temperatureT values.

FIG. 10. Magnetic field dependence of the longitudinal damping
g33.
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For k50 only the anisotropy terms give contribution to the
damping. Both damping decrease with decreasing wave vec-
tor k.

Figure 7 shows the dependence of the transverse damping
on the anisotropy energyA. g11 has a minimum which shifts
with increasingh to higherA values. The damping is asym-
metric in the single-ion parameterA. The longitudinal damp-
ing decreases withA ~Fig. 8!. The behavior of the damping is
in agreement with the results of Tucker,19 which obtained
thatg33 first decreases withA and then remains finite.

In Fig. 9 is plotted the dependence of the transverse
damping on the magnetic fieldh. g11 has a minimum which
shifts with increasing temperatureT to smallerh values. The
magnetic field dependence of the longitudinal damping is
demonstrated in Fig. 10.g33 decreases with increasing ofh.

IV. THE DYNAMICAL STRUCTURE FACTOR

We obtain for the transverse Green’s function:

G~yy!
xx ~k,E!5

2s~e117e12!

E22Ek
21 iEGk

~31!

with the frequency dependent

Gk~E!52g111
i e13

2

E1 ig33
. ~32!

The transverse dynamical structure factor~DSF! is calculated
via the imaginary part of the Green’s function~31!. We ob-
tain it in the form

S~yy!
xx ~k,E!5$2s~e117e12!E/@12exp~2E/T!#%

3$@2g11E
21g33~2g11g331e13

2 !#/~E21g33
2 !%/„@E22Ek

22E2e13
2 /~E21g33

2 !#2

1E2$@2g11E
21g33~2g11g331e13

2 !#/~E21g33
2 !%2…. ~33!

For the longitudinal Green’s function we obtain

Gzz~k,E!5
2^Sk

zS2k
z &

~E1 ig33!2@Ee13
2 /~E22Ek

212ig11!#
. ~34!

The longitudinal DSF is calculated to

Szz~k,E!5$2^Sk
zS2k

z &/@12exp~2E/T!#%

3$g3312E2g11e13
2 /@~Ek

22E2!21~2Eg11!
2#%/„E2$11e13

2 ~Ek
22E2!/@~Ek

22E2!21~2Eg11!
2#%2

1$g3312E2g11e13
2 /@~Ek

22E2!21~2Eg11!
2#%2…. ~35!

We obtain in the DSFSxx a central peak~CP! around
E50, the width of which is

Gc5g33

Ek
2

Ek
212e13

2 , ~36!

and two spin wave peaks of the width

Gs52g111g33

2e13
2

Ek
212e13

2 ~37!

which are situated at

vs56AEk
212e13

2 . ~38!

The temperature, magnetic field and anisotropy constant
dependences of the DSF’s have been numerically calculated.
The temperature dependence of the transverse DSFSxx is
shown in Fig. 11. For low temperatures,Sxx exhibits only the
sharp spin wave mode peak~SWP!. AsT increases, the SWP
becomes lower and wider, and a CP appears in addition to

the SWP. ApproachingTc , the intensity moves from the
SWP to the CP. The CP becomes very narrow. From the
results it is obvious that the quasielastic peak is thermally
induced because it is weak at low temperatures becoming
strong at higher temperatures only, in agreement with Steiner
et al.8 The CP is due to the coupling of the transverse and
longitudinal relaxing mode. Due to the anisotropyA/kB , S

xx

andSyy are quite different.
The temperature dependence of the longitudinal DSFSzz

is obtained too. The SWP is very small, if not absent. It is
clearly seen, that the CP atkc50 in Szz ~andSyy! is much
smaller than inSxx, in agreement with the experimental data
of Steineret al.8 This is a very important result already and
we emphasize thatSxx is due to longitudinal spin fluctuations
~parallel to the external field or the induced magnetization
s!, whereasSyy andSzz represent spin fluctuations perpen-
dicular to the applied field ors. Clearly the spectra atkc50
are completely different; while theSxx spectrum is domi-
nated by the SWP alone, theSzz spectrum is dominated by
the CP.
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The DSFSxx depends strongly on the anisotropy constant
A. This is demonstrated in Fig. 12. With increasing ofA the
SWP becomes lower and wider, and shifts to smallerE val-
ues, whereas the CP becomes higher. The intensity of the
SWP increases strongly with increasing magnetic fieldh and
the peak shifts to smallerE values~Fig. 13!.

V. CONCLUSIONS

We have studied the spin dynamics in the 1D ferromag-
netic CsNiF3 with an external magnetic field using the
Green’s function method of Tserkovnikov.17 In the general-
ized Hartree-Fock approximation we calculated the trans-
verse and longitudinal spin wave energy. The transverse en-
ergy increases with increasing wave vectork and magnetic
field h, which is in agreement with the experimental data of
Steineret al.8

The transverse and longitudinal spin wave damping have
been calculated too, where the first is much greater compared
with the latter. They are very small at low temperatures and
then increase withT. Taking into account the damping, the
longitudinal mode becomes purely imaginary and the trans-

verse mode is underdamped for low temperatures and over-
damped near and above the critical temperature. Forkc50
only the anisotropy terms give contribution to the damping.
The transverse damping shows a minimum as a function of
the anisotropy constantA, whereas the longitudinal damping
decreases withA. The damping is asymmetric with respect to
the single-ion parameterA, in agreement with the result of
Tucker.19 g11 has a minimum in the dependence of the mag-
netic fieldh, whereasg33 decrease with increasing ofh.

The dynamical structure factorsSxx, Syy, and Szz were
calculated via the imaginary part of the Green’s functions.
We obtain two spin wave scattering components and a cen-
tral component. TheT, h, andA dependence of the three
peaks are discussed. From the results it is obvious that the
CP is thermally induced because it is weak at low tempera-
tures becoming strong at higher temperatures only. It is
clearly seen, that the CP atkc50 in Szz is much smaller than
in Sxx, in agreement with the experimental data of Steiner
et al.8 Therefore we emphasize thatSxx is due to longitudinal
spin fluctuations, parallel to the external field, whereasSyy

andSzz represent spin fluctuations perpendicular to the ap-
plied magnetic field. The experimental evidence of a CP in
the 1D ferromagnet CsNiF3 may be explained with the help
of this model with the Hamiltonian~1! only. We obtain the
CP without coupling to other degrees of freedom, in particu-
lar, without coupling to other phonon branches or heat dif-
fusion modes. It may be concluded, that the CP in the 1D
magnetic system with an external field is due to the coupling
between the transverse spin wave mode and the longitudinal
relaxing mode.
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FIG. 11. The dynamical structure factorSxx as a function of the
energyE for different temperaturesT.

FIG. 12. The dynamical structure factorSxx as a function of the
energyE for T52 K and differentA values.

FIG. 13. The dynamical structure factorSxx as a function of the
energyE for T51 K and for differenth values.
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