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Theoretical study of the spin dynamics in CsNik, a one-dimensional ferromagnet
with planar anisotropy, in an external magnetic field

J. M. Wesselinowa and V. P. Ivanova
Department of Physics, University of Sofia, Blvd. J. Bouchier 5, 1126 Sofia, Bulgaria
(Received 21 March 1996

Using a Green'’s function technique we have studied the spin dynamics in the one-dimensional ferromagnetic
CsNiF; with an external field. Taking into account damping effects, the longitudinal mode becomes purely
imaginary and the transverse mode is underdamped for low temperatures and overdamped near and above the
critical temperature. The spin wave energy and the damping strongly depend on the anisotropy energy and the
magnetic field. We have calculated the dynamic structure fa8ityss’Y, andS** via the imaginary part of the
Green’s functions. The coupling between the transverse mode and the relaxing longitudinal mode produces a
central peak in the dynamic structure factor, i.e., we obtain two spin wave scattering components and a central
component. The temperature, magnetic field, anisotropy energy, and wave vector dependence of the three
peaks are discussed and compared with the experimental 88t63-18286)06738-0

I. INTRODUCTION wavess NMR measuremenfs,and magnetic specific heat
measurements.Steiner et al® have demonstrated that the
One of the important recent developments in solid statepin dynamics of the 1D easy plane Heisenberg ferromagnet
physics was the introduction of nonlinear aspects into thigSSNiF; in a symmetry broken field is a combination of one
field. The soliton concept stimulated extensive theoreticaRnd two spin wave processes and solitonlike excitations. De-
and experimental work to elucidate characteristic features ofPite the fact that CsNiFdoes not completely fulfill the re-
this concept;? so for example, the appearance of the centrafluirements for sine-Gordon in theandH range used, the
peak in the energy spectrum of slow neutrons scattered ofehlinear excitations seen B have properties very much
the quasi-one-dimensiondlLD) ferromagnets CsNiFand like the sme_—Gordon solitons. Thelr results sugge_st that one
antiferromagnets(CHy),NJMnCl,. It was clear from the be- and two spin wave processes without mutual interaction

ginning, that such features should be most prominent in |0V\<;Iom|nate th? low temperaturd < Esw, Spin dyf.‘a”.“cs’
dimensional solids, since there long-range order is su yvhfareas at high f[emperatqrEfg,W<T, ”°”"!"eaf excitations,
' which are very similar to sine-Gordon solitons are necessary

pressed and short-range order dominates, which, if it be,[-0 describe the experimental results.

comes strong enough can give rse tq nonlinear behavior. In Since the experimental results obtained for CgNiFan

this frame 1D systems are of special importance. The group, o g fielcf which were interpreted in terms of Mikeska’s

of the 1D magnets appears to be most suitable for the studyyjiton picture, there has been a steady increase of theoretical
of the above mentioned nonlinear effects. results on this problem indicating that the interpretation

Detailed neutron scattering studies on different systemﬁnight not be completely justified in the sense that two spin
have revealed that all experimental results in zero magnetigaye processes could explain part of the res@it&®
field obtained for quasiclassical systeif®=1) can be de- In order to understand and to elucidate the different con-
scribed by the results of linear classical theories. The situaributions to the dynamics of the 1D ferromagnet CsNifF
tion is different in an external field. Restricting discussion onan external field we have carried out a detailed study of this
systems with more than one spin dimension=2), thenan system, using a Green's function technique of
external field will introduce a gaf, at the zone center for Tserkovnikov!” which goes beyond the random phase ap-
the spin wave dispersion. For low temperatukeb< Ey, we  proximation(RPA) (or the Tyablikov decouplingand takes
expect linear theory with corrections to be applicable, thainto account the correlation functions and the damping ef-
means one has to deal with single spin wave and two spifects. We shall discuss, what is the main aim of this paper;
wave processes but can neglect nonlinear effects. For higheamely, the analysis of the central peak as found in the en-
temperaturesk T>E,, in addition to the one and two spin ergy spectra of the scattered neutrbns.
wave processes one has to consider nonlinear effects espe-
cially the contribution of thermally excited solitons to the Il. MODEL AND METHOD
dynamics as was pointed out by Mikeska. '

CsNiF; is one of the most studied quasi-1D magnetic sys- The present work is mainly concerned with Csiifn
tems. Its magnetic properties have been studied by differenthich the Nf* ions are ferromagnetically coupled in chains,
experimental techniques, as well as by means of differentlong with the F ions. The chains are well separated from
theoretical approachésRecently three different experimen- each other by large Csions and are coupled by antiferro-
tal techniques revealed results in CsNiwhich were inter- magnetic interactions. This arrangement causes a large an-
preted using nonlinear effects: optical measurements of spiisotropy between the Ni ions, which is thus present in the
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magnetic properties. Such 1D magnets are usually described (633_ E)[(6&2)2_ (6&1)2+ EZ]_ZE(E§3)2ZO (7)
by the Hamiltonian:
with the matrix elements

H=-21> §-S.1+AX (S)°—gusHX S (1) _
i I =4 h+—2 ([4(3q—J_q)+ 2AT(2(SES? o) +1g)

As defined in Eq(1) S* and$ are in the easy plane and L

would behave identically without an external field, whereas —2Am,), 8

the S* component behaves differently as a result of the an-

isotropy. If a magnetic field alongis applied the correlation

el2— —
functions S and Y will behave differently. The positive €k ~ 2 ([4(3q= Jk—q) —2AIMq
anisotropy energyA>0 keeps the spins perpendicular to the L
chain axis and the positive exchange enedgy0 tries to +4A(<Sész,q>—nq)), 9

align the spins within the chains parallel to each other. Spin
correlations between different chains can be neglected. In 33 2 -
zero field, the results are described(tyywith J/kg=11.8 K, UTN(SISE ) % (Jk-gNg—AMy), (10
Alkg=4.5 K, S=1, g=2.4, anda=2.6 A3* K
In the ferromagnetic phase we ha{@)+0; therefore it

is appropriate to choose a new coordinate system by rotating =— E (Jg=Jk—g)! (11
the original one used iil) by an angled==/2 in the xz
plane, whereh=gugH. o(T) is the relative magnetization:
1ot —
—3(§+§), 1
| 0= 2 {(S+3)cottl(S+3) BE]— coth(3 BE)}.
S =5 (12
Sy’ -9, ) For the transverse spin wave energy we have
zlétza >have in the new coordinate system the order parameter Ef =+ ()% (e)°=+E, (13
The retarded Green’s function to be calculated is define@nd for the longitudinal spin wave energy
in matrix form as Ek= Ek (14)
Gi(t)=—i0()([Bk(1),B} 1) () with the correlation functions
The operator B, stands symbolically for the set o
Sk Sk ,S;. For an approximate evaluation of this Green’s ng=(S;S;)= 52 {[wg_(fé?’)Z](q)lJr d,)
function, we use Tserkovnikov’s methdBwhich is appro- Wq
priate for spin problems. After a formal integration of the 11, 4 _
equation of motion for the Green function, one obtains T 0q€q (P1=P2)}, (19
G()=—iO(1)([By.By Dexd —iE(DL],  (4) Me=(S¢S;)=(SiS" )= [wqeq Ady—y)
where
_ o —<e§3>2(<1>1+<1>2>], (16)
coma [ {DKOIOD I
U= ol {IBu),By (1)]) (SIS )= (1+2ng+2nD)/(1+3ng+3M2),  (17)
(L0, B (1) IN[BK(D).jk (1)]) o€l
<[B (t) Bk (t )]>2 (5) |;=<S;qu> <stq> _2_ [wq(q)l 2)+(6 _612)
with the notationj, =[B, ,H;,.]. The time-independent term X(D+D,)]. (18)
ex={[[Bx,H1,By D/{[B«.BL 1) (6) Further we have used the abbreviations

gives the spin wave energy in the generalized Hartree-Fock we=V(EN2+2(eP?2, ®,;=expwy/T) *
. . . . q q q’ 1 q !

approximation. The time-dependent term includes the damp-

ing effects. Py=[exp—wq/T)—1]"%

If we neglect the transverse correlation functiols),
(16), and(18), and if we decouple the longitudinal correla-

The energy of the coupled system can be obtained frortion function(Sész,q>—><sz)25qo, then we get the result of
the following equation: the RPA(i.e., the Tyablikov approximatign

Ill. THE SPIN WAVE SPECTRUM
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curve andk.=0.05(upper curve Points and circles are the experi- )
mental data from Steinegt al. (Ref. 8. Anisotropy constant Alks K]
FIG. 3. The spin wave enerdy as a function of the anisotropy
e&lz h+oa[4(Jp—Jy) +2A], (19 constantA for T=2 K, k,=0 andh=10 kOe.
€r?=20A, (20 We have studied the temperature dependence of the trans-
verse spin wave enerdyy from Eq. (13) using following
e3=0, (21)  model parameters for CsNjF(Ref. 3: J/kg=11.&,
Alkg=4.5, andS=1. The results of the temperature depen-
3= 22) dence ofE, for different wave vector valuesk=(0,0Kk.),
k — Y%

k.=0 (lower curvg andk,=0.05(upper curvg¢are shown in
whereJ,=J coska. There is a solution witke**=0. It cor-  Fig. 1. We obtain a very good agreement between the experi-
responds to the longitudinal mode, i.e, a relaxation of thenental data(points and circlesobtained by Steineet al’
spin components parallel to the mean field. In the RPA we

obtain no coupling between the transverse and the longitudi- 1.6 T T T . T . ;
nal mode, because ef3=0. T=2K —
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FIG. 2. Wave vector dependence of the spin wave enEfgpr

T=12 K andA/kg=4.5 K. The points are the experimental data  FIG. 4. The spin wave energy as a function of the magnetic field
from Steineret al. (Ref. 8. h for T=2 K, A/kg=4.5 K andk.=0.
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FIG. 5. Temperature dependence of the transverse damping FIG. 7. The transverse damping; as a function of the anisot-
for differenth and A values. ropy constané\/kg .

with inelastic neutron scattering and the calculated data UST =const(Fig. 4), which is in agreement with Stein&The

ing the Green's function method in this papeolid line).  critical temperature increases with the increase of the mag-
The spin wave energy increases wkh (Fig. 2. In this  peic field h, which is in agreement with the results of
figure the circles represent the experimental data fronygradaet all® for the 1D magneTMMC, (CHg),NMnCls.

H 8
Steineret al. _ Taking into account damping effects, we obtain for the
Ex depends very strongly on the anisotropy enefly gpin wave energy in the simplest approximation
(Fig. 3). With increase ofA, the spin wave energy increases

too. The spin wave energy grows with increasehofor

Eap(K)= =B —i 7, (23
0.35 T T T T
A4 3Kho20k0e Ba(k)=—1%, (24
A=1.0K,h=10kOe -----
031 y whereE, is from Eq.(13). The complex energ§23) belongs
to the damped motions of the spins processing in a spin wave
025 L P around the mean field. Equatid®4) gives the relaxation of

the spin components parallel to the mean field. The longitu-
dinal mode is therefore of diffusive type for all temperatures.

Calculations yield the following expressions for the trans-
versey;; and longitudinaly;; damping, respectively,

m
1K) =5z 2 [4(Jg=Jk-q) + 2A]
q.p

Longitudinal damping y;3 [meV]

X[4(Jq_Jk—q+Jk—q—p_Jq+p)+4A]
X [n_p(0'+n_p+q+n_qu) _n_p+ qn_qu]

X S(Ep+q—Ep+Ex_q—Ep)

477A -
i 2 400~ o)+ 2AIM (Mg

Temperature T {K]

X 6(Eptq—Ept+Ex—q—Ex) (25
FIG. 6. Temperature dependence of the longitudinal damping
33 for differenth and A values. and
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- We have studied the temperature, anisotropy constant,
y3¥(k)= No > (Jg= Ik [ 4(Iq— Ik ) (Ng— Nk ) wave vector, and magnetic field dependence of the magnon
7 q damping. AtT=0 Egs.(25) and(26) simplify to
+2A(Mg— My ) 18(Ey q— Eq—E
( q k+q)] ( k+q q k) 711(T=0)=0, (27)

A — —
+oNe % [2(Jq— Jk—q) (Mk—q— M) and

+A(T+Ngt N )]8(E_q+Eq—E.  (26) y33(T=0)=(m/2)A?S(Ey_q+Eq—Ey). (29

: [y S Provided that thes function can be satisfied, we obtain a
TZT(S)E - longitudinal damping at =0 due to the anisotropy energy

! : : v11 and y;5 are very small at low temperatures, then they

: ; grow on with increasing temperatug€igs. 5 and & Taking
into account the damping, the longitudinal mode becomes
purely imaginary(24) and the transverse mode is under-
g damped for low temperatures and overdamped near and
above the critical temperature. The transverse damping is
much greater compared with the longitudinal damping,
i Y11> Va3-
For k=0 we obtain the following expressions:

1.5 |

8mAZ o
Y11(k=0)= N2 % [np(0'+np+q+nqu)_np+anfq

Transverse damping y;; [meV]

0s - +kaq(”_p_”_p+q)]5(Ep+q_Ep

) +Ey_q—Ep) (29)

o and
50 60

Magnetic field H [kOc] A2

k=0)=-— o+ Ng+Ni_g) 8(Ex_q+Eq—Ey).
FIG. 9. Magnetic field dependence of the transverse damping vadl ) 2No Eq: ( a’ Tk q) (B a )
v11 for different temperatur@ values. (30
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For k=0 only the anisotropy terms give contribution to the IV. THE DYNAMICAL STRUCTURE FACTOR

;joeinlzpmg. Both damping decrease with decreasing wave vec- We obtain for the transverse Green'’s function:
Figure 7 shows the dependence of the transverse damping 5 _

on the anisotropy energ¥. y;; has a minimum which shifts XX (k,E)= o 6121+.€12) (31)

with increasingh to higherA values. The damping is asym- o) E?—Eg+iEly

metric in the single-ion parametér. The longitudinal damp- ]
ing decreases withA (Fig. 8. The behavior of the damping is With the frequency dependent
in agreement with the results of Tuckérwhich obtained .,
that vy, first decreases witi and then remains finite. I €13

In Fig. 9 is plotted the dependence of the transverse FW(B)=2yu+ E+ivyss
damping on the magnetic fiell y;; has a minimum which
shifts with increasing temperatufieto smallerh values. The The transverse dynamical structure fadl@8F) is calculated
magnetic field dependence of the longitudinal damping isvia the imaginary part of the Green’s functi¢dl). We ob-
demonstrated in Fig. 105 decreases with increasing bf  tain it in the form

(32

) (K, E)={20 (e, ¥ e1p) /[ 1—exp( —E/T)]}
X{[271E%+ vad 2711735+ €19 1/ (E?+ 39} (E®— Ef—E%€ly (E*+ 739

+EH[2y11E%+ yad 2 y11733+ €29 1/ (E2+ ¥39)12). (33

For the longitudinal Green'’s function we obtain

2(SS2y)
G*4k,E)= - - . 34
B = BTy [EY(EZ—EZ+ 2i710)] (34
The longitudinal DSF is calculated to
Sk, E)={2(SES: M[1—exp —E/T)]}
X{yast 2E2yp €24 [ (EE— E2)2+ (2E 1) 2IM(EX 1+ €24 EZ— E?)/[ (EE— E?)2+ (2E 11)2]}2
+{yaa+ 2E2y11€2 [ (EE— E?)2+ (2Ey19)?]}?). (35)

We obtain in the DSFS™ a central peaKCP) around the SWP. Approachind ., the intensity moves from the

E=0, the width of which is SWP to the CP. The CP becomes very narrow. From the
2 results it is obvious that the quasielastic peak is thermally
r Ek (36) induced because it is weak at low temperatures becoming

ERES Ef+2¢€%,] strong at higher temperatures only, in agreement with Steiner
et al® The CP is due to the coupling of the transverse and

and two spin wave peaks of the width longitudinal relaxing mode. Due to the anisotrofstkg , S

262, andS"Y are quite different.
F=2y1+ Y33 =r—>o (37 The temperature dependence of the longitudinal [3SF
Eit2e13 is obtained too. The SWP is very small, if not absent. It is
which are situated at clearly seen, that the CP &t=0 in S** (and ) is much
smaller than irS, in agreement with the experimental data
wg==* «/Eﬁ+ 2653, (38) of Steineret al® This is a very important result already and

we emphasize th& is due to longitudinal spin fluctuations
The temperature, magnetic field and anisotropy constar{parallel to the external field or the induced magnetization
dependences of the DSF’s have been numerically calculated), whereasS’¥ and S represent spin fluctuations perpen-
The temperature dependence of the transverse 88Fs  dicular to the applied field os. Clearly the spectra &.=0
shown in Fig. 11. For low temperature* exhibits only the are completely different; while th&* spectrum is domi-
sharp spin wave mode peéBWP). As T increases, the SWP nated by the SWP alone, t1&? spectrum is dominated by
becomes lower and wider, and a CP appears in addition tthe CP.
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FIG. 11. The dynamical structure fact8f* as a function of the 00 0.1 0.2 0.3 0.4 0.5
energyE for different temperature$.
) Energy [meV]
The DSFS™* depends strongly on the anisotropy constant
A. This is demonstrated in Fig. 12. With increasingfothe FIG. 13. The dynamical structure fact8t* as a function of the
SWP becomes lower and wider, and shifts to smadllefal-  energyE for T=1 K and for differenth values.

ues, whereas the CP becomes higher. The intensity of the
SWP increases strongly with increasing magnetic fielthd

; X erse mode is underdamped for low temperatures and over-
the peak shifts to smalldf values(Fig. 13. v 'S U P W peratu v

damped near and above the critical temperature.kze10
only the anisotropy terms give contribution to the damping.
V. CONCLUSIONS The transverse damping shows a minimum as a function of
the anisotropy constawt, whereas the longitudinal damping
We have studied the spin dynamics in the 1D ferromagdecreases with. The damping is asymmetric with respect to
netic CsNiky with an external magnetic field using the the single-ion parametek, in agreement with the result of
Green’s function method of TserkovnikdVIn the general-  Tucker® y;; has a minimum in the dependence of the mag-
ized Hartree-Fock approximation we calculated the transnetic fieldh, whereasy;; decrease with increasing bf
verse and longitudinal spin wave energy. The transverse en- The dynamical structure facto®*, Y, and S** were
ergy increases with increasing wave vedtoand magnetic calculated via the imaginary part of the Green’s functions.
field h, which is in agreement with the experimental data ofwe obtain two spin wave scattering components and a cen-
Steineret al® tral component. Thél, h, and A dependence of the three
The transverse and longitudinal spin wave damping hav@eaks are discussed. From the results it is obvious that the
been calculated too, where the first is much greater comparedP is thermally induced because it is weak at low tempera-
with the latter. They are very small at low temperatures andures becoming strong at higher temperatures only. It is
then increase witlT. Taking into account the damping, the clearly seen, that the CP lat=0 in S**is much smaller than
longitudinal mode becomes purely imaginary and the transin S**, in agreement with the experimental data of Steiner
et al® Therefore we emphasize th@t* is due to longitudinal
40 spin fluctuations, parallel to the external field, wher&4%
.3 and S*? represent spin fluctuations perpendicular to the ap-
' plied magnetic field. The experimental evidence of a CP in
30 2 the 1D ferromagnet CsNiFmay be explained with the help
1 of this model with the Hamiltoniari1) only. We obtain the
25 CP without coupling to other degrees of freedom, in particu-
20 lar, without coupling to other phonon branches or heat dif-
s¥ fusion modes. It may be concluded, that the CP in the 1D
15 magnetic system with an external field is due to the coupling
between the transverse spin wave mode and the longitudinal
relaxing mode.
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