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Through an appropriate analogy with the scattering problem a demonstration of Avrami’s kinetic theory has
been worked out. This approach has been successfully used for obtaining the general solution of the kinetics of
the instantaneous growth of multiple phases. It is shown that even in the case of clustering on surfaces, when
the nucleation process does not occur at preexisting active sites and Avrami’s formula could not hold, the
proposed method allows the kinetics of the transformed surface to be computed. The connection between
Avrami’s theory and the atomistic model for nucleation at solid surfaces has been also discussed in light of the
rate equation formalism.@S0163-1829~96!04538-9#

INTRODUCTION

A glance through the literature reveals that the majority of
phase transitions kinetics are described on the grounds of the
Johnson-Mehl-Avrami-Kolmogoroff~JMAK! phenomeno-
logical model.1–4 A numerical simulation on its validity has
been recently performed.5 According to this model the frac-
tion of transformed phase, as a function of time, is expressed
by the following formula:

V~ t !512e2Ve~ t !. ~1!

Ve(t) is called extended transformed phase; below its mean-
ing will be clearer. It is worth remembering that in the
JMAK theory grains start growing at preexisting germs and
for Eq. ~1! to be valid, the germs must be distributed at
random throughout the entire space in which the transition
takes place. The nucleation rate is assigned phenomenologi-
cally and besides being the theory independent of the dimen-
sionality of the space in which the transformation occurs, in
Eq. ~1! V(t) indicates a volume, a surface, or a line accord-
ing to the particular system under examination. Indeed, many
investigators dealing with nucleation and growth processes
have found JMAK’s model quite in keeping with their
needs.6–22

The demonstration of Eq.~1! was given by Avrami.2,3 He
employed arguments somewhat involuted and of no immedi-
ate understanding. In this paper we present a demonstration
of Eq. ~1! and of other results which Avrami reported in the
Appendix of his second work on the argument.3 Moreover,
we shall also show how, by means of this approach, it is
possible to generalize the Markworth’s work,23 in which the
solution of the kinetics regarding the instantaneous growth of
multiple phases was given. Finally, the connection to the
widely used rate equation approach24–26for two-dimensional
~2D! clustering on surfaces is reported and a general expres-
sion for the kinetics of the covered surface, when preexisting
nucleation sites do not exist, is presented and discussed. In

order to render the demonstration particularly immediate we
shall refer to a 2D phase transformation.

RESULTS AND DISCUSSION

A. Avrami’s kinetics as solution of a scattering problem

Let us begin by considering an infinite surface in which
N0 points per unit area are marked at random. The frequency
with whichk of those points will be found in a small element
of surfaces is given by the Poisson distribution:

Pk~m!5
mk

k!
e2m, ~2!

wherem5N0s denotes the average number of marked points
contained ins.

We shall consider a specific shape fors, namely a circle
~or disk! of radius r . According to the distribution~2!, the
probability that no marked points will be found in a circle of
radiusr is:27,28

P0~r !5e2pN0r
2
. ~3!

For it to occur it is necessary that the center,c, of the circle
lays at a distance greater thanr from the nearest marked
point. On the other hand, tessellating the surface with disks
of radiusr centered at each of theN0 marked points, none of
them will cross over the centerc. As a consequence we can
conclude that a pointc of the surface will not belong to the
tessellated fraction of surface with probability given by rela-
tion ~3!.

Now we want to face a more general issue: To find the
probability that a point of the surface will not belong to the
tessellated surface when the disks centered at the marked
points have different radii, or more precisely when a distri-
bution of radii exists. To answer this question it is profitable
to tackle a quite equivalent scattering problem. Consider a
collection of planes each containingni random-distributed
circles of radiusr i per unit surface; overlaps among them are
allowed. The planes can be stacked, for instance, in order of
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decreasing radius~Fig. 1!. What is the probability that a mo-
bile particle~point! will pass through the set of planes with-
out crossing any disk? The answer is immediate and it is

Q05)
i
P0i , ~4!

whereP0i , by virtue of ~3!, reads

P0i5e2pn i r i
2
. ~5!

Consequently, the solution of our original issue is

Q05e2p( in i r i
2
. ~6!

ObviouslyQ0 is also equal to the fraction of uncovered sur-
face, 1-S; therefore

S512e2p( in i r i
2
. ~7!

The last result is the celebrated Avrami’s formula, the term
at the exponent being nothing but the aforementioned ex-
tended transformed phase~disks!. Its meaning is clear: it is
the total surface of the disks independently of the possible
overlaps. There are two points worth noting. One concerns
the continuous limit. In fact during a real phase transforma-
tion the radius of the disks is a function of time and the
extended transformed phase reads

Se~ t !5pE
0

t

r 2~ t,z!
dN

dz
dz, ~8!

wheredN/dz is the nucleation rate. The comparison with the
exponent in~7! shows that the number of disks in thei th
plane,ni , is equal to the germs that start growing between
time zi andzi1dz.

The second remark regards what Avrami called ‘‘phan-
tom germs or nuclei.’’ As we have previously described each
plane contains a certain number of circles randomly distrib-
uted throughout the entire plane, so that there is the possibil-
ity that a disk in thei th plane could completely cover another
one in thej th plane (i, j ). It goes without saying that the
covered disks~phantoms! do not contribute to the trans-
formed phase; nevertheless, in order that~7! be correct, its
contribution must be taken into account in the calculation of
the extended transformed phase. All this because a complete

randomness in the entire plane is required in such a way that
relation ~3! could be applied to each plane. As a conse-
quence, the nucleation rate in the continuous case must in-
clude also the phantom germs, whereas the actual nucleation
rate turns out to be,3

dNa5~12S!dN. ~9!

By similar considerations that lead to expression~3!, it is
possible to show that a pointc of a surface tessellated with
random-distributed circles of the same size will be over-
lapped only one time with probability

P1~r !5pN0r
2e2pN0r

2
~10!

andk times with probability

Pk~r !5
~pN0r

2!k

k!
e2pN0r

2
. ~11!

In the case of distribution of radii, by referring to Fig. 1, the
probability that the moving point will cross only one disk is

Q15(
q

)
j
Pd~ j ,q! ~12!

andk disks

Qk5(
q1

•••(
qk

)
j
P@(

n51
k d~ j ,qn!# , ~13!

where d( j ,q) is the Kronecker symbol and multiple sums
must be executed with the conditionq1<q2<•••<qk . The
expressions~12! and ~13! give, respectively,

Q15See
2Se, ~14!

Qk5
Se
k

k!
e2Se. ~15!

In Appendix A the demonstration fork52 is reported for the
sake of clearness. Again, the proposed method directly leads
to the expression of the overlapped surfaces in terms of the
extended one~15!; this last result was previously reached in3

through a mathematical treatment based on generalized
ascending-descending continued fraction.

The exposed way to deal with the phase-transition kinet-
ics allows one to generalize the result obtained by
Markworth.23 He faced and solved the problem of describing
the phase-transition kinetics involving theinstantaneous
growth of multiple phases. When the nucleation is not in-
stantaneous, i.e.,dN/dtÞN0d(t), the problem can be solved
by generalizing the expression~4!,

Q05)
m

)
k

P0k
~m! ~16!

where the superscript refers to themth phase; Fig. 2 may

help in understanding~16!. Since P0k
(m)5e2mk

(m)
and

mk
(m)5n k

(m)pr k
(m)2, ~16! becomes

FIG. 1. Pictorial view of the scattering problem whose solution
leads to Avrami’s kinetics. Clusters that lay on the same plane were
born at the same time.
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Q05)
m

)
k

exp~2nk
~m!pr k

~m!2!

5)
k
exp~2p(mnk

~m!r k
~m!2!. ~17!

The last factor in expression~17! is the solution of Mark-
worth’s problem. By definingSek5p(mn k

(m)r k
(m)2, one gets

Q05)
k
e2Sek5e2(kSek5e2Se ~18!

butQ0512S, then

S512e2Se, ~19!

again Avrami’s formula, where the extended transformed
phase is now given by

Se5p(
k

(
m

nk
~m!r k

~m!2. ~20!

B. Connection with atomistic models for nucleation
on solid surfaces

In the 2D case differentiating Eq.~1! one obtains

dS5@12S~ t !#dSe ~21!

or

E
0

t

] ts~ t,z!dNa~z!5@12S~ t !#E
0

t

] tse~ t,z!dN~z!, ~22!

where the] ts(] tse) is the partial derivative of the actual
~extended! surface of the single nucleus.

After substitution of Eq.~9! in Eq. ~22! the following
expression is obtained:

] ts~ t,z!

] tse~ t,z!
5
12S~ t !

12S~z!
. ~23!

Equation~23! gives a formula for the ratio between the in-
crements of the transformed and extended surfaces of a
single actual grain in terms of the total surface fraction. We
observe that any actual grain is not randomly located in the
entire surface; its position is, in fact, subject to the restriction

that it lay somewhere outside the transformed surfaceS(z) at
the time of its origin,z. This is the physical meaning of the
@12S(z)# term in the denominator of Eq.~23!. We may
therefore assume Eq.~23! to hold whether the nucleation
occurs at preexisting active sites or not, provided the distri-
bution of clusters, in the uncovered portion of the surface, is
random. After summing both members of expression~23! on
the population of actual nuclei, we get

ln@12S~ t !#52E
0

t

se~ t,z!
Ṅa~z!

12S~z!
dz, ~24!

which is, in general, an integral equation for theS(t) un-
known. In Appendix B, Eq.~24! is obtained by following the
same method used in the first paragraph.

Rate equations24–26 are widely used for describing the
nucleation stage of thin film growth on surfaces. In the case
of homogeneous surface, however, no special nucleation
sites exist and Eq.~24! can be appropriately exploited in
order to include the description of the island impingements
in the rate equation scheme. Clearly, in this case a system of
integral differential equations has to be solved. In what fol-
lows we exemplify the aforementioned concepts by deriving
rate integral-differential equations describing the growth of
two-dimensional islands. We assumed the following.~i!
Dimers are stable clusters.~ii ! The capture coefficients de-
pend on the cluster perimeter.25 In the framework of the
uniform depletion approximation such a condition implies
that the diffusion length of monomers is much shorter than
the linear island size.26 ~iii ! Clusters are supplied only by
admonomers.

1. Rate equations

Let N1 be the density of admonomers per unit of total
surface. The equations hold:

dN1

dt
5J0N02

N1

ta
22s1D

N1
2

12S
2rc

dS

dt
, ~25!

dNa

dt
5

s1DN1
2

12S
, ~26!

where J0 is the number of gas monomers arriving at the
adsorption site per unit time,N0 is the surface density of sites

FIG. 2. Pictorial view of the scattering process in the case of growth of multiple phases. In this case two indexes are required, namely,
one for the birth time of the nuclei (k) and another for the phase~m!.
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available for adsorption, andta is the adatom stay time be-
fore evaporation. The third term expresses the depletion of
monomers due to nucleation withD the surface diffusion
coefficient ands1 the capture factor for admonomer. The last
contribution is related to the incorporation of adatoms into
the stable islands due to surface diffusion,rc being the den-
sity of atoms in the film.S is the surface fraction that is
covered by stable clusters. The reason why the~12S! term
has been introduced in the nucleation rate is easily under-
stood on the basis of the dimensional argument discussed in
Ref. 29: the rate constant for nucleation iss1D[N1/(12S)]
since@(12S)/N1#r is the number of lattice sites available for
each adatom.r is the surface density of lattice sites at the
bare surface.

2. The cluster growth law

The number of adatoms (M ) which are supplied, per unit
time, to a cluster which started growing at timez is given by

dM

dt
5
DN1

12S

p~ t,z!

a
, ~27!

where p(t,z) is the free perimeter of the island anda
5ADt being t the constant lifetime of the admonomers
@point ~ii !#. Since dM/dt5rcp(t,z)(dr/dt) the following
equation is obtained forr (t,z):

r ~ t,z!5
D

arc
E
z

t N1~j!

12S~j!
dj. ~28!

Equations~24!, ~25!, ~26!, and~28! are a set of equations for
ther , N1, S, andNa quantities, withse5pr 2 and, because of
the number conservation of surface sites,N05r(12S)2N1 .
Initial conditions areS(0)5N1(0)5Na(0)50.

It is worth noting that the particular case discussed by Eq.
~28! deals with island growth rate that is only a function of
the running time:ṙ5 ṙ (t). However, growth rates expressed
in the more general formṙ5 ṙ (t,r ) can also be employed in
the kinetic model, with some restrictions for the case
] ṙ (t,r )/]r,0.5

3. Quasiequilibrium approximation

It goes without saying that if the nucleation rate can be
expressed in the form

Ṅa5 f ~z!@12S~z!#, ~29!

f (z) being an appropriate function ofz, Eq. ~24! will reduce
to Avrami’s solution@Eqs. ~1! and ~8!#. It is interesting to
show that also for the atomistic model of nucleation, where
special surface sites for nucleation are not present, particular
conditions may be realized for which Eq.~29! is satisfied.
This is the case of quasiequilibrium approximation26 in the
high temperature regime where desorption of adatoms repre-
sents the main process for admonomer depletion on the sur-
face. The steady state of the adatom surface density reads
@Eq. ~25!#

N15J0N0ta . ~30!

Moreover, the quasiequilibrium approximation allows one to
use the law of mass action to express the surface concentra-
tion of critical islands in terms of the adatoms density:24,30,31

SNn

N0
D5SN1

N0
D ne2DGn

0/kT, ~31!

wheren is the size of the critical cluster andDGn
0 is the

standard free energy change for critical cluster formation.
For a low value of the surface coverages of subcritical is-
lands the number conservation of the surface sites reads

N01N1'r~12S!. ~32!

The surface density of adatoms is computed using Eqs.~30!
and ~32!:

N15
r~12S!J0ta

~J0ta11!
~33!

and the nucleation rate is

Ṅa5
snDN1Nn

~12S!
, ~34!

whereD is the surface diffusion coefficient of adatoms and
sn is the capture factor of adatoms at the critical cluster
edge.25 Combining Eqs.~30!–~34! the nucleation rate is
eventually computed as follows:

Ṅa5
Dsn

~11J0ta!
2 ~J0ta!

n11e2DGn
0/kTr2~12S!5g~12S!,

~35!

where, according to Eq.~34!, the contribution to cluster
growth due to the direct impingement of gas monomers at
critical clusters has been neglected.

Finally, it happens that in several physical cases the mea-
sured nucleation is so fast compared to the time required to
attainS51 that its rate does not deviate substantially from a
Dirac d function.32,33 The nucleation rate readsṄ(t)
5Nsd(t) whereNs is the density of cluster when nucleation
is over. A typical expression for the saturation value in the
cases of stable dimers and complete condensation of ad-
monomers~ta→`! is34

Ns'rS J0nd
D 1/2eEd/2kT, ~36!

whereEd andnd are the activation energy and the frequency
for the surface diffusion, respectively. Accordingly, theS(t)
kinetics reduces to the well known stretched exponential
form S(t)512e2Nspr

2(t), widely used in the literature.21

CONCLUSIONS

By solving an appropriate ‘‘scattering’’ problem a dem-
onstration of Avrami’s kinetics has been derived. The pro-
posed method exhibits its potentiality in treating the kinetics
of growth of multiphase systems, for which a general solu-
tion to the Markworth’s problem is obtained.

In general, once the requirement of preexisting nucleation
sites is relaxed, Avrami’s formula does not hold anymore
and a different definition of the extended transformed phase
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is required. Such an expression has been obtained which
could be used in connection with rate equations for cluster-
ing on surfaces.

APPENDIX A

At k52 Eq. ~15! reads

Q25
Se
2

2
e2Se. ~A1!

This expression can be obtained starting from Eq.~13!
which, for k52, becomes

Q25P2P0•••P01P0P2P0•••P01•••1P0P0•••P2

1P1P1P0•••P01P1P0P1P0•••P01•••1P1P0•••P1

1P0P1P1P0•••P01P0P1P0P1P0•••P01•••

1P0P1P0•••P11•••1P0•••P1P1 ; ~A2!

here the ordering of eachn-tuple is important; the position
index has been omitted for rendering the notation less cum-
bersome. Substituting Poissons’ expression with the appro-
priate mean value one gets

Q25e2( imiSm1
2

2
1
m2
2

2
1•••1

mN
2

2
1m1m21m1m31•••

1m1mN1m2m31m2m41•••

1m2mN1•••1mN21mND
5

~( imi !
2

2
e2( imi5

Se
2

2
e2Se.

APPENDIX B

In this appendix we wish to evaluate, by the same argu-
ments employed in the work, the equation describing the
evolution of surface coverage when the nucleation takes
place at random in the part of the surface not covered by the
already grown phase. In this case no ‘‘phantoms’’ can be
formed.

Germs born on thei th plane have a density per unit area
of uncovered surface given byn i /(12Si21

i )[n i /(12Si
i),

whereni is the number of germs in that plane and

Sq
Q5sQ21

~n1!
øsQ22

~n2!
ø•••øsQ2q

~n i ! 5 ø
k51

q

sQ2k
~nk! , ~B1!

Sq
Q being the transformed phase up to theqth plane when the

total number of planes isQ, sQ2k
(nk) is the surface coverage of

thekth plane wherenk germs were born ands050. Accord-
ing to Eq.~7! one has

(
k51

Q pr Q2k
2 nk

12Sk21
k 5 lnS 1

12SQ21
Q D . ~B2!

The finite difference is

lnS 12SQ21
Q

12SQ
Q11D 5 (

k51

Q11 pr ~Q11!2k
2 nk

12Sk21
k 2 (

k51

Q pr Q2k
2 nk

12Sk21
k

5 (
k51

Q p~r ~Q11!2k
2 2r Q2k

2 !nk

12Sk21
k 1

pr 0
2nQ11

12SQ
Q11 .

~B3!

By expanding the logarithmic function up to the first order,
since the last term of~B3! is null ~r 050!, we obtain

SQ
Q112SQ21

Q 5~12SQ
Q11!(

k51

Q p~r ~Q11!2k
2 2r Q2k

2 !nk

12Sk21
k ,

~B4!

whose continuous limit is the differential form~in dt! of Eq.
~24!.

Remark.At variance with Eq.~7!, in Eq. ~B2! the sub-
script index ofr does not coincide with that ofn. As a matter
of fact, to demonstrate Avrami’s formula it is enough to
consider a given situation at a given time, so that the sub-
script index simply is used for identifying different planes.
Conversely, since in this case@Eq. ~B2!# we need to evaluate
the difference between two successive sets of planes, it is
necessary to assign tor an index which carries kinetic infor-
mation.
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