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If the fundamental self-localized soliton~SLS! of the Fermi-Pasta-Ulam chain is subjected to a perturbation
of the same parity, a breathing behavior in space is observed. The time evolution then is characterized by two
different frequencies. We show that the observed breathing behavior can be explained by means of a harmonic
model with an effective spring hardening which is generated by the fundamental background SLS. The validity
of this harmonic model is verified by means of numerical simulations. Improvements involving a parametric
oscillator are mentioned but left to future study.@S0163-1829~96!00838-7#

I. INTRODUCTION

The existence of localized modes in a harmonic lattice
containing point defects is well understood.1 Recently, in the
work of Dolgov2 and of Sievers and Takeno3 the existence of
self-localized solitons~SLS! in anharmonic lattices without
impurity was theoretically predicted. These SLS’s are remi-
niscent of the defect-induced localized modes in the har-
monic lattice and they can occur at any site of the anhar-
monic lattice. This was later confirmed by means of
numerical simulations4,5 and in recent works the properties
of the SLS’s have been further investigated.6–11 In particular,
it has been proved that the parity of the SLS’s has a great
relevance to their stability.12,13

In a previous investigation,14,15 the present authors have
investigated the generation of the SLS in the Fermi-Pasta-
Ulam chain~FPU, see Refs. 16 and 17! with quartic anhar-
monicity by means of an external force acting on a single
atom. The numerical simulations have shown the existence
of a SLS with a spatial envelope characterized by a ‘‘breath-
ing’’ behavior, where the spatial extension of the SLS
changes periodically in time. We have denoted this localized
mode ‘‘breathing SLS’’ and further numerical experiments
have shown that this breathing behavior can persist for a
very long time.

In this paper we investigate the properties of the breathing
SLS’s and we propose a harmonic model which explains the
main features of these SLS’s. The paper is organized as fol-
lows. In Sec. II we introduce the FPU model and in Sec. III
we characterize the main properties of the SLS’s in the quar-
tic FPU chain. We then describe the numerical experiments
and the features of the breathing SLS’s~Sec. IV!. In Sec. V
we present a model for these breathing SLS’s. Finally, in
Secs. VI and VII we discuss the results obtained and present
our conclusion.

II. THE FPU MODEL

We consider a regular one-dimensional chain~FPU chain!
with nearest-neighbor harmonic and anharmonic interaction.
The equation of motion for the displacementQn~t! of thenth
atom reads

d2Qn

dt2
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where we have considered dimensionless variables~the co-
efficients of the linear and cubic terms can be set equal to
one by means of a scaling transformation11!. For the har-
monic chain the maximal phonon frequency is indicated by
VD which we will denote as the Debye frequency and which
is considered as a reference frequency~VD52!. The Hamil-
tonian in our dimensionless variables is given by
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wherePn5dQn/dt is the momentum of thenth atom and
Hn is the dimensionless energy per lattice site.

III. SLS IN THE FPU CHAIN

The SLS’s are vibrational modes with localization prop-
erties similar to those of a localized mode obtained in the
harmonic chain with point defects. The main features of
these SLS’s are a frequency above the Debye frequency,
antiphase elongations of neighboring atoms, and an exponen-
tial decrease of the wings. The SLS has a solution of mono-
chromatic behavior and may be written in the approximate
form

Qn~t!5An~21!ncos~Vt!, ~3!

the overtones being of minor importance.
In the following we will express the maximal value of the

amplitudesAn of expression~3! by the variableA. Then we
introduce the ‘‘effective anharmonicity parameter’’g45A2

which is a measure of the anharmonicity of the SLS. In fact,
considering the equation of motion~1! we note directly that
the importance of the cubic term increases in proportion to
g45A2.

For small values ofg4~g4!1!, the solutions involve a
great number of particles, and in this limit the equations of
motion ~1! merge into a nonlinear Schro¨dinger equation in
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the continuum approximation of the lattice. This limit has
been handled analytically by Yoshimura and Watanabe8 and
by Chubykaloet al.13 They have found a solution, which in
discrete notation may be written as

Qn~t!5A~21!nsech~A6An!cos~Vt!, ~4!

where the frequencyV is given byV5VD13/2A2.
On the other hand, for great effective anharmonicity

~g4@1! the SLS is strongly localized, and practically only
three or two particles, respectively, are involved. In this case
approximate analytical solutions have been obtained by Siev-
ers and Takeno6 using lattice Green functions and the ‘‘ro-
tating wave’’ approximation, whereby again only a single
frequency is considered in the time dependence. The even-
parity SLS (Qn1152Q2n) has a normalized displacement
pattern7 given approximatively byA~ . . . ,0,21,1,0, . . . ! and
the correspondent odd-parity SLS (Qn5Q2n) has a pattern

6

given by A~ . . . ,0,21/2,1,21/2,0, . . . ! ~the terms: ‘‘odd’’
and ‘‘even’’ refer to longitudinal types of motion!. In this
limit ~g4@1! the displacement pattern is constant but the fre-
quency of the SLS is proportional tog4.

9

We mention also an alternative method~Gauss procedure!
for the construction of rather accurate solutions proposed by
two of the present authors.11 This method can be applied for
arbitrary values of the effective anharmonicity parameterg4.
The method is based on an iterative Gaussian optimization
and the knowledge of the limiting analytic form of the solu-
tion on the wing of the soliton. The solutions obtained with
the Gauss procedure are in agreement with the previously
cited solutions in both limitsg4@1 andg4!1 and are accu-
rate also in the intermediate regime. All these approximate
solutions are monochromatic~i.e., only a single frequency is
considered in the time dependence!. However, one should be
aware of the fact that the exact solutions contain always
spectral components with odd multiples of the fundamental
frequencyV due to the presence of the anharmonic term in
the equation of motion~1!. These higher frequency compo-
nents in the Fourier spectra have a small amplitude in com-
parison with the amplitude of the fundamental frequency9

and are practically negligible.

IV. BREATHING SLS’S

In previous work15,14we have investigated the generation
of solitons in the FPU chain by means of an external force
acting for a restricted time period at a single site. It turned
out that after sufficiently long time the amplitude of the vi-
brating atoms in the neighborhood of the excited site be-
haved in a ‘‘breathing’’ manner, which persisted for a very
long time ~‘‘breathing SLS’’!.

To investigate this phenomenon more closely we now fo-
cus our attention on a more specific generation of the breath-
ing solitons by choosing well-directed initial conditions. In
our numerical experiments we evaluate the time evolution of
the FPU chain by solving numerically the equation of motion
~1! by a fourth-order Runge-Kutta method. The time step in
our program is always chosen to preserve the total energy of
the chain to an accuracy better than 1025 and the lattice is
treated in a self-expanding manner, which excludes the in-
fluence of the boundary conditions~for more detail on the
numerical technique see Ref. 11!. The initial condition for

our numerical simulations will be chosen to have a displace-
ment pattern of the form

Qn~0!5An~21!n; Pn~0!50 ~5!

We first choose the amplitudesAn as they are found by the
Gauss procedure introduced in an earlier paper.11 In this case
the initial condition very closely corresponds to a SLS, and
the Fourier transform of the time evolutionQn~t! shows a
single fundamental frequency. In Fig. 1 we show the Fourier
transform of the displacement at the central siten50 for the
initial condition pertaining to an odd-parity SLS withg454.
We note clearly the presence of only one fundamental fre-
quencyV and the overtone at 3V. The same result is ob-
tained also if we chose initial conditions with even parity,
and also for other values ofg4. In the limit of small effective
anharmonicityg4 the displacement pattern

An5A sech~mn!; m5A6A ~6!

applies, as obtained from Eq.~4!. This again constitutes a
good initial condition and in the numerical simulation we
observe only a fundamental frequency.

The appearance of other frequencies in the spectra of the
displacements is found if we choose initial conditions differ-
ent from the ‘‘good’’ initial conditions just described which
almost correspond to an ‘‘eigenmode’’ of the FPU chain. For
instance, if we consider a different ratiom/A in the displace-
ment pattern as that employed in Eq.~6!, the resulting initial
condition generates a breathing soliton which no longer is
describable by expression~3!. In Fig. 2~a! we show the time
evolution of the displacementQ0 at the center of the soliton
obtained for an initial condition of the form Eq.~6! with a
ratio m/A51. We note that another frequencyV3 appears
@see Fig. 2~b!# in the Fourier transform of the displacements.
In Fig. 2~b! we show the Fourier transform for the central
particle n50. The other particles involved have a similar
spectrum with unchanged positions of the peaks, although
their relative intensity is altered. The modulation of the dis-
placement@see Fig. 2~a!# is characterized by the difference
frequencyV2V3, whereV is the fundamental frequency of
the SLS andV3 is a new frequency generated by the ‘‘per-
turbed’’ initial condition. In this case the perturbation con-
serves the symmetry of the SLS, and the new frequency is

FIG. 1. Fourier transform ofQ0~t! for an odd-parity SLS with
g454 generated by the initial conditionQn~0!52~...,0,0.055,
20.54,1,20.54,0.055,0,...!; Pn~0!50. The peak with frequencyV
has an intensity 53103 ~arb. units!.
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denoted byV3; the notation is explained in Sec. V. The other
frequencies which appear in Fig. 2~b! are simple linear com-
bination of V and V3 and are discussed in Sec. VI. The
amplitude modulation of the central particle and the conser-
vation of the total energy causes a spatial breathing of the
SLS. The spatial extension of the SLS changes with time
~see Fig. 3! and this breathing behavior is shown in the en-
ergy contour plot of Fig. 4.

The main feature of the breathing soliton is the presence
of two distinct frequencies in the Fourier transform of the
displacement and their generation is also verified with differ-
ent archetypical excitations, for example with a single-site
displacement excitation@Qn(0)5Adn,0; Pn~0!50#. The
spectrum for this case is shown in Fig. 5 which has been
found by Zavt.18 Similarly this is also verified with an exter-
nal force which acts on a single atom for a limited time.15,14

The numerical simulations show that this breathing be-
havior is atransient phenomenon, but it can persist for a very
long time ~for example, the breathing SLS in the numerical
experiment of Fig. 2 survives more than 20 000 fundamental
oscillations characterized by the periodT52p/V!. A faster
approach to a stationary situation is shown in Fig. 6~a!,
where we show the maximal value of the displacement at the
center of the solitonQ0

max as a function of the time for an
initial condition described by expression~6! with parameter
A50.2 andm50.26. We observe that the maximal value of

the displacement has the tendency to reach a constant value
but this process is still requires many time periods. During
the evolution the breathing soliton radiates energy in form of
small amplitude wave packets@see Fig. 6~b!# and at the end
of this stabilization process a SLS with only a single funda-
mental frequency survives. This phenomenon will be recon-
sidered in Sec. VI. This type of breathing behavior is found
also in other systems, e.g., in Klein-Gordon lattices19,20or in
sine-Gordon lattices.21 In the next section we present a study
of the two-frequency SLS based on a harmonic model.

V. HARMONIC MODEL FOR THE TWO-FREQUENCY SLS

The nonbreathing SLS in the FPU chain is well described
by monochromatic solutions, and their features are essen-
tially the same as those obtained for localized modes in a
harmonic chain with force-constant defects. We consider a
small deviation from the initial conditionQn

0~0! which gen-
erates a SLS with only a single fundamental frequencyV.
The time evolution than can be described by the ansatz

Qn~t!5Qn
0~t!1Xn~t!, ~7!

whereQn
0~t! represent the exact solution of the equation of

motion ~1! for a SLS andXn~t! is a small deviation from the

FIG. 2. ~a! DisplacementQ0 as a function of
time t obtained for the breathing SLS generated
by the initial condition Qn(0)5A(21)n/
cosh(An); Pn~0!50; A50.3. ~b! Fourier trans-
form ofQ0~t!. The peak with frequencyV has an
intensity 33103 ~arb. units!.
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exact solution (uXnu!uQn
0u). In addition to that we assume

that also the following relation is satisfied:

uXn2Xn11u!uQn
02Qn11

0 u. ~8!

Inserting this ansatz in the equation of motion~1! and linear-
izing with respect to the small quantityXn we find the fol-
lowing system of equations:

d2Xn

dt2
52 (

n85n61
~Xn2Xn8!@113~Qn

02Qn8
0

!2#. ~9!

The exact solution of the equation of motion can be written
in the form ~all An.0!:

Qn
0~t!5~21!nAncos~Vt!1Bncos~3Vt!1Cncos~5Vt!

1••• , ~10!

FIG. 3. ~a! Displacement patternQn for the
breathing soliton of Fig. 2;t545. ~b! Displace-
ment Qn for the breathing soliton of Fig. 2;
t562.

FIG. 4. Energy contour plot for the breathing SLS of Fig. 2.

FIG. 5. Fourier transform ofQ0~t! for a SLS generated by the
initial conditionQn(0)52dn,0; Pn~0!50. The peak with frequency
V has an intensity 104 ~arb. units!.
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where the amplitudes of the different components satisfy the
relation uAnu@uBnu@uCnu . . . both for small and large
anharmonicity.9,13 This is also shown in Fig. 1 where the
component with frequency 3V has an intensity of two orders
of magnitude smaller than the component with frequencyV.
At this point we discard the high-frequency components on
the right-hand side of Eq.~9!, i.e., we use in Eq.~9! the
approximation (Qn

02Qn8
0 )2.(An1An8)

2
„cos(Vt)…2. This is

justified because of the antiphase property of the dominant
term in Eq.~10!. Substituting then forQn

0~t! the approximate
~monochromatic! solution of the SLS

Qn
0~t!5~21!nAncos~Vt!, ~11!

we find the following system of linear equations with peri-
odic coefficients~parametric oscillators!:

d2Xn

dt2
52 (

n85n61
~Xn2Xn8!@113~An1An8!

2
„cos~Vt!…2#.

~12!

The functional behavior of this system is characterized by
means of the Floquet theory~see, for example, Ref. 22!
which is a powerful tool for the stability analysis.23

In the present investigation the aim is a first approach to
the problem of the breathing SLS in the FPU chain. There-
fore, we propose in the following a simplified model, which

allows for a qualitative explanation of the phenomenon. The
time-dependent ‘‘force constant’’ between the sitesn and
n11 in Eq. ~12! is given by

f n,n11~t!511 3
2 ~An1An11!

2

1 3
2 ~An1An11!

2cos~2Vt!. ~13!

Considering the equation of motion~1! we note that the pres-
ence of the nonlinear term, qualitatively causes a hardening
of the springs, which is proportional to the squared ampli-
tude of the displacements.

The main ingredientof our calculation will be the as-
sumption that it is permissible to investigate localized ‘‘per-
turbation’’ modes provided there are any, and provided their
frequency isconsiderably lowerthan the doubled solitary
frequency 2V in a harmonic approximation of Eq.~12!, re-
placing the time-dependent ‘‘spring constants’’ Eq.~13! by
their time-averaged value

f n,n11511 3
2 ~An1An11!

2. ~14!

If this is done, the equations of motion for the perturbations
Xn~t! acquire the form of those for a disturbed harmonic
lattice with hardened springs in a central region. These equa-
tions may have more than a single localized mode with fre-
quency greater thanVD . But keeping in mind that in Eq.

FIG. 6. ~a! Maximal value of the amplitude
Q0 as a function of timet obtained for the initial
condition Qn(0)5A(21)n/cosh(1.3An); Pn~0!
50; A50.2; ~b! (n525

` Hn/( n52`
` Hn as a func-

tion of time t.
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~13! we have discarded the oscillating term, we stress that
only those solutionsVi will be of physical relevance, for
whichVi!2V. E.g., these equations will also produce a fre-
quency V1, which is close to the solitary frequencyV
whence within our concept it must be discarded.

In the present analysis we consider the case of a great
anharmonicity~g4.1!, since in this case the SLS solution is
strongly localized. Consequently, the number of involved de-
grees of freedom is small and the analysis is more simple.
Moreover, in this manner we satisfy the above prerequisite of
our model. Referring to approximation~14!, we notice that
the odd-parity solution described above~see Sec. III! by the
displacement patternA~0, . . . ,0,21/2,1,21/2,0, . . . 0! gen-
erates a harmonic spring distribution of the type:

f 2~1,...1,b,a,a,b,1,...,1!, ~15!

where the spring constants~a.b.1! are obtained substitut-
ing the values of the amplitude of the SLS in Eq.~14!. On
the other hand, the even-parity solution with displacement
patternA~0, . . . 0,21,1,0, . . . 0! generates a spring distribu-
tion

f 2~1,...1,b,a,b,1,...,1!, ~16!

wherea.b.1.
The eigensolutions of the harmonic chain with spring dis-

tribution given by Eq.~15! are shown in Fig. 7 for an odd-
parity SLS withg454. The eigensolutions are obtained by
means of the diagonalization of the dynamical matrix of a
harmonic chain with 100 atoms and with spring defects Eq.
~15! at the center of the chain. The eigenmodes with fre-
quency greater thanVD are extremely localized and their
frequencies are practically independent from the length of
the chain or from the boundary conditions. There are three
localized modes with frequencies above the Debye fre-
quency, two with odd parity~V1 andV3! and one with even
parity ~V2!. The localized mode with frequencyV1 has the
same form as the odd-parity SLS but this mode has a fre-
quency near to the solitary frequencyV, and hence accord-
ing to the above stated presupposition will not be considered.

Thus, we may conclude that, if the solitary solution is
disturbed with a small localized perturbation of the same
parity, which does not alter the displacement pattern signifi-
cantly ~i.e., the corresponding effective spring distribution!,
we will find a second peak in the spectrum lying below the
SLS frequency, and this second peak can be attributed to the

second odd-parity modeV3 found above. On the other hand,
if the solitary solution is disturbed with a small perturbation
of the opposite parity, we will find another peak which can
be attributed to the mode of the effective harmonic chain
with frequencyV2.

Analogous results are obtained if we consider an even-
parity SLS. The SLS can be simulated by a spring distribu-
tion given by Eq.~16! and in this case there are two localized
modes with even parity denoted byV1 andV3 and another
with odd parity and frequencyV2. Similarly also here we
may consider a weak localized perturbation of opposite par-
ity which generates a peak nearV2 or a localized perturba-
tion of the same parity which generates a peak nearV3.

VI. DISCUSSION

In this section we first check the validity of our harmonic
model by means of numerical simulations. We consider the
initial condition given by the displacement pattern Eq.~5!
which generates a SLS with only a single fundamental fre-
quency, and we perturb the SLS with a small impulse~P
case! or displacement~Q case! perturbation of even or odd
parity at the center of the SLS. The results obtained for a
smallP perturbation are analogous to the results obtained if
the perturbation is taken in theQ space. The time evolution
of the FPU chain for these ‘‘perturbed’’ initial conditions is
then calculated by numerical solution of the equation of mo-
tion ~1!.

In Fig. 8~a! we show the displacementQ0~t! at the central
site n50 as a function of the time for an odd-parityQ per-
turbation schematically described by~↑•↑! of the initial con-
dition which would exactly generate the odd-parity SLS of
type ~↓↑↓! and anharmonicityg454. The time evolution
shows evidently that the value of the amplitude of the dis-
placementQ0~t! is no longer a constant and new frequencies
appear in the Fourier transform@see Fig. 8~b!#.

The main effect of the perturbation is the generation of a
second frequency corresponding to the odd-parity mode in-
dicated byV3 in Fig. 7. The effective force constants can be
calculated if we substitute the values of the amplitudes of the
unperturbed SLS in Eq.~14!. We obtain a harmonic chain
with spring distribution of the type Eq.~15! which has three
eigenmodes beyond the Debye frequency and with amplitude
pattern shown in Fig. 7. The calculation of the eigenfrequen-
cies give us the value ofV352.45 which is very close to the
frequencyV352.55 obtained with the numerical simulation
@see Fig. 8~b!#.

The other frequencies which appear in the Fourier trans-
form are linear combination of the frequenciesV andV3 and
are due to a nonlinear coupling of the two modes. If we
consider a trial solution of the form

Qn5Ane
iVt1Bne

iV3t1c.c., ~17!

where An and Bn are the amplitude distributions, respec-
tively, of the SLS with frequencyV and of the localized
mode with frequencyV3, the substitution of this trial solu-
tion in the equation of motion~1! shows that also terms with
frequencies 2V6V3,2V36V . . . must appear in the solu-
tion. This indeed is observed in the numerical simulation
@see Fig. 8~b!#.

FIG. 7. Eigenvectors withV.VD for the effective harmonic
chain of a SLS~g454! with spring distribution Eq.~15!.
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At this point we now return to the breathing SLS men-
tioned in Sec. IV~see Fig. 6! and its decay. At present there
is no numerical evidence of the existence of a stable two-
frequency SLS in the FPU chain, but the numerical simula-
tions have confirmed the persistence of the two-frequency
solution for a very long lifetime. As suggested by Boesch
and Peyrard for the sine-Gordon chain,21 the decay of the
breathing SLS can be explained by means of an external
parametrical resonance with phonons. This can be visualized
in the following manner. The breathing SLS is described by
two different frequencies above the Debye frequency, but the
nonlinear term in the equation of motion causes the appear-
ance of linear combinations of these two frequencies in the
spectrum. Then, if one of these linear combinations lies in
the phonon band, we expect an energy radiation caused by
the parametric resonance~Fano decay!.24 This indeed is con-
firmed in our numerical experiments where the generation of
small amplitude phonon packets is observed.

Whereas the odd-parity SLS is stable to odd-parity pertur-
bations, as shown by Sanduskyet al.12 and independently by
Chubykaloet al.13 via a stability analysis, this is not true for
an even-parity perturbation described schematically by~↑.↓!.
The even-parity perturbations destroy the symmetry and
cause the SLS to move. Its mean position may travel in space
or oscillate around a central position.12 Consequently, there
is a great fluctuation in the displacement pattern, and the

effective harmonic spring distribution is no longer described
by Eq. ~15!. Our harmonic model cannot describe this phe-
nomenon, since the effective spring distribution is assumed
to be static.

The even-parity SLS is stable against both small even-
parity and odd-parity perturbations,12,13 and for this type of
SLS our harmonic model gives a good explanation of the
breathing behavior induced by a perturbation. The properties
of the even-parity SLS is also discussed in the paper of Flach
and Willis,10 where the existence of a movability separatrix
is demonstrated. If the odd-parity perturbation is greater than
a threshold value, the SLS transforms into a moving SLS.
For our numerical simulations the odd-parity perturbation is
always chosen sufficiently small, such that the SLS remains
localized at the same position, maintaining approximately
the original displacement pattern. Only for such a choice our
harmonic model for the breathing SLS is applicable.

In Fig. 9~a! we show the time evolution of the energy
center defined by(nnHn/SnHn as a function of time for an
even-parity SLS withg454 @schematically described by
~↑↓!# which is perturbed by a small odd-parity impulse per-
turbation~↑↑!. In this case the perturbation destroys the sym-
metry of the SLS, and the energy center oscillates around its
mean value of 0.5. We observe the appearance of a new
frequencyV2 in the spectrum of the displacement@see Fig.
9~b!# caused by the perturbation. This fact can be explained

FIG. 8. ~a! DisplacementQ0 as a function of
time t obtained for the breathing SLS generated
by an odd-parity perturbation of the odd-parity
mode with g454. Initial condition: Qn~0!52
~...,0,0.055,20.54,1,20.54,0.055,0,...!10.3 ~...,0,
21,0,21,0,...!; Pn~0!50. ~b! Fourier transform
of Q0~t!. The peak with frequencyV has an in-
tensity 104 ~arb. units!.
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if we assume that the odd-parity perturbation activates the
odd-parity mode with frequencyV2 which appears in our
harmonic model. Also the spatial oscillation of the energy
center finds a simple explanation within our harmonic model.
Indeed, a superposition of the odd-parity mode with fre-
quencyV2 and of the even-parity SLS@see Eq.~7!# causes an
oscillation of the energy center around its mean value.

On the other hand, if we consider an even-parity pertur-
bation of the even parity SLS, described schematically by
~↓..↑!, the main effect of the perturbation is the activation of
the even-parity mode indicated byV3. The results of the
numerical simulation are shown in Fig. 10. In this case we
have again a breathing type of behavior. For the even parity
SLS, the eigenfrequencies of the corresponding harmonic
chain ~V254.5, V353.0! are very close to the frequencies
obtained by the numerical simulations~V254.8, V353.1!.
The same analysis performed for other values of the anhar-
monicity parameter confirms the validity of our harmonic
model. For example, for the even parity SLS withg459 the
eigenfrequencies calculated with our model areV256.4,
V354.2 and the frequencies obtained by numerical simula-
tions areV256.8,V354.2.

It should be noted that the frequencies obtained by a small
localized perturbation depend only on the parity of the per-
turbation and are independent from the chosen displacement
pattern ~or impulse pattern! of the particular perturbation.

For example, in the case of an even-parity SLS, a small
odd-parity perturbations described by~.↑↑.! generates the
same frequency as a perturbation of type~↑..↑! or of type
~↓↑↑↓!. This fact indicates that the nonbreathing SLS estab-
lishes well determined internal degrees of freedom, and their
excitation depend only on the parity of the perturbation. This
is well reproduced by our harmonic model.

VII. CONCLUSION

In this paper we present a study of the breathing self-
localized soliton in the FPU chain. The main characteristics
of the breathing SLS is the presence of two distinct frequen-
cies in the Fourier transform of the displacements and a spa-
tial envelope which displays a breathing behavior. The gen-
eration of the breathing SLS is investigated by means of
numerical experiments. We have shown that the breathing
SLS can be generated with different types of archetypical
excitations, for example with a single site displacement ex-
citation or with an external force which acts on a single site
for a limited time.14,15These breathing solitons are not stable
in time, but the numerical simulations have shown a breath-
ing behavior which can persist for a very long time.

To understand this type of behavior we have proposed a
harmonic model for the breathing SLS. The original non-
breathing SLS is well described by a monochromatic solu-

FIG. 9. ~a! Energy center(nnHn/(nHn as a
function of timet obtained for the breathing SLS
generated by the appropriate initial condition for
the even-parity mode withg454 which is per-
turbed by an odd-parity perturbation inP space.
Initial conditions: Qn~0!52~...,0,0.21,21,1,
20.21,0,...!; Pn~0!50.3~...,0,0,1,1,0,0,...!. ~b!
Fourier transform ofQ0~t!. The peak with fre-
quencyV has an intensity 63103 ~arb. units!.
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tion with a constant displacement pattern. In this model the
presence of the nonlinear term in the equation of motion
causes an effective hardening of the springs, which is pro-
portional to the squared amplitude of the displacements. The
dominant philosophy of our model rests on the concept that
the SLS establishes an effective spring distribution for addi-
tional small-amplitude localized motions of harmonic nature.

In our investigation we have considered the case of great
anharmonicity, where the SLS’s are strongly localized. For
the even- and odd-parity SLS’s we have shown that the cor-
responding effective harmonic chain gives rise to different
localized modes with frequencies above the Debye frequency
and with different parity. The respective localized mode with
highest frequencyV1 reproduces the displacement pattern of
the SLS but it does not reproduce the correct frequency value
V of the SLS, since its calculation violates the presupposi-
tion ~Vi!2V! of our model. But there are two other modes,
one with opposite parity and another one with the same par-
ity as the SLS, which both have frequencies greater than the
Debye frequency and which satisfy the presupposition
Vi!2V. These modes can be viewed as internal degrees of
freedom of the SLS and can be excited if we perturb the
original SLS with, respectively, a small odd-parity perturba-
tion or an even-parity perturbation.

To check the validity of our model we have employed
numerical experiments. It has turned that the numerical val-

ues of the new frequencies are very close to those found in
our analytical model. They differ in the chosen examples by
less than 7% and are improved for ascending values of an-
harmonicityg4.

The results of our numerical simulations show that the
perturbed SLS has a breathing behavior and there is the ap-
pearance of a new frequency in the Fourier transform of the
displacement. Our harmonic model can explain the breathing
behavior as a superposition of the unperturbed SLS and of a
localized mode of the corresponding effective harmonic
chain. The slow decay of the breathing SLS is explained by
means of an external parametrical resonance with phonons.

A more accurate analysis of the considered breathing phe-
nomenon can be obtained considering the system of linear
equations with periodic coefficients given by Eq.~12!. This
will be considered in the near future.
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FIG. 10. ~a! DisplacementQ0 as a function of
time t obtained for the breathing SLS generated
by the appropriate initial condition for the even-
parity mode withg454 which is perturbed by an
even-parity perturbation inP space. Initial con-
ditions: Qn~0!52~ . . . ,0,0.21,21,1,20.21,0,
. . . !; Pn~0!50.8~ . . . ,0,21,0,0,1,0, . . . !. ~b!
Fourier transform ofQ0~t!. The peak with fre-
quencyV has an intensity 2.53103 ~arb. units!.
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