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Breathing self-localized solitons in the quartic Fermi-Pasta-Ulam chain
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If the fundamental self-localized solitdSLS) of the Fermi-Pasta-Ulam chain is subjected to a perturbation
of the same parity, a breathing behavior in space is observed. The time evolution then is characterized by two
different frequencies. We show that the observed breathing behavior can be explained by means of a harmonic
model with an effective spring hardening which is generated by the fundamental background SLS. The validity
of this harmonic model is verified by means of numerical simulations. Improvements involving a parametric
oscillator are mentioned but left to future stud$0163-182@096)00838-7

I. INTRODUCTION dZQn__ Z - . B , o
7= [(Qn=Qn)+(Qu=Qn)?l,

n'=nx1

The existence of localized modes in a harmonic lattice
containing point defects is well understobRecently, in the  where we have considered dimensionless variafttes co-
work of DolgoV and of Sievers and Takehthe existence of efficients of the linear and cubic terms can be set equal to
self-localized solitongSLS) in anharmonic lattices without one by means of a scaling transformatiyn For the har-
impurity was theoretically predicted. These SLS'’s are remidmonic chain the maximal phonon frequency is indicated by
niscent of the defect-induced localized modes in the har{lp which we will denote as the Debye frequency and which
monic lattice and they can occur at any site of the anharis considered as a reference frequef@y =2). The Hamil-
monic lattice. This was later confirmed by means oftonian in our dimensionless variables is given by
numerical simulatiorfs® and in recent works the properties 2
of the SLS’s have been further investigafedf In particular, _ _ E l _ 2
. . , H 2 Hn E + 2 (Qn Qn’)
it has been proved that the parity of the SLS’s has a great n n 2 4
relevance to their stabilit}?*3

In a previous investigatiotf:!® the present authors have
investigated the generation of the SLS in the Fermi-Pasta-
Ulam chain(FPU, see Refs. 16 and Lwith quartic anhar-
monicity by means of an external force acting on a singlevhereP,,=dQn/d7 is the momentum of thath atom and
atom. The numerical simulations have shown the existenckl, is the dimensionless energy per lattice site.
of a SLS with a spatial envelope characterized by a “breath-
ing” behavior, where the spatial extension of the SLS Il. SLS IN THE FPU CHAIN
changes periodically in time. We have denoted this localized
mode “breathing SLS” and further numerical experiments
have shown that this breathing behavior can persist for %
very long time.

n'=nx1

1
+§(Qn_Qn’)4Ha (2)

The SLS's are vibrational modes with localization prop-
rties similar to those of a localized mode obtained in the
armonic chain with point defects. The main features of
. these SLS’s are a frequency above the Debye frequency,

i . i %ntiphase elongations of neighboring atoms, and an exponen-
SLS's and we propose a harmonic model which explains th al decrease of the wings. The SLS has a solution of mono-

main features of these SLS’s. The paper is organized as ok omatic behavior and may be written in the approximate
lows. In Sec. Il we introduce the FPU model and in Sec. 55,

we characterize the main properties of the SLS’s in the quar-

tic FPU chain. We then describe the numerical experiments Qn(1)=A,(—1)"cogQ7), 3
and the features of the breathing SLE3ec. IV). In Sec. V

we present a model for these breathing SLS’s. Finally, inthe overtones being of minor importance.

Secs. VI and VIl we discuss the results obtained and present !N the following we will express the maximal value of the
our conclusion. amplitudesA, of expressiorn(3) by the variableA. Then we

introduce the “effective anharmonicity parametey,=A?
which is a measure of the anharmonicity of the SLS. In fact,
considering the equation of motidd) we note directly that
the importance of the cubic term increases in proportion to
We consider a regular one-dimensional ch&RU chain y4=A2.

with nearest-neighbor harmonic and anharmonic interaction. For small values ofy,(y,<1), the solutions involve a
The equation of motion for the displacem&}i(7) of thenth  great number of particles, and in this limit the equations of
atom reads motion (1) merge into a nonlinear Schdimger equation in

Il. THE FPU MODEL
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the continuum approximation of the lattice. This limit has 500
been handled analytically by Yoshimura and WatafAaiel

by Chubykaloet al*® They have found a solution, which in 400 | X 10 .
discrete notation may be written as

1Qo(©)]
o

Q,(7)=A(—1)"secti\6An)cog O 7), (4)

where the frequencf is given byQ=0p+ 3/2A2, wor 30T
On the other hand, for great effective anharmonicity
(v4>1) the SLS is strongly localized, and practically only
three or two particles, respectively, are involved. In this case JL
approximate analytical solutions have been obtained by Siev- I T T A
ers and Takerfousing lattice Green functions and the “ro- 0/
tating wave” approximation, whereby again only a single . . .
frequency is considered in the time dependence. The even- "G 1. Fourier transform oQq(7) for an Odd'pf”ty SLS with
! - . . v=4 generated by the initial conditioQ,(0)=2(...,0,0.055,
parity SLS Qn.+1=—Q-p) has a normalized displacement =, 5 1" 54§ 055,0.): P,(0)=0. The peak with frequency
patterri given approximatively byA(...,0-1,1,q...) and has an intensity §10° (arb. units
the correspondent odd-parity SL®(=Q_,,) has a patteth ' '
given by A(...,0~ 1/2’1'._1/.2’Q .--) (the te”‘?g “°dq” our numerical simulations will be chosen to have a displace-
and “even” refer to longitudinal types of motignin this ment pattern of the form
limit (y,>1) the displacement pattern Ls constant but the fre-
guency of the SLS is proportional tg,. — A (_1\N _
We mention also an alternative meth@auss proceduye Q(O=An(=1)% Py(0)=0 ®
for the construction of rather accurate solutions proposed byVe first choose the amplitudes, as they are found by the
two of the present authot$.This method can be applied for Gauss procedure introduced in an earlier papér.this case
arbitrary values of the effective anharmonicity parameter  the initial condition very closely corresponds to a SLS, and
The method is based on an iterative Gaussian optimizatiothe Fourier transform of the time evolutidd,(7) shows a
and the knowledge of the limiting analytic form of the solu- single fundamental frequency. In Fig. 1 we show the Fourier
tion on the wing of the soliton. The solutions obtained withtransform of the displacement at the central site0 for the
the Gauss procedure are in agreement with the previousiyitial condition pertaining to an odd-parity SLS with=4.
cited solutions in both limitsy,>1 andy,<1 and are accu- We note clearly the presence of only one fundamental fre-
rate also in the intermediate regime. All these approximatguency() and the overtone at(B The same result is ob-
solutions are monochromatice., only a single frequency is tained also if we chose initial conditions with even parity,
considered in the time dependenddowever, one should be and also for other values af,. In the limit of small effective
aware of the fact that the exact solutions contain alwaysnharmonicityy, the displacement pattern
spectral components with odd multiples of the fundamental
frequency() due to the presence of the anharmonic term in A,=A secliun); u=+6A (6)
the equation of motiorgl). These higher frequency compo-
nents in the Fourier spectra have a small amplitude in comapplies, as obtained from E@). This again constitutes a

parison with the amplitude of the fundamental frequéncy good initial condition and in the numerical simulation we
and are practically negligible. observe only a fundamental frequency.

The appearance of other frequencies in the spectra of the
displacements is found if we choose initial conditions differ-
ent from the “good” initial conditions just described which

In previous work>*we have investigated the generation almost correspond to an “eigenmode” of the FPU chain. For
of solitons in the FPU chain by means of an external forcanstance, if we consider a different rafidA in the displace-
acting for a restricted time period at a single site. It turnedment pattern as that employed in Ef), the resulting initial
out that after sufficiently long time the amplitude of the vi- condition generates a breathing soliton which no longer is
brating atoms in the neighborhood of the excited site bedescribable by expressidB). In Fig. 2a) we show the time
haved in a “breathing” manner, which persisted for a veryevolution of the displacemei@, at the center of the soliton
long time (“breathing SLS"). obtained for an initial condition of the form E¢6) with a

To investigate this phenomenon more closely we now fofatio u/A=1. We note that another frequen€y; appears
cus our attention on a more specific generation of the breatisee Fig. 2b)] in the Fourier transform of the displacements.
ing solitons by choosing well-directed initial conditions. In In Fig. 2(b) we show the Fourier transform for the central
our numerical experiments we evaluate the time evolution oparticle n=0. The other particles involved have a similar
the FPU chain by solving numerically the equation of motionspectrum with unchanged positions of the peaks, although
(1) by a fourth-order Runge-Kutta method. The time step intheir relative intensity is altered. The modulation of the dis-
our program is always chosen to preserve the total energy gflacemen{see Fig. 2a)] is characterized by the difference
the chain to an accuracy better than 1@nd the lattice is  frequencyQ—Q, where( is the fundamental frequency of
treated in a self-expanding manner, which excludes the inthe SLS and; is a new frequency generated by the “per-
fluence of the boundary conditior{for more detail on the turbed” initial condition. In this case the perturbation con-
numerical technique see Ref.)1The initial condition for serves the symmetry of the SLS, and the new frequency is

IV. BREATHING SLS’S



54 BREATHING SELF-LOCALIZED SOLITONS IN THE . .. 9811

04 | H

QA

Qo

0.4
0.6 | -
0 20 40 60 80 100 1éo 140 FIG. 2. (a) DisplacementQ as a function of
T time 7 obtained for the breathing SLS generated
by the initial condition Q,(0)=A(—1)"
300 : : : : : cosh@An); P,(0)=0; A=0.3. (b) Fourier trans-
' ' form of Qq(7). The peak with frequenc§2 has an
intensity 3x10° (arb. unit3.
250 | i
_ (6)
E}/ 200 |- 0 i
(=]
g 150
20 — Qs i
13
100 | i
50 [ .
b 3
0 1 1 3 L 1 A_A
] 0.5 1 1.5 25 3 35 4

2
0/

denoted by(),; the notation is explained in Sec. V. The other the displacement has the tendency to reach a constant value
frequencies which appear in Figi® are simple linear com- but this process is still requires many time periods. During
bination of ) and ); and are discussed in Sec. VI. The the evolution the breathing soliton radiates energy in form of
amplitude modulation of the central particle and the consersmall amplitude wave packefsee Fig. )] and at the end
vation of the total energy causes a spatial breathing of thef this stabilization process a SLS with only a single funda-
SLS. The spatial extension of the SLS changes with timemental frequency survives. This phenomenon will be recon-
(see Fig. 3 and this breathing behavior is shown in the en-sidered in Sec. VI. This type of breathing behavior is found
ergy contour plot of Fig. 4. also in other systems, e.g., in Klein-Gordon lattiée8or in

The main feature of the breathing soliton is the presenceine-Gordon lattice& In the next section we present a study
of two distinct frequencies in the Fourier transform of the of the two-frequency SLS based on a harmonic model.
displacement and their generation is also verified with differ-

ent archetypical excitations, for example with a single-site
displacement excitation[Qn(O):Aﬁnvo; P,(0)=0]. The V. HARMONIC MODEL FOR THE TWO-FREQUENCY SLS

spectrum for this case is shown in Fig. 5 which has been The nonbreathing SLS in the FPU chain is well described
found by Zavt'® Similarly this is also verified with an exter- py monochromatic solutions, and their features are essen-
nal force which acts on a single atom for a limited tifié 3|y the same as those obtained for localized modes in a
The numerical simulations show that this breathing benarmonic chain with force-constant defects. We consider a
havior is atransient phenomengbut it can persist for a very gmall deviation from the initial conditio (0) which gen-
long time (for example, the breathing SLS in the numerical grates a SLS with only a single fundamental frequeficy

experiment of Fig. 2 survives more than 20 000 fundamentafe time evolution than can be described by the ansatz
oscillations characterized by the perida=27/()). A faster

approach to a stationary situation is shown in Fig¢a)6 0

where we show the maximal value of the displacement at the Qn(7)=Qn(7) +Xy(7), Y
center of the solitorQJ™ as a function of the time for an

initial condition described by expressigf) with parameter whereQ (7 represent the exact solution of the equation of
A=0.2 andu=0.26. We observe that the maximal value of motion (1) for a SLS andX,,(7) is a small deviation from the
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exact solution [X,|<|QY]). In addition to that we assume The exact solution of the equation of motion can be written

that also the following relation is satisfied:

|Xn—Xn+1]<|Q— QY 4. (8)

Inserting this ansatz in the equation of motidn and linear-
izing with respect to the small quanti, we find the fol-
lowing system of equations:

d2Xn 0 0,2
92 - 2 (K= Xa)[1+3(Qa-Qu)%L  (9)

n'=n+1

200 160 120 80 40 0

FIG. 4. Energy contour plot for the breathing SLS of Fig. 2.

in the form (all A,>0):

QY(7)=(-1)"A,cod Q)+ B,cog3Q7)+C,cod507)
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FIG. 5. Fourier transform ofy(7) for a SLS generated by the
initial condition Q,(0)=246,, o; Pn(0)=0. The peak with frequency
Q has an intensity 10(arb. units.
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where the amplitudes of the different components satisfy thallows for a qualitative explanation of the phenomenon. The
relation |A,|>|B,|>|C,| ... both for small and large time-dependent “force constant” between the sitesand
anharmonicity’*® This is also shown in Fig. 1 where the n+1 in Eq.(12) is given by

component with frequency(B has an intensity of two orders

of magnitude smaller than the component with frequeficy fansn(1)=1+ 3 (Ay+A,1)?
At this point we discard the high-frequency components on
the right-hand side of Eq(9), i.e., we use in Eq(9) the + 2 (A, + AL, 1)%c09207). (13

approximation Q2—Q°,)2=(A,+A,,)?(cos@1n)?. This is
justified because of the antiphase property of the dominal
term in Eq.(10). Substituting then fo® (1) the approximate
(monochromatig solution of the SLS

nCf‘onsidering the equation of motigh) we note that the pres-
ence of the nonlinear term, qualitatively causes a hardening
of the springs, which is proportional to the squared ampli-
tude of the displacements.
0/ \—(_1\n The main ingredientof our calculation will be the as-
Qn(7)=(= 1) Asco8Q27), (D sumption that it is permissible to investigate localized “per-
we find the following system of linear equations with peri- turbation” modes provided there are any, and provided their
odic coefficientgparametric oscillatojs frequency isconsiderably lowerthan the doubled solitary
frequency 2) in a harmonic approximation of E@l2), re-
d2x, ) ) placing the time-dependent “spring constants” Efj3) by
d2 __n/gﬂ (Xn=Xn)[1+3(An+An ) (COS Q7))L their time-averaged value
12

The functional behavior of this system is characterized by

means of the Floquet theorisee, for example, Ref. 22 If this is done, the equations of motion for the perturbations

which is a powerful tool for the stability analyss. X,(7) acquire the form of those for a disturbed harmonic
In the present investigation the aim is a first approach tdattice with hardened springs in a central region. These equa-

the problem of the breathing SLS in the FPU chain. Theretions may have more than a single localized mode with fre-

fore, we propose in the following a simplified model, which quency greater thafly . But keeping in mind that in Eq.

fn,n+1:1+ % (An+An+1)2- (14
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second odd-parity mod@; found above. On the other hand,
if the solitary solution is disturbed with a small perturbation
of the opposite parity, we will find another peak which can
be attributed to the mode of the effective harmonic chain
with frequency(),.

S A # A | e Analogous results are obtained if we consider an even-
\l U l/ \ parity SLS. The SLS can be simulated by a spring distribu-
tion given by Eq(16) and in this case there are two localized
modes with even parity denoted 1), and Q23 and another
o 25 o 135 o —es with odd parity and frequency),. Similarly also here we

may consider a weak localized perturbation of opposite par-

ity which generates a peak ne@y or a localized perturba-
FIG. 7. Eigenvectors with)>Qp for the effective harmonic tion of the same parity which generates a peak igar

chain of a SLS(y,=4) with spring distribution Eq(15).

(13) we have discarded the oscillating term, we stress that VI DISCUSSION

only those solutiond); will be of physical relevance, for In this section we first check the validity of our harmonic
which (;<20). E.g., these equations will also produce a fre-model by means of numerical simulations. We consider the
quency {),, which is close to the solitary frequend® initial condition given by the displacement pattern Eg)
whence within our concept it must be discarded. which generates a SLS with only a single fundamental fre-

In the present analysis we consider the case of a greafuency, and we perturb the SLS with a small impu(Be
anharmonicity(y,>1), since in this case the SLS solution is case or displacementQ case perturbation of even or odd
strongly localized. Consequently, the number of involved deparity at the center of the SLS. The results obtained for a
grees of freedom is small and the analysis is more simplesmall P perturbation are analogous to the results obtained if
Moreover, in this manner we satisfy the above prerequisite ofhe perturbation is taken in th@ space. The time evolution
our model. Referring to approximatidii4), we notice that  of the FPU chain for these “perturbed” initial conditions is
the odd-parity solution described abolgee Sec. Iliby the  then calculated by numerical solution of the equation of mo-
displacement patter&(0, ...,0-1/2,1-1/2,...0 gen- ton (1).

erates a harmonic spring distribution of the type: In Fig. 8@ we show the displaceme@,(7) at the central
siten=0 as a function of the time for an odd-pari§y per-
f2(1,..18,a,2,6,1,...,0, (19  turbation schematically described by: 1) of the initial con-

dition which would exactly generate the odd-parity SLS of
type ([7]) and anharmonicityy,=4. The time evolution
hows evidently that the value of the amplitude of the dis-
lacementQy(7) is no longer a constant and new frequencies
appear in the Fourier transforfeee Fig. &)].
The main effect of the perturbation is the generation of a
second frequency corresponding to the odd-parity mode in-
f2(1...18,a,8.1,....D, (16 dicated by(); in Fig. 7. The effective force constants can be
wherea>g>1. calculated if we substitute the values of the amplitudes of the

The eigensolutions of the harmonic chain with spring dis-unperturbed SLS in Eq14). We obtain a harmonic chain
tribution given by Eq.(15) are shown in Fig. 7 for an odd- wlth spring distribution of the type Eq15) which has threg
parity SLS with y,=4. The eigensolutions are obtained by eigenmodes beyond the Debye frequency and with amplitude
means of the diagonalization of the dynamical matrix of aPattern shown in Fig. 7. The calculation of the eigenfrequen-
harmonic chain with 100 atoms and with spring defects EqCies give us the value d2;=2.45 which is very close to the
(15) at the center of the chain. The eigenmodes with fre_frequencyﬂgzz.SS obtained with the numerical simulation
quency greater thafl, are extremely localized and their [see Fig. 80)]. _ _ _ .
frequencies are practically independent from the length of The other frequencies which appear in the Fourier trans-
the chain or from the boundary conditions. There are thred0rm are linear combination of the frequenciesand(; and
localized modes with frequencies above the Debye fre@re¢ due to a nonlinear coupling of the two modes. If we
quency, two with odd parityQ); and()s) and one with even consider a trial solution of the form
parity (€),). The localized mode with frequendy; has the _ _
same form as the odd-parity SLS but this mode has a fre- Q,=A, e +B,e% +c.c., (17)
guency near to the solitary frequen€y and hence accord-
ing to the above stated presupposition will not be consideredvhere A, and B,, are the amplitude distributions, respec-

Thus, we may conclude that, if the solitary solution istively, of the SLS with frequency) and of the localized
disturbed with a small localized perturbation of the samemode with frequency);, the substitution of this trial solu-
parity, which does not alter the displacement pattern signifition in the equation of motiofil) shows that also terms with
cantly (i.e., the corresponding effective spring distribugion frequencies 2+Q5,20,+Q ... must appear in the solu-
we will find a second peak in the spectrum lying below thetion. This indeed is observed in the numerical simulation
SLS frequency, and this second peak can be attributed to tHeee Fig. &)].

where the spring constanta>>1) are obtained substitut-
ing the values of the amplitude of the SLS in Ef4). On
the other hand, the even-parity solution with displacemen
patternA(0, ...0-1,1,0...0 generates a spring distribu-
tion
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At this point we now return to the breathing SLS men- effective harmonic spring distribution is no longer described
tioned in Sec. IV(see Fig. § and its decay. At present there by Eq. (15). Our harmonic model cannot describe this phe-
is no numerical evidence of the existence of a stable twonomenon, since the effective spring distribution is assumed
frequency SLS in the FPU chain, but the numerical simulato be static.
tions have confirmed the persistence of the two-frequency The even-parity SLS is stable against both small even-
solution for a very long lifetime. As suggested by Boeschparity and odd-parity perturbatiod$!® and for this type of
and Peyrard for the sine-Gordon chalthe decay of the SLS our harmonic model gives a good explanation of the
breathing SLS can be explained by means of an externddreathing behavior induced by a perturbation. The properties
parametrical resonance with phonons. This can be visualizeof the even-parity SLS is also discussed in the paper of Flach
in the following manner. The breathing SLS is described byand Willis}° where the existence of a movability separatrix
two different frequencies above the Debye frequency, but thés demonstrated. If the odd-parity perturbation is greater than
nonlinear term in the equation of motion causes the appeag threshold value, the SLS transforms into a moving SLS.
ance of linear combinations of these two frequencies in thé&or our numerical simulations the odd-parity perturbation is
spectrum. Then, if one of these linear combinations lies iralways chosen sufficiently small, such that the SLS remains
the phonon band, we expect an energy radiation caused Hgcalized at the same position, maintaining approximately
the parametric resonan¢€ano decay?* This indeed is con- the original displacement pattern. Only for such a choice our
firmed in our numerical experiments where the generation oharmonic model for the breathing SLS is applicable.
small amplitude phonon packets is observed. In Fig. 9@ we show the time evolution of the energy

Whereas the odd-parity SLS is stable to odd-parity pertureenter defined by, ,nH,/2,H,, as a function of time for an
bations, as shown by Sanduséyall? and independently by even-parity SLS withy,=4 [schematically described by
Chubykaloet al*® via a stability analysis, this is not true for (1])] which is perturbed by a small odd-parity impulse per-
an even-parity perturbation described schematicallyiby).  turbation(77). In this case the perturbation destroys the sym-
The even-parity perturbations destroy the symmetry andnetry of the SLS, and the energy center oscillates around its
cause the SLS to move. Its mean position may travel in spacmean value of 0.5. We observe the appearance of a new
or oscillate around a central positibhConsequently, there frequency(), in the spectrum of the displacemdsee Fig.
is a great fluctuation in the displacement pattern, and th8(b)] caused by the perturbation. This fact can be explained
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if we assume that the odd-parity perturbation activates th&or example, in the case of an even-parity SLS, a small
odd-parity mode with frequenc§), which appears in our odd-parity perturbations described H§y/1.) generates the
harmonic model. Also the spatial oscillation of the energysame frequency as a perturbation of ty@e?) or of type
center finds a simple explanation within our harmonic model(]17]). This fact indicates that the nonbreathing SLS estab-
Indeed, a superposition of the odd-parity mode with fre-lishes well determined internal degrees of freedom, and their
guency(), and of the even-parity SLSee Eq(7)] causes an excitation depend only on the parity of the perturbation. This
oscillation of the energy center around its mean value. is well reproduced by our harmonic model.

On the other hand, if we consider an even-parity pertur-
bation of the even parity SLS, described schematically by
(1..1), the main effect of the perturbation is the activation of
the even-parity mode indicated Hy;. The results of the In this paper we present a study of the breathing self-
numerical simulation are shown in Fig. 10. In this case wedocalized soliton in the FPU chain. The main characteristics
have again a breathing type of behavior. For the even paritgf the breathing SLS is the presence of two distinct frequen-
SLS, the eigenfrequencies of the corresponding harmonicies in the Fourier transform of the displacements and a spa-
chain (2,=4.5, ;=3.0) are very close to the frequencies tial envelope which displays a breathing behavior. The gen-
obtained by the numerical simulatioi€,=4.8, (;=3.1). eration of the breathing SLS is investigated by means of
The same analysis performed for other values of the anhanumerical experiments. We have shown that the breathing
monicity parameter confirms the validity of our harmonic SLS can be generated with different types of archetypical
model. For example, for the even parity SLS wigh=9 the  excitations, for example with a single site displacement ex-
eigenfrequencies calculated with our model &¢=6.4, citation or with an external force which acts on a single site
Q;=4.2 and the frequencies obtained by numerical simulafor a limited time'*'°These breathing solitons are not stable
tions are(),=6.8, (;=4.2. in time, but the numerical simulations have shown a breath-

It should be noted that the frequencies obtained by a smaihg behavior which can persist for a very long time.
localized perturbation depend only on the parity of the per- To understand this type of behavior we have proposed a
turbation and are independent from the chosen displacemeharmonic model for the breathing SLS. The original non-
pattern (or impulse patternof the particular perturbation. breathing SLS is well described by a monochromatic solu-

VIl. CONCLUSION
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FIG. 10. (a) Displacemeng), as a function of
L L L L time 7 obtained for the breathing SLS generated
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parity mode withy,=4 which is perturbed by an
even-parity perturbation if® space Initial con-
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tion with a constant displacement pattern. In this model thaies of the new frequencies are very close to those found in
presence of the nonlinear term in the equation of motiorour analytical model. They differ in the chosen examples by
causes an effective hardening of the springs, which is proless than 7% and are improved for ascending values of an-
portional to the squared amplitude of the displacements. ThRarmonicity y,.
dominant philosophy of our model rests on the concept that The results of our numerical simulations show that the
the SLS establishes an effective spring distribution for addiperturbed SLS has a breathing behavior and there is the ap-
tional small-amplitude localized motions of harmonic nature pearance of a new frequency in the Fourier transform of the
In our investigation we have considered the case of greafisplacement. Our harmonic model can explain the breathing
anharmonicity, where the SLS’s are strongly localized. Fohehavior as a superposition of the unperturbed SLS and of a
the even- and odd-parity SLS’s we have shown that the cofipcalized mode of the corresponding effective harmonic
responding effective harmonic chain gives rise to differentchain. The slow decay of the breathing SLS is explained by
localized modes with frequencies above the Debye frequency,eans of an external parametrical resonance with phonons.
and with different parlty The reSpeCtive localized mode with A more accurate ana|ysis of the considered breathing phe_
highest frequency), reproduces the displacement pattern ofnomenon can be obtained considering the system of linear

the SLS but it does not reproduce the correct frequency valugquations with periodic coefficients given by Eg2). This
Q of the SLS, since its calculation violates the presupposiywill be considered in the near future.

tion (€);<<2Q)) of our model. But there are two other modes,
one with opposite parity and another one with the same par-
ity as the SLS, which both have frequencies greater than the
Debye frequency and which satisfy the presupposition
0,<2Q. These modes can be viewed as internal degrees of In the early stages of this work we had the great pleasure
freedom of the SLS and can be excited if we perturb theof experiencing very fruitful discussions with Dr. Grischa
original SLS with, respectively, a small odd-parity perturba-Zavt from the Estonian Academy of Sciences, and we regret
tion or an even-parity perturbation. that due to his passing away such discussions will no longer

To check the validity of our model we have employed be possible. This work was partially supported by the Con-
numerical experiments. It has turned that the numerical valsiglio Nazionale delle Ricerche.
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