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Nucleation in disordered systems
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A theory of nucleation is proposed for materials with static disorder, such as glasses and doped crystals.
Such disorder makes the barriers to nucleatig¥) (different in different local regions of the system. We
develop an optimum fluctuation method, based on the Cahn-Hilliard approach, to find the probability distri-
bution of barriergg(W). The distribution reaches its maximum\&t= (W), determined by the average param-
eters of the system, and decays exponentially for Mgth(W) and W>(W). The particular shape af(W)
depends on the relationship between the distance over which the disorder is correlated and the radius of the
critical nucleus. In the steady-state regime the nucleation rate is determined by an optimum barrier
Wop=Wop( T) <(W) resulting from the competition between the exponential increase in the nucleation rate
exp(—WIKT) and the exponential decreasegWV). Associated withg(W) is also the probability distribution
of nucleation rate$= | jexp(—WIKT). Because of the latter, the nucleus concentration is nonlinear in time and
exhibits an S-shaped transient nucleati®0163-18206)03438-9

[. INTRODUCTION erage parameters governing the nucleation in a disordered
system are considered as given and the emphasis is on a

As is well known, nucleation of a second phase occurs vialescription of the fluctuation-induced effects.
appropriate fluctuations that allow the system to surmount That disorder influences the nucleation rate significantly
the thermodynamic barrier between the two phases. The flugan be concluded on experimental grounds. A large body of
tuation exhibits a critical nonuniformity that develops spon-data shows that adding a small concentration of impurities
taneously into a stable particle. The barrier to nucleatiorf@n change the second-phase nucleation rate in a crystal dra-
(W) is the minimum work needed to create this critical non-
uniformity. In the capillarity modér*the nonuniform region
is assumed to have a sharp boundary, and the barrier origi-
nates from the surface energy. Since the early Cahn-Hilliard
density functional approachmodern theoriegsee the re-
view in Ref. § are free of the postulate of a sharp boundary
but still consider critical fluctuations that are well localized
in space.

It is important that the original phase is assumed to be
homogeneous in the framework of the above approaches.
However, this assumption fails for some structures, such as
glasses, amorphous films, crystals containing imperfections,
or amorphous solids, which are inhomogeneous systems.
Thus, in doped crystals the local impurity concentration fluc-
tuates in space, while in amorphous solids the microscopic
atomic parameterévalence angles, bond lengths, gtituc-
tuate between different local regions. This is schematically
illustrated in Fig. 1. Associated with these fluctuations must
be local fluctuations in the parameters determining the bar-
rier to nucleation. Supposing that the original phase is inho-
mogeneous, these parameters will be random quantities char-
acterized by their average values and dispersions. The
standard nucleation theory applies only if the dispersions are
set to zero. This raises the question: What are the possible
deviations from standard nucleation theory results due to
fluctuations in material parameters?

It is worth noting that the average parameters of corre- G 1. The nucleation barrier varies between different local
sponding disordered and ordered systems are different. Thiggions.(a) In the case of doped crystals the barriers are different in
difference has nothing to do with the above question and cathe regions depicted because of space fluctuations in impurity con-
be taken into account by renormalizing the parameters in thgentration.(b) In the case of amorphous solids local fluctuations in
standard nucleation theory without making allowance for lo-microscopic structural parameters make crystal nucleation barriers
cal fluctuations in those parameters. In what follows the avdifferent in the two regions separated by the dashed line.
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matically, causing it to increase or to decrease by many or- -
ders of magnitude depending on which element is ada¥d. \ VAN
This effect was qualitatively attributed to the change in the ‘\ / \
diffusion coefficients of alloying elements and/or in the en- ‘\

ergy of the boundary between a precipitate and matrix. Al-

though the possibility of changing the nucleation by means

of small dopings has already found practical uses, the under-
lying mechanisms remain unexplored. Another case in which
small dopings are known to affect structural transformations

drastically is the nucleation of vacancy voids in materials

subjected to radiatioh:

Not less puzzling are the experimental results on crystal
nucleation in glassegboth nonmetallic and metallicand
amorphous films. The crystallization can be either polymor-
phic (without a change in chemical composition, such as

crystal nucleation in chalcogenide glasses nonpolymor- distribution for nucleation barriergp(W), and partial nucleation

phic [such as crystal nucleation {&iO,),(Li ,0);_, glasg. : .
The conclusion has been drawn that the steady-state crys@tzmgéﬁ&%gm_me optimum barrieto,(T) corresponds
nucleation rates calculated by theory are many orders of
magnitude smaller than the experimental vatée<in inor-  to add an additional molecule. That is why the nucleation
ganic glasses. Even though the theory is consistent with theates are expected to be different in different local regions of
observed temperature dependences of nucleation rates, tAglisordered materia{Note that the above arguments do not
corresponding absolute values are in some cases 20 ordersaply to nucleation in flexible, liquidlike systems where fluc-
magnitude smaller than the measured quantities. Besides, tHéations are short-liveyl. ' '
nucleation rates in glasses are nonmonotonic in time, and the Two_the_ore_t|ca| papers _have been published regarding
nucleus concentration exhibits an S shape. Note that crysticleation in disordered solids. Harrowell and OxtBhon-
nucleation in glasses has also found practical applications. [Hdered nucleation in glasses and incorporated a phenomeno-
particular, it is used to create I-VIl or II-VI semiconductor pg|qal concept of local nuclgatlon times and their d|§tr|bu-
microerysias [sey, Cobr and GBSe i msuaing 1971305 Altouah esien o he coseof e sl
glasses. . These composites containing “quantum dots to qualitatively explain the major deviations of nucleation
are materials of great promise in modern electronics.

Itis th ; £ thi K 10 di th | fkinetics in glasses from that in homogeneous systems.
IS th€ main purpose of this work 1o dISCUSS e role o KarpoV?® considered the effect of disorder on nucleation in

! e _ fie capillarity approximation, which is ill controllable as ap-
some local favorable inhomogeneities in randomly d'sor'plied to the problem. In particular, while the ideas of the

dered media, which effectively decrease the thermodynamigrobability distribution of nucleation barriers and of an opti-
nucleation barrier and thus increase nucleation rates expenum barrier put forward in Ref. 25 are adequate and are
nentially. We find the probability distribution for the nucle- retained in what follows, these ideas were implemented in
ation barriers in a randomly disordered system and use th@&ef, 25 by considerindrather arbitrarily a layer-by-layer
distribution to calculate both the effective steady-state nuclenucleus growth in a random matrix. Such uncontrolled use of
ation rate and nucleus concentration as a function of timethe capillarity approximation led to a distribution function
The results will be shown to depend both on the correlatiorthat differs from that found in the present work by means of
range of the disorder and on its amplitude. a consistent density-functional approach.

In its simple form our idea is illustrated in Fig. 2. Despite  In this paper the Cahn-Hilliard approach to nucleation is
a rapid(exponential decrease in the barrier probability dis- €xtended to the case of disordered media. To allow for static
tribution in the region of small barriers, this region is still fluctuations we consider the free energy density to be a ran-
very important since the probability of nucleation increasegiom function of coordinate. The barrier to nucleation will
exponentially as the barrier decreases. The competition dhen be_ a fUthl_Ona_I of the random funpnon. To describe the
the above exponential factors results in an optimum barrieProPability distribution for such a functional we use the ap-
W, that combines a relatively high nucleation rate with aProach known as the optimum fluctuation method in the
not extremelly small probability of its realization and thustheory of disordered systems, where it enables one to de-

provides the maximum partial nucleation rate. Because thi§Crlbe the density of states in band tails. We extend that

barrier is smaller than the average one and because it d81€thod to the problem of phase transitions in random media

pends on temperature, the observed nucleation rate will b%nd find the nucleation barrier distribution function for the
exponentially larger thE;ln the one corresponding to the avelJlmltlng cases of uncorrelated. and strongly.correlated Q|sor-
age barrier and predicted by classical nucleation theory anger.'We then use that fungtlon to determine the optimum
will have different temperature dependence. arrier corresponding to a given temperature and to calculate
Note that the above examples imply that the nucleatiorjfhe hucleus concentration as a function of time.

occurs via the diffusion of some mobile component below
the melting point of a matrix. In this sense the fluctuations
dealt with below are of a static nature: Their lifetimes are The optimum fluctuation method has been developed by
much longer than the characteristic time needed for a nucleusifshitz,?® Halperin and Lax¥/ and Zittarz and Langé to

PROBABILITIES
/””’
'~

BARRIER TO NUCLEATION

FIG. 2. Probability of nucleationl«<exp(—W/KT), probability

II. OPTIMUM FLUCTUATION METHOD
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calculate electron band tails in disordered systéragiews parameters. In the absence of spatial correlations the prob-
are given in Refs. 29 and R0a problem that has much in ability of finding a fluctuationsc in the region of the volume
common with that under consideration here. In the problenR® is given by Gaussian statistics,

of band tails it is assumed that the electron is in a random

potential caused by randomly distributed impurity atoms or

structural disorder in a semiconductor. Some local configu- P(éc)~exp—
rations of the disorder cause fluctuation potential wells

strong enough to localize the electron. Because of that, loprovided that the average number of impurity atoms in the
calized state tails appear in the mobility gap of a semiconfluctuation is large. The most probable, optimum, fluctuation
ductor. The deeper the state in the mobility gap, the strongetorresponds to the minimum of the exponé&hin Eq. (2).
must be the corresponding fluctuation. Since the probabilityThis minimum must be found with respectdo andR under

of a fluctuation decreases exponentially with its strength, thein additional condition that they satisfy Hd). On express-
density of states in a band tail decays exponentially with théng sc from Eq. (1) the exponent to optimize becomes
energy E measured from the mobility edgeg(E)

(8c)’R3

T =exp—9), (2

=geexd —SE)]. The optimum fluctuation method was used (6W)?

to calculate the expone®&(E) and thus to establish the prob- S= m-

ability distribution for the functionakE containing a random

function. From this we see that the barrier statistics is Gausssian and

It was assumed in the framework of the method that ahat the optimum fluctuation, if any, is characterized its ra-
state of any given energy is dominated by a correspondingius and amplitude
particular shape of the potential fluctuation, and that large
deviations from this shape are unlikely to occur. The reason-
ing behind this assumption is that fluctuations much stronger R=— 3a. and oJc=
than the optimal one are unlikely because the probability of a !
fluctuation decreases exponentially with an increase imithough the above example illustrates the optimum fluctua-
Strength; on the other hand, fluctuations much narrower thaﬂon method’ the Sharp boundary approximation we used re-
the optimal one become unIiker because it is then difﬁCUltmains ill controlled. This approximation is known to app|y
to overcome the kinetic energy resulting from localization.near the binodal, which is a particular case among those
Optimum fluctuations are believed to give the main contri-considered below.
bution to the density of states. To implement the above idea we use the Cahn-Hilliard
Much as in the band-tail problem, we assume in Whatapproach, with the free energy functional
follows that the nucleation barrier of any given energy in a
disordered system is dominated by a corresponding optimum
shape of a disorder fluctuation. Fluctuations much stronger F=f [p(c)+«(Vc)?]dr, (©)]
than the optimal one are unlikely because the probability of a
fluctuation decreases exponentially with an increase iWwherex is a constant and is the local change in the free
strength; fluctuations much narrower than the optimal onenergy density due to the deviatiofr) of the order param-
become unlikely because it is then difficult to overcome th%tern(r) from its average valuén). Although the parameter
surface free energy resulting from the nucleation. n stands for the solute concentration in the original Cahn-
In fact, the problem of nucleation in disordered systemsHilliard work,® its meaning can be extended. For the case of
fits the optimum fluctuation method even better than thecrystallizationn can be understood as a material den$ity.

original band-tail problem. The electronic states in the neapoth cases the conservation of material law implies
proximity of the gap edge have very large radii and thus

overlap. Since the optimum fluctuation method is restricted
to an isolatednonoverlappingfluctuation, it does not cover f c(r)dr=0. (4)
the range of energies near the band edges. In contrast, the
nucleation process never ends up with enough of the seconthe changap can be expressed as
phase to make nuclei overlap, and thus the optimum fluctua-
tion concept is applicable without restriction. af((n))
To illustrate the approach we are going to implement, let p=F((n)+c)—f((n))— a(my c, 5)
us for simplicity consider the capillarity model and assume
that its parameters depend linearly on some impurity concenghere f(n) is the free energy density corresponding to the
tration ¢ that fluctuates in space. In the spirit of the sharpgrger parameten and the last term on the right-hand side
boundary approximation we consider a uniform sphericahccounts for the conservation condition in E4).

a,R>+a,R?”

fluctuation of amplitudesc and radiusR within a nucleuga In accordance with Cahn-Hilliard, an initially unstable
kind of “impurity nucleus” embedded in the original ope  fjyctuationc(r) grows into a stable one by overcoming a free
This will change the nucleus energy by energy barrier, the top of which is a saddle point, and the

fluctuation becomes a critical nucleus at that point. Since the
system is in(unstablé equilibrium at a saddle point, the free
where the first and second terms represent the bulk and irenergyF in Eq. (3) must be stationary; that is, its variational
terface contributions, repectively, aagd anda, are material ~derivative must be zero:

SW=a,cR®+a,dcR?, )
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SF with dispersion
5 =0 (6)
The corresponding barrier to nucleation is UE<u2>:f j drdr’A(r=r")dale(r)] sl c(r)].
11
W= F[(;SO]Ef [ o+ k(VCo)?]dr, (7)  Here the kerneh is the pair correlation function of the dis-

order,

wherecy(r) and ¢po= ¢(cy) are determined by Ed6).

Because of static fluctuations of material parameters in a A(r=r")=(&ré&r").
disordered system, in E¢3) the functioné(c) and the pa-  As long as Gaussian statistics applies, this function is the
rameterx will change between different local regions. To a gnly characteristic of the disorder. Note that Ejl) implies
first approximation one can neglect the fluctuations.iffhe  the averaging to be taken over the disorder configurations at
reasoning behind this approximation is that in the vicinity of3 given (although not specifiedfunction ¢,(r) whose par-
a phase transition the functigp(c) has a certain shape and tjcular optimum shape must be determined in what follows.
even small deviations from that shape may affect the transia second limiting caséPoisson statistigsis considered in
tion significantly. In contrast, small variations i would  Sec. |V below.
cause a correspondingly small effect. The most probable fluctuation corresponds to the mini-

To describe the effect of fluctuations on the functionmum of the exponent in Eq10), that is,
¢(c) we note that the shape of the latter is known to depend
on material parameters, sdy, that are normally considered 8S 6S
fixed while the order parameteris allowed to change. As an T
example, we mention the Landau-Ginzburg approximation ) ) . o
[see also Eq(23) below] for which & are represented by the The Igtter equatl_ons determine a cond|t|0nal minimum of the
three coefficients at2, ¢3, andc®. In their turn, the param- functionalS provided that the free enerdy in Eq. (9) is an
etersé; depend on temperature, pressure, deformations, etgxtremum, in accordance with the Cahn-Hilliard approach.
It is then natural to consider these parameters random quafPtimizing the probability exponerg under the additional
tities varying between different local regions that posses§ondition 5F=0 is tantamount to finding the absolute extre-
different structures in a random system. We thus considefum of the functional

&=¢&,(r) to be random functions of coordinates. We recall 2
that a phase transition is described by a qualitative change in H= il +\F, (12)
the shape ofp(c) (say, from a single-well to a double-well 20

shape. This change is typically achieved by small variations
in only one(critical) parameter of the s&t, while all others
are considered constafguch as the coefficient af in the

where\ is the undetermined Lagrange multiplier. Optimiz-
ing ® overu andc gives, respectively,

Landau-Ginzburg theojyWith that in mind, we assume that U=—\o (13
fluctuations of only one of the parametefsis of impor-
tance. In this one-parameter approximation we put and

L HO=OFEN ), ® —ZKV%U)+Z¢U)—ALfdWAU—rU¢ﬂW)%fﬂ”
where ¢ stands for the functio(c) averaged over all pos- c(n c(r)
sible realizations and&=£(r) is a random quantity. The =0. (14

above is the simplest conceivable choice of free energy den- . ) ) )
sity that contains only one random parameter. The solution of Eq(14) determines the optimum fluctuation

Substituting Eq(8) into Eq. (3) gives Co(r). Note that Eq.(14) can be equally represented in the
form §J=0 with the functional

= H(c) K 2 #(c)
F f[¢(0)+ (Ve)Jdr+u, ©) J:j dr{K(VC)2+¢(C)

with

2

=5 | dr'A(r=r")¢ic(r)]eilc(r)], (19
u:fammmmwr 2

. , o o which is convenient to use for the direct variational proce-
b_elng_a ra_mdom guantity. One I|m|t|ng_ case to cons_lder is th@jre. The Lagrange multiplier is determined from the con-
situation in which the random quantity in Eq. (9) is the  ition for the nucleation barrier height,

sum of a large humber of random contributions and, in ac-

cordance with the central limit theorem, obeys Gaussian sta- , —
tistics, WZJ dry k(Vco)“+ é(co)

2
p(U)=eXF<—:—U)EeXp(—S), (10 —Afdr’A(r—r’)¢1[co(r)]¢1[co(r’)] . (18
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Oncecy(r) and\ have been determined, the probability ex- #(C)= ac?+ Bc3+ yct, (23)

ponent is given by _ _
which allows for the existence of more than one stable phase.

The condition that the two phases have the same energies is

B=—-2\ay, «a>0, y>0. (29
To describe the difference between the phases one can put

)\2
S 7] drdr' At —r") galco(N 1dalCo(r)]. (A7)

Given particular shapes @&f(r), ¢(c), and¢,(c), Eqs.(14),
(16), and(17) enable one to determine the probability distri-

bution —2Jay<pB<0.
Near the spinodal the approximation in E@3) repre-
p(W)=poexd —S(W)] (18  sents the first two nonvanishing terms of a Taylor series if
and thus obtain the solution to the problem under consider\{ve put
ation. y=0, B<0, and a=-3csB, (25)

Some conclusions can be drawn for the range of small ] .
deviations [W—(W)|<(W) without specifying the above Wherecs(=ns—(n)) is the difference between the order pa-
shapes. Since the first-order correction to a functional corre@meter at the spinodal and its actual average value.

sponds to the zeroth-order approximation for the functions in  On the other hand, near the binodal, where the two phases
its integrand, we get from Eq16) have almost the same free energies, the capillarity approxi-

mation is applicabfeand gives

W—<W>=—7\f drdr’A(r—r") e[ co(r)]dalco(r’)], 20 41
R=R,=—— and W=W,=—0oR? (26)
(19 MuCh 3

wherecy(r) is the optimum order parameter fluctuation in wherec,(=ny—(n)) is the difference between the order pa-
the uniform medium(at A=0) given by the standard Cahn- rameter at the binodal and its actual average valuis the
Hilliard theory. Substituting the latter into E¢L7) leads to  surface tension, and is a constant determined by the prop-
Gaussian statistics for the nucleation barrier height: erties of the second phase. The capillarity approximation will
be used to describe the barrier fluctuations near the binodal.

S(W) = (W—(W))? (20) The most delicate point of the above approach is the as-
2A ' sumption of Gaussian statistics for the random functional in
) . Eq. (10). This applies when the fluctuation in energy is de-
where the dispersion is termined by a large number of random contributions. In

L glasses and noncrystalline films where the structural param-

Azzf dr'drA(r—r')¢4[co(r)]dilco(r)]. (21)  eters fluctuate in each elemental cell and the critical nucleus
typically contains many cells the above is certainly the case.

The latter integral can be estimated as the square of the chdror doped crystals, Gaussian statistics is applicable only if
acteristic free energy fluctuation in the nucleus volume. It ishe average number of impurity atoms in the critical nucleus
independent of W) and can be very smaIIA<<W)2. In is considerably greater than unity. This takes place in the

particular, there is a range of values fé over which important limiting cases of nucleation near the spinodal or
the binodal, where the critical radius turns out to be large.
\/K<|W—<W)|<W, However, the nucleus radius may not be very large for the

in which th tin E@O) i hi th case of second-phase nucleation in crystals with small impu-
In which case the exponent in | (0 IS much ‘arger than rity concentration so that the average number of impurity
unity, in spite of the fact that it de_scrlbes relatively Sma”atoms in a nucleus is less than or of the order of unity. In this
dgwatmnt?] ftront1h thebavgraged_b?rge;. It f(f)llow§ frovn\1/ the case the above equations are not valid, although the idea of
above a € Dbamer distribution unctiorp(W) ._optimum fluctuations may still survive. This latter case will
= poex —W)] reaches its maximum at the average barriefye gnay7ed separately in Sec. IV below.
SW> .an n t.hﬁ proximity of the ”f‘lax'm“m IS fahGau55|anf We end this section with a remark concerning possible

istribution with root-mean-square fluctuation of the order of, o ;ations of another energy parameter of phase transitions
the characteristic free energy fluctuation in the nucleus voly, o tems with static disorder. Because of the fluctuations in
ume. hing is k b he f f the “i ., structural material parameters, the free energies of the two
. Nothing is _novr\]/n about } e form of the “interaction”  gap|e (metastable phases will fluctuate from one local re-
unction ¢,(c) in the general case. In the absence of moreyio 1o another in a disordered system. The characteristic
specific information we take the simplest conceivable form i oqal and spinodal lines, on the phase diagr@mthe

by(c)=c2 22) “temperature—order-parameter” planehen transform into
1 ' regions of finite widths. Fluctuations in free energies of the
corresponding to the first nonvanishing term in the expansiotwo phases are described by the same probability distribu-
of ¢4(c) (the linear term in the expansion disappears wheriions as that derived above for the barrier height. Indeed, the
integrated over space because of particle number conservanderlying Eqs(3), (6), and(7) remain the same for both the
tion). minima and the maximum of the effective double-well po-
For the average change in free energy density we shall ugential representing the energy diagram of a first-order phase
the phenomenological Landau-Ginzburg approximation transition. We shall see in what follows that in some inter-
p g g app
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vals near the binodal and spinodal the fluctuations in barriesquare barrier fluctuations \JA and taking into account the
height are comparable to its average value. These same iRormalization conditiorf p(W)dW=1, we getpy~ 1//A.
tervals determine the width of the binodal and spinodal

smearing in the phase diagram. A. Uncorrelated disorder

For the case of uncorrelated disorder, substituting Eqgs.
(22) and (27) into Egs.(14), (15), (16), and(17) gives, re-
spectively,

In some cases, such as that of noninteracting frozen im-
purity atoms in a crystal, the disorder is uncorrelated while in —«kV?c+act 3 Bc®+(2y—NA)C=0, (29
other cases there may be some correlation between fluctua-
tions in different elemental cells of a material. As an ex-
ample of correlated disorder we mention the medium-range
order observed in a variety of glasses by means of neutron
and x-ray scattering:~3* Medium-range order implies that
the arrangements of structural units in a glass are not com-
pletely random but have correlations on a scalelarger

Ill. UNCORRELATED AND STRONGLY CORRELATED
DISORDER

J=jdr{K(VC)2+acz+,8C3+(7—)\A1/2)C4}, (30

W=fdr{K(Vc)2+ac2+ﬁc3+(y—7\A1)C4}, (31

than the characteristic interatomic lengtktypically, and
re~10-30 A). \2A,
The existence of this characteristic correlation range S= 5 f drc?. (32
means that the correlation functig®(r) is a maximum at
r=0 and decreases rapidlpresumably exponentiallyfor As has been noted in Sec. Il above, the barrier probability

r>r.. Two limiting cases are independent of the particulargistripution is Gaussian when the disorder is small. Particular

shape ofA(r). The first is uncorrelated disorder for which expressions for the dispersion of the Gaussian distribution
the correlation range is small compared to the characteristigre given below.

nuclear radiuR. In that case we may take
1. Phenomenological description

In accordance with Eq(24) we put|8|<2yay in Eq.
where §(r) is the Dirac delta function. In the opposite lim- (29). As long as the term proportional 1 is close to that

A(r)=A;8(r) for r.<R, (27

iting case of strongly correlated disorder we may take given in Eq.(24), one can reduce E@29) to dimensionless
form by choosing the characteristic amplitude and radius of
A(r)=constA, for r>R. (28)  nucleation to be, respectively,
The two parameterd, andA, are related b>A1~A2r§ a P
Equations(27) and (28) imply that the disorder is isotro- c= Zy—A; and R=1/—. (33

pic, and so the optimum fluctuations are expected to be

spherically symmetric. This suggestion about the symmetryrhen, the barrier to nucleation can be estimated as
of the optimal fluctuation is the usual one for the optimum 32 1o
fluctuation method. It is understood in this context that, al- W= K@ (57_3)\A1
though a pure symmetric fluctuation rarely appears in a ran- 2y—ANAL\ 2y—NA,
dom system, small deviations from the symmetric shape pro- . . . . L
duce only small corrections to the equations for the optimunio within a numerical factor. The Iatter_equatlon simplifies
symmetric fluctuation[Egs. (14), (15), (16), and (17)]. or both |_)‘A1|<7 and_|)\A1|_>y. Qn solving for_)\ Into Eg.
Hence, these equations remain approximately valid when aég’z) we find a Gaussian distributidiEq. (20)] with disper-

plied to slightly asymmetric fluctuations, which have a non->!

zero phase volume and thus appear in a random system with A (W)2
nonzero probability. The problem of describing such slightly A= ﬁllm (34
a K

asymmetric fluctuations in the proximity of the optimal one,

however, appears in calculating the preexponential factor iyhich changes by 20% between the cases of small and not

Eq. (18 which represents the effective phase volume. Al-small|W— (W)|/(W). If a is small enoughinear the critical
though the standard optimum fluctuation method enables ongyint),

to calculate the preexponential as well, and the same can be
extended to the problem under consideration, we do not do a<A?/«8,
so in the present work. The reason is that the probability , o ) .
function p(W) typically enters physical quantities in combi- the d|sper§|on in barriers becomes comparable with the av-
nation with the nucleation exponential exp/kT). The lat-  €rage barrier.
ter dominates any preexponential power dependence, and
will only compete with the probability expone®(W).

Rather than calculate the preexponenigl we give a In the absence of disorder near the spindéaj. (25)] the
simple order-of-magnitude estimate. Supposing the charagnaximum concentration in the center of a nucleus is krfown
teristic energy decay scale of the expon®fitv) (root-mean- to be of the order ofs. Therefore the last terrfihe one due

2. Properties near the spinodal
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to disordey in Eqg. (29) can be neglected provided that
|NA1|<<Blcg. With that, Eq.(29) reduces to a dimensionless
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3

A AR, (39)

form by choosing the characteristic nuclear radius and am-

plitude as

R (35)

K d _
V,B_C an C=Cs.

S

Correspondingly, the integral in Eq32) is estimated as
Jctdr=c*R3= («/B)¥%c? andW— (W) =\A, fc*dr. From
that we get Gaussian statisti€&W)=(W—(W))?/A with
dispersion

32
ﬁ) ( Cs) 5/2

(to within a numerical multiplier It follows then that the
characteristic width of the peak in the barrier distribution,
JAocc¥, decreases witlt, more slowly than the average
barrier (W)~ ac?R3x<c3?. Since the underlying inequality
INA|< Blcs is valid provided thatfW—(W)| <(W), we can
assert that, in the close proximity of the spinodal,

AmAl( (36)

Al 2/5
<W>2) ’
the disorder makes the barrier to nucleation a random qua

tity dispersed in a wide bandA ~(W). Note that as long as
R— with c,—0, the above nucleation barrier fluctuations

Ce=<

in the close proximity of the spinodal do correspond to the

case of uncorrelated disorder.

3. Properties near the binodal

Following the results in Ref. 5 we use the capillarity ap-
proximation in which the order parameter changes abruptl
and the concept of surface free energy applies. Therefore, t
functions in the integrands of the functiondlsW, andS are
considered as constants and the gradient teim¢(Vc)? is
estimated as #R2c, whereR is the nucleus radius and is
the surface free energy per unit area. Hence, for the case
uncorrelated disorder

P 47R3 AAc?

=47R0o 3 mt 2 )
3

W=47R%¢— (m+NACY),

2mN°Ac*R3
S=———.

3 (37

Optimizing J with respect toR and substitutingR into
W(R) gives

Re
1+ NACH2u’

1—-NACY2u

i RECES VS

(38)
whereR. andW, are given in Eq(26). For the case of small
disorder ({W)—W|<(W)) Eq. (37) leads to Gaussian sta-
tistics with dispersion

Note that although the dispersion diverges viRth— (near
the binodal, the corresponding root-mean-square fluctuation
is proportional toR>?, while the average barridW)=R2.
Therefore the nucleation barrier fluctuations become rela-
tively small near the binodal. For both the cases of small and
largeW/W,, the statistics is not Gaussian and the distribution

is asymmetric with respect to the average barrier.

B. Strongly correlated disorder

For the case of strongly correlated disorder E(st),
(15), (16), and(17) become

3
—KV20+(a—)\A2f drc2>c+§/8c2+2yc3=0, (40)

A
a—Tzf drc?

sz dl’[K(VC)Z-i-

c?+ Bcd+ 704] ,
(41)

W:f dr:K(Vc)er(a—)\Azf drcz>c2+ﬂc3+ yc“],
(42

n-

and

A2ZA,

5=

(43

[’

1. Phenomenological description

Based on Eq(23) one can proceed along the same lines
s for the case of uncorrelated disorder in Sec. llIA1 above.
miting all the routine details we note that this again leads to
aussian statistics with dispersion

_ A2<W>2a

K3

A (49

of
As opposed to the case of uncorrelated disoféey. (34)],
this dispersion goes to zero as-~0 (near the critical point
The average barrier decreaseg\a8 « «*2 and thus the rela-
tive root-mean-square fluctuation remains finite with ap-
proach to the critical point in this regime.

2. Properties near the spinodal

Putting into Eqs(41), (42), and(43) the parameters de-
termined in Egs(25) and(35) for the case of small disorder
(IW—(W)|<W) leads to Gaussian statistics with dispersion

A2K3CS
= 5
As in the case of uncorrelated disorder the width of the dis-

tribution A decreases withs more slowly than the average
barrier(W) does. Close to the spinodal, at

VA,

-

SNB’

(45)
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the root-mean-square fluctuatiqih becomes comparable to which is based on a continuity approximation that leads to
the average barrier. Meanwhile, it should be remembereihtegro-differential equations. Aimed at treating the problem
that the regime of correlated disorder is restricted to the reanalytically and extending the optimum fluctuation method
gion cs=k/(Br?2) corresponding to the conditidR<r.. to the case of phase transitions, the present paper does not

3. Properties near the binodal

Employing the capillarity approximation for the case of
strongly correlated disorder givém place of Eqs(37)]

,  4mR%u \A,(47Rc)\?
J=47Rl0— ————~| —3 : (46)
,  ATRu 4mR3c)?
W=47R%0— 3 —\A, 3 , (47

8m\2A,c*R®
= (48)

9
For the case of small fluctuationdV—(W)|<(W) the

Gaussian distribution has dispersion

.

47 2

3

A

R3¢, (49

We note that, as opposed to the case of uncorrelated disorder,

the mean-square fluctuatiof'§ «R?) diverges near the bin-
odal more strongly than the average barrieNcécRg).

Therefore in the regime of strongly correlated disorder the
characteristic fluctuation in the nucleation barrier exceeds its

average value near the binoda should be remembered,
however, that this regime is restricted to the cRser. and
thus inevitably fails in the nearest proximity of the bingdal

Beyond the region of small fluctuations the barrier distribu-

tion is asymmetric and not Gaussian.

IV. NON-GAUSSIAN FLUCTUATIONS

cover that alternative case.

Assuming that the interaction with impurities has the form
suggested in Sec. ll, the free energy functional will take the
form [cf. Eq. (9)]

F=f [p(c)+ k(Vc)?—Eme,]dr, (51)
where ¢ is a coupling parameter and we consider the case
£>0 in which the barrier to nucleation is decreased due to
impurities. Proceeding along the same lines as in Sec. Il we
optimize the functional

O =S+\F,

where\ is the undetermined Lagrange multiplier. This leads
to the equations

m=(m)(e**1—1), (5239

0p by
—2kV%c+ %—fmz—o. (52b
w=f dr[x(VC)2+ ¢— Emepy ], (520
S=(m>J dr[eM1(N¢p,—1)+1]. (520

It follows from the above equations that the capillarity
approximation is suitable for fluctuations that differ consid-
erably from Gaussian ones. The reasoning behind this state-
ment is that assuming the opposite is tfthat is,m(r) and

As has been mentioned at the end of Sec. Il, the disordes(r) are slowly varying functions of coordinatesill lead to
cannot be considered Gaussian for the case of nuclei that contradiction. Indeed, the average number of impurity at-
contain on average less than or of the order of one impurityms per nucleus is small, while the number of impurity at-
atom. To tackle the latter problem we use Poisson statisticams in optimum nuclei is taken to be larger than unity. Since

which leads to the following expressitir°for the logarithm
of the probability(entropy of a given impurity concentration
fluctuationm(r):

(m)

(m)+m(r)

(50
where(m) is the average impurity concentration. The latter

S= —f dr([(m)er(r)]ln

reduces to Gaussian statistics for the case of small fluctus

tions m<(mj.

Note that taken am(r) the impurity concentration in Eq.
(50) implies the number of impurity atoms in an optimum
nucleus to be considerably larger than unity in spite of th
fact that the average numbém) is small. Therefore we

e

m>(m), it follows from Eg. (523 that the exponential
exp¢,) is large. If c(r) is a slowly varying function of
coordinates, then in accordance with the inequality
exp(\@;)>1 and with Eq.(52a, m(r) will change in space
much more drastically thamr(r). Because the functions
m(r) andc(r) have exponentially different coordinate de-
pendences, Eq52b) cannot be satisfied. To get around this
contradiction we have to assume that both the order param-
terc(r) and the impurity concentratiom(r) are not slowly
varying smooth functions. We may assume instead that these
functions are almost constant in some region and simulta-
neously decrease at the boundary of that region. This picture
corresponds to the capillarity approximation.

In the capillarity approximation we get

consider very strong fluctuations causing the barriers far in

the tail of probability distributions. Although the alternative J=47R%0— —WR?’(M—)\*lg(m)e}“ﬁl), (539
conceivable case of non-Gaussian fluctuations with a small 3

number of impurities in an optimum nucleus seems to be 4

realistic, this case cannot be described analytically in the _ 2 T 5 Neby
framework of the standard optimum fluctuation method, W=4mR"o 3 RE(u= ag(me ™), (530
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4 f(t)=1—exp(—t/7), 58
S= 5 R(MA e, (539 (= 1mew=1/n 8
3 wherer is the characteristic induction time. As derived in the

where ¢, is a constant inside the nucleus whose value idramework of the classic nucleation thedry® the explicit

determined by the properties of the nucleated phase. In tH@™M Of f(1) is

limiting case of strong deviations from Gaussian statistics, at

N ¢>1, the correction due to disorder in E&38 is much f(t):exp{ —exp{ -2
smaller than the one in E¢53b). As a result the probability

exponent becomes

t—:g7'> , (59

with
S(W) = <W>_W|n< . ) (54 Ng=9 =1+In[3(1—-g /€],
£ §1R¥ (M) : . .
whereg is the number of molecules in the critical nucleus,
V. NUCLEATION RATE _( 92 aZF) -12
Since the barrier to nucleation is a random quantity char- L kT EZ '

acterized by its probability distribution function(W), the

X and with the induction time
steady-state nucleation rate

9262

™25

w

[{(W)=1 Oexp( - ﬁ) (55
hereD is the rate of collisions between monomers and a
-mer. Unfortunately, the results fdi(t) in Eq. (59) are
estricted to classical nucleation theory and it is not clear
ow they can be extended to the density functional model
nderlying the present approach. Yet, since the problem of
transient nucleation in the density functional approach as
such is beyond the scope of this work, we shall employ the
above equation&8) and(59). An important qualitative fea-
ture of f(t) is that its parameters and\ 4 do not depend on
the nucleation barrier exponentially, as does the nucleation
rate. It is therefore possible to neglect fluctuation$(it) as

also becomes a random quantity. If we divide the materia
into a set of local regions, the nucleation rates will vary
exponentially between these regions. In what follows we firs
consider the kinetics of nucleation in the subset of region%
characterized by a given ratg and then average the results
over different regions.

Letting n, be the fraction of nucleated regions character-
ized by the ratd, the nucleation kinetics will be described
by the equation

dn, X
— =1V, f(t)(1—n)), (56) ~ compared to those ih
dt To obtain the number of nuclei as a function of time we
whose solution is average the result in Eq57) over the disorder configura-
tions,
t
—1_ _ t
n|—1 ex% |V|f0f(t)dt . (57) N(t)ZVFIJ de(W){l_eX%_I(W)VIJ f(t’)dt’}],
0
Here f(t) describes the transient nucleation regime during (60)

which the nucleation rate changes from zero to its steadypith the barrier probability distributiom(W) given in the
state valud (that is, 0<f<1) andV, is the minimum vol-  previous sections. Since the exponent in the integrand in Eq.
ume required to create a nucleus at the datdhe latter  (g() is in turn the exponential diV, it is convenient to inte-

volume can be estimated asrR%3, whereR is the charac-  grate over the variable rather tharw. Its probability distri-
teristic nucleus radius corresponding to the rat®/e note  pytion function is

that, since the nucleation rate depends on the nucleus param-
eters, such aR, exponentially, bottR andV, are logarith- dw
mically weak functions ol . In the first approximation one l//(|)=P[W(|)]‘ ar
can neglect the dependentg=V(l) as compared to the
multiplier 1. Another point to note is that the multiplier kT
1—n, in Eq. (56) describes the effect of saturation arising ~ exp{— S[kTIn(lo/D)]+In(lo/1)}. (61
from the dwindling of local regions corresponding to the rate IO‘/K
| This multiplier describes the saturation in the mean-fieldrhen Eq.(60) becomes
approximation, neglecting the possibility of fluctuations that
are free from nuclei and thus determine the nucleation rate at t
the late stage of nucleation. Because of the latter remarks, N(t):Vflf lﬁ(')[ 1—eXF{—|V|f f(t')dt’HdL
our consideration of late stage nucleation in what follows can 0 62)
serve at best as a rough approximation.

In some approach&sf(t) has been phenomenologically The effective nucleation rate measured in experiments can be
assumed to have a shape expressed as




_dN_ t ! ’
Ieﬁ:m_f(t)f ¢/;(I)Iexr{—IV,J0f(t )dt }dl.
(63)

In order to analyze the physical quantitidét) andl o it

is worth noting some properties of the probability distribu-

tion (1) that appears in Eq$62) and(63). As long as the
barrier distribution is GaussialEq. (20)] (near its maxi-
mum, at leagt we can reduce)(l) to log-normal form

kT (kT)? (I)Z A
¢(I)~Im—\/Kex —Tlnm —W .

(64)
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N

N(B), 14(t) (arb. units)

N

10

1000 1t

Fluctuations in nucleation barriers are important provided

that the characteristic width of the barrier distribution is

large,

JA>KT.

The latter inequality is assumed to hold in what follows and

FIG. 3. Nucleus concentratioN and effective nucleation rate
| .= dN/dt depending on the dimensionless timg,, wherel ,, is
the most probable nucleation rate. These curves are obtained by
numerical integration with the parameters eX)E30, |,Ting
=0.005, and KT)?/2A=0.1.

will be justified in the next section where we estimate the \ye are now in a position to describe the nucleation kinet-

parameters of the theory. Since the rati(kT)? is in the

ics. As is seen from EQs62) and (63), the dependence

exponent, the above inequality does not have to be strong ify(t) s superlinear it at smallt<r and saturates at long
order for the effects of static disorder to be important. The;mes such that! }t>1. In other wordsN(t) has an S shape

distribution (1) is a maximum at the nucleation rate

Im: Ioexp{ -

which is smaller than the nucleation rate

(W) A
kT (kT)2

: (65

L ((W)) =1 oexp( —(W)/KT)

as is shown in Fig. 3. For the sake of definiteness and be-
cause it is of primary interest for experimental studies of
nucleation, we restrict ourselves to considering the quasilin-
ear region ofN(t) for which the time of experiment is con-
siderable longer than but still far from saturation. Because
of the latter condition one can set exponentials to unity in the
integrands of Eqs(62) and (63), while the conditiont> 7
enables one to put=1. With that we get simply

corresponding to the average barrier. One can also calculate

the average nucleation rate

w8
kKT ~ 2(kT)?|
which is exponentially larger than botf{W)) andl,. Note

that the expression fdt ) corresponds to the optimum nucle-
ation barrier

(I)zfoww(l)ldlzloex;{—

A
Wopt: <W> kT (67)

which arises from the competition of two exponential fac-

ler=(1),

where (I) is given by Eg.(66). Note that the disorder
changes both the absolute value and the temperature depen-
dence of the nucleation exponent. The numerical estimate in
Sec. VI below shows that this change may not be small and
may be comparable to the exponent itself.

To be more precise we should examine the position of
inflection pointt; in the S shape ofi(t) that corresponds to
the maximum inlu(t). In order to determing; we first
equate the derivatiodl;/dt to zero and then set the expo-
nential in the corresponding integrands close to the unity.
With that we get

(69

tors: the increase in the nucleation rate and the decrease in

the probability as the barrier decreases. This also can be

expressed as

(Iy~max{ p(W)I gexp(—W/KT)].
w

The latter agrees with the preliminary discussion in Sec. |
and with the interpretation in Fig. 1. One other characteristic

of the distributiony (1) is its dispersion, which can be cal-
culated to give

3A
<(5l)2>=f (l—<|>)2¢(|)d|~<|2>=<|>zexﬁ{m}-
(68)

dl df
< =~ (Vg —fA13vE=o0. (70)
Substituting Eqs(66) and (68) gives
1 olf_I v (W)  2A -
e oViIeA T T T ez 7D

Using either Eq(58) or (59) leads to approximately the same
result for the inflection point; :

~ (W) 2A
ti=1 —|n(|oV|T)+W—W. (72)
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Here the logarithm on the right-hand side is relatively smallnucleation barriers and in stationary minima of the local free
since both the induction time and the characteristic kinetic energy density. Because of the fluctuations in these minima,
time (V,l,) ! are determined by the same diffusion pro- the lines(spinodal and binodathat would separate different
cesses and are thus of the same order of magnitude. regions in phase diagrams of homogeneous materials will
If we examinet; in Eq. (72) as a function of temperature smear into corresponding quasilinear regions for the case of
putting r<expEp /kT)>1, then we find that;(T) is a maxi- disordered systems. The above results can be used to esti-
mum, mate the characteristic widths of these regions.
We now estimate numerically the effects of disorder upon
t ( (W) the nucleation. In accordance with the above results the dis-
(tmax=T 4\/K

>7 at kT= Wy (73)  order enters the nucleation rate in an exponential
exd A/(kT)?]. An estimate to serve as a rough guide is based
Summarizing, we can say that the dependev® has an s ©n Eas.(34) and(33):
shape. In the transient region where the number of nuclei is

2

linear in time, the observed nucleation rate is predicted to A _ A (ﬂ)zw Aia R ﬂ)z (74)
have a maximum at a timig that is considerably larger than (kT)2 W2\ kT k2 al\kT/)

the induction time, and it reaches this maximum at a tem- ] o ) ) )
perature determined by the disorder characteristics. It follow¥/herea is the characteristic atomic length in a solid. The
from the above that experimental investigations of the inflecfatio Aja/x*~A,a%E, can be estimated as the squared
tion point in the dependench(t) may give information relative fluctuation in atomic energi€s,;. In turn, the latter
about the effects of disorder in nucleation kinetics. can be estimated as the relative dispersion in microscopic
Two comments are in order regarding the above conclustructural parameters.
sion about the maximum in nucleation rate. First, it has been FOr the case of amorphous solids this gives a number of
assumed in the course of the derivation that the inequalitjhe order of 10° that corresponds to characteristic fluctua-
IV|f5f(t)dt<1 holds, allowing one to omit the exponentials tions of theggﬁjer of several percent in valence angles, bond
in the corresponding integrands. That assumption may not J&N9th, etc’ ** As a result we get
valid for some local regions possessing very high nucleation

rates and violating the above inequality. Such fast regions A N10_3E M ? (75)
can be swept out by annealing the material prior studying the (kT)2 a\ kT

nucleation kinetics.

The second comment is that because the dependené@ the case of amorphous solids. Puttifja~10 and
ls(t) is nonmonotonic, the linear approximation fh(t)  (W)~50KT (which is typical of glassé&'*'9 we get the
may be sensitive to the choice of the interval in which thatestimate A/(kT)?~25. Therefore, the contribution to the
approximation is applied. In particular, extrapolating super-nucleation exponent due to disorder may be comparable to
linear (sublineay time dependenchi(t) att<t; (t>t;) by a  the exponent itself. This may at least partly explain the many
straight line and interpreting its slope as the nucleation rat@rder-of-magnitude differences between the measured nucle-
may lead to results that are considerably lafgenalley than ~ ation rates in silica glasses and those predicted by classical
the real nucleation rate. Sintgis nonmonotonic in tempera- nucleation theor? (alternative explanations are based on the
ture, such an extrapolation may even lead to a conclusioAssumptions of temperature-dependent surface energy and/or
that the nucleation rate depends nonmonotonica”y on ten{ailure of the Stokes-Einstein relation between ViSCOCity and
perature. Therefore, care should be taken in the interpretatigiiffusion coefficient>*). Another prediction that agrees

of experimental results on nucleation in disordered systemdVith experimental results on glasses concerns low-
temperature annealing of the material prior to studying the

nucleation kinetics. As was mentioned in Sec. V, this may
sweep out some fast local regions and thus provide condi-
Let us summarize the main results of the investigatiortions for a maximum in the nucleation rate. Such a maximum
presented. First, we have shown that in materials with statigh preannealed glassy materials has indeed been obsBrved.
disorder the local barrier to nucleation is a random quantity For the case of doped crystals the squared relative fluc-
varying considerably between different local regions of thetuation in atomic energies can be estimated as the relative
system. Second, an optimum fluctuation method is developeinpurity concentratiom;, which quantity should be used
to describe the probability distribution of nucleation barriers.instead of the factor 1% in Eq. (75). Bearing in mind the
This method extends the well-known density-functionalimpurity concentratiom; =102, we conclude that the ratio
Cahn-Hilliard approach to the case of disordered systems\/(kT)? for the case of doped crystals may be even larger
Third, it is shown that local nucleation rates in a disorderedhan that of glasses. That the disorder contribution is pre-
medium form a wide distribution whose position and disper-dicted to be proportional to the impurity concentration for
sion depend exponentially on temperature. The measuretie case of nucleation in crystals offers scope to verify our
concentration of nucleus is predicted to be nonlinear in timegheory.
(possessing an S shamnd exponentially different from the Overall, our approach emphasizes a considerable differ-
classical theory prediction in both its absolute value and temence between the nucleation kinetics in homogeneous and
perature dependence. The latter conclusion is in generalisordered systems. So far the prevailing hypothesis has been
agreement with the experimental results quoted above.  that data on nucleation in disordered solids can be interpreted
Our approach is equally applicable to fluctuations inby properly choosing the parameters in the equations of clas-

VI. CONCLUSIONS
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sical nucleation theory. For example, a linear temperaturereases, so that the suggestion of a negative entropy term in
dependence of the surface free energy has been proposedyface energy may not be required.

corresponding to a negative entropy term of unknown origin, In conclusion, let us note that our theory can easily be
for the classical theory to describe the observed nucleatiomodified to the two-dimensional case of nucleation and/or
ratest®7 In contrast, in our theory the effective nucleation evaporation at random surfaces. Effects of disorder can be
barrier given by Eq(67) increases as the temperature in-shown to increase as the dimensionality decreases.
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