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A theory of nucleation is proposed for materials with static disorder, such as glasses and doped crystals.
Such disorder makes the barriers to nucleation (W) different in different local regions of the system. We
develop an optimum fluctuation method, based on the Cahn-Hilliard approach, to find the probability distri-
bution of barriersg(W). The distribution reaches its maximum atW5^W&, determined by the average param-
eters of the system, and decays exponentially for bothW,^W& andW.^W&. The particular shape ofg(W)
depends on the relationship between the distance over which the disorder is correlated and the radius of the
critical nucleus. In the steady-state regime the nucleation rate is determined by an optimum barrier
Wopt5Wopt(T),^W& resulting from the competition between the exponential increase in the nucleation rate
exp(2W/kT) and the exponential decrease ing(W). Associated withg(W) is also the probability distribution
of nucleation ratesI5I 0exp(2W/kT). Because of the latter, the nucleus concentration is nonlinear in time and
exhibits an S-shaped transient nucleation.@S0163-1829~96!03438-8#

I. INTRODUCTION

As is well known, nucleation of a second phase occurs via
appropriate fluctuations that allow the system to surmount
the thermodynamic barrier between the two phases. The fluc-
tuation exhibits a critical nonuniformity that develops spon-
taneously into a stable particle. The barrier to nucleation
(W) is the minimum work needed to create this critical non-
uniformity. In the capillarity model1–4 the nonuniform region
is assumed to have a sharp boundary, and the barrier origi-
nates from the surface energy. Since the early Cahn-Hilliard
density functional approach,5 modern theories~see the re-
view in Ref. 6! are free of the postulate of a sharp boundary
but still consider critical fluctuations that are well localized
in space.

It is important that the original phase is assumed to be
homogeneous in the framework of the above approaches.
However, this assumption fails for some structures, such as
glasses, amorphous films, crystals containing imperfections,
or amorphous solids, which are inhomogeneous systems.
Thus, in doped crystals the local impurity concentration fluc-
tuates in space, while in amorphous solids the microscopic
atomic parameters~valence angles, bond lengths, etc.! fluc-
tuate between different local regions. This is schematically
illustrated in Fig. 1. Associated with these fluctuations must
be local fluctuations in the parameters determining the bar-
rier to nucleation. Supposing that the original phase is inho-
mogeneous, these parameters will be random quantities char-
acterized by their average values and dispersions. The
standard nucleation theory applies only if the dispersions are
set to zero. This raises the question: What are the possible
deviations from standard nucleation theory results due to
fluctuations in material parameters?

It is worth noting that the average parameters of corre-
sponding disordered and ordered systems are different. This
difference has nothing to do with the above question and can
be taken into account by renormalizing the parameters in the
standard nucleation theory without making allowance for lo-
cal fluctuations in those parameters. In what follows the av-

erage parameters governing the nucleation in a disordered
system are considered as given and the emphasis is on a
description of the fluctuation-induced effects.

That disorder influences the nucleation rate significantly
can be concluded on experimental grounds. A large body of
data shows that adding a small concentration of impurities
can change the second-phase nucleation rate in a crystal dra-

FIG. 1. The nucleation barrier varies between different local
regions.~a! In the case of doped crystals the barriers are different in
the regions depicted because of space fluctuations in impurity con-
centration.~b! In the case of amorphous solids local fluctuations in
microscopic structural parameters make crystal nucleation barriers
different in the two regions separated by the dashed line.
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matically, causing it to increase or to decrease by many or-
ders of magnitude depending on which element is added.7–10

This effect was qualitatively attributed to the change in the
diffusion coefficients of alloying elements and/or in the en-
ergy of the boundary between a precipitate and matrix. Al-
though the possibility of changing the nucleation by means
of small dopings has already found practical uses, the under-
lying mechanisms remain unexplored. Another case in which
small dopings are known to affect structural transformations
drastically is the nucleation of vacancy voids in materials
subjected to radiation.11

Not less puzzling are the experimental results on crystal
nucleation in glasses~both nonmetallic and metallic! and
amorphous films. The crystallization can be either polymor-
phic ~without a change in chemical composition, such as
crystal nucleation in chalcogenide glasses! or nonpolymor-
phic @such as crystal nucleation in~SiO2)x~Li 2O! 12x glass#.
The conclusion has been drawn that the steady-state crystal
nucleation rates calculated by theory are many orders of
magnitude smaller than the experimental values12–17 in inor-
ganic glasses. Even though the theory is consistent with the
observed temperature dependences of nucleation rates, the
corresponding absolute values are in some cases 20 orders of
magnitude smaller than the measured quantities. Besides, the
nucleation rates in glasses are nonmonotonic in time, and the
nucleus concentration exhibits an S shape. Note that crystal
nucleation in glasses has also found practical applications. In
particular, it is used to create I-VII or II-VI semiconductor
microcrystals @say, CuBr and Cd~S!Se# in insulating
glasses.18–23 These composites containing ‘‘quantum dots’’
are materials of great promise in modern electronics.

It is the main purpose of this work to discuss the role of
disorder in nucleation processes. The idea is that there are
some local favorable inhomogeneities in randomly disor-
dered media, which effectively decrease the thermodynamic
nucleation barrier and thus increase nucleation rates expo-
nentially. We find the probability distribution for the nucle-
ation barriers in a randomly disordered system and use that
distribution to calculate both the effective steady-state nucle-
ation rate and nucleus concentration as a function of time.
The results will be shown to depend both on the correlation
range of the disorder and on its amplitude.

In its simple form our idea is illustrated in Fig. 2. Despite
a rapid~exponential! decrease in the barrier probability dis-
tribution in the region of small barriers, this region is still
very important since the probability of nucleation increases
exponentially as the barrier decreases. The competition of
the above exponential factors results in an optimum barrier
Wopt that combines a relatively high nucleation rate with a
not extremelly small probability of its realization and thus
provides the maximum partial nucleation rate. Because this
barrier is smaller than the average one and because it de-
pends on temperature, the observed nucleation rate will be
exponentially larger than the one corresponding to the aver-
age barrier and predicted by classical nucleation theory and
will have different temperature dependence.

Note that the above examples imply that the nucleation
occurs via the diffusion of some mobile component below
the melting point of a matrix. In this sense the fluctuations
dealt with below are of a static nature: Their lifetimes are
much longer than the characteristic time needed for a nucleus

to add an additional molecule. That is why the nucleation
rates are expected to be different in different local regions of
a disordered material.~Note that the above arguments do not
apply to nucleation in flexible, liquidlike systems where fluc-
tuations are short-lived.!

Two theoretical papers have been published regarding
nucleation in disordered solids. Harrowell and Oxtoby24 con-
sidered nucleation in glasses and incorporated a phenomeno-
logical concept of local nucleation times and their distribu-
tion in a glass. Although restricted to the case of the simplest
two-mode distribution, the approach in Ref. 24 enables one
to qualitatively explain the major deviations of nucleation
kinetics in glasses from that in homogeneous systems.
Karpov25 considered the effect of disorder on nucleation in
the capillarity approximation, which is ill controllable as ap-
plied to the problem. In particular, while the ideas of the
probability distribution of nucleation barriers and of an opti-
mum barrier put forward in Ref. 25 are adequate and are
retained in what follows, these ideas were implemented in
Ref. 25 by considering~rather arbitrarily! a layer-by-layer
nucleus growth in a random matrix. Such uncontrolled use of
the capillarity approximation led to a distribution function
that differs from that found in the present work by means of
a consistent density-functional approach.

In this paper the Cahn-Hilliard approach to nucleation is
extended to the case of disordered media. To allow for static
fluctuations we consider the free energy density to be a ran-
dom function of coordinate. The barrier to nucleation will
then be a functional of the random function. To describe the
probability distribution for such a functional we use the ap-
proach known as the optimum fluctuation method in the
theory of disordered systems, where it enables one to de-
scribe the density of states in band tails. We extend that
method to the problem of phase transitions in random media
and find the nucleation barrier distribution function for the
limiting cases of uncorrelated and strongly correlated disor-
der. We then use that function to determine the optimum
barrier corresponding to a given temperature and to calculate
the nucleus concentration as a function of time.

II. OPTIMUM FLUCTUATION METHOD

The optimum fluctuation method has been developed by
Lifshitz,26 Halperin and Lax,27 and Zittarz and Langer28 to

FIG. 2. Probability of nucleation,I}exp(2W/kT), probability
distribution for nucleation barriers,r(W), and partial nucleation
rateP(W)}r(W)I (W). The optimum barrierWopt(T) corresponds
to a maximum ofP(W).
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calculate electron band tails in disordered systems~reviews
are given in Refs. 29 and 30!, a problem that has much in
common with that under consideration here. In the problem
of band tails it is assumed that the electron is in a random
potential caused by randomly distributed impurity atoms or
structural disorder in a semiconductor. Some local configu-
rations of the disorder cause fluctuation potential wells
strong enough to localize the electron. Because of that, lo-
calized state tails appear in the mobility gap of a semicon-
ductor. The deeper the state in the mobility gap, the stronger
must be the corresponding fluctuation. Since the probability
of a fluctuation decreases exponentially with its strength, the
density of states in a band tail decays exponentially with the
energy E measured from the mobility edge,g(E)
5g0exp@2S(E)#. The optimum fluctuation method was used
to calculate the exponentS(E) and thus to establish the prob-
ability distribution for the functionalE containing a random
function.

It was assumed in the framework of the method that a
state of any given energy is dominated by a corresponding
particular shape of the potential fluctuation, and that large
deviations from this shape are unlikely to occur. The reason-
ing behind this assumption is that fluctuations much stronger
than the optimal one are unlikely because the probability of a
fluctuation decreases exponentially with an increase in
strength; on the other hand, fluctuations much narrower than
the optimal one become unlikely because it is then difficult
to overcome the kinetic energy resulting from localization.
Optimum fluctuations are believed to give the main contri-
bution to the density of states.

Much as in the band-tail problem, we assume in what
follows that the nucleation barrier of any given energy in a
disordered system is dominated by a corresponding optimum
shape of a disorder fluctuation. Fluctuations much stronger
than the optimal one are unlikely because the probability of a
fluctuation decreases exponentially with an increase in
strength; fluctuations much narrower than the optimal one
become unlikely because it is then difficult to overcome the
surface free energy resulting from the nucleation.

In fact, the problem of nucleation in disordered systems
fits the optimum fluctuation method even better than the
original band-tail problem. The electronic states in the near
proximity of the gap edge have very large radii and thus
overlap. Since the optimum fluctuation method is restricted
to an isolated~nonoverlapping! fluctuation, it does not cover
the range of energies near the band edges. In contrast, the
nucleation process never ends up with enough of the second
phase to make nuclei overlap, and thus the optimum fluctua-
tion concept is applicable without restriction.

To illustrate the approach we are going to implement, let
us for simplicity consider the capillarity model and assume
that its parameters depend linearly on some impurity concen-
tration c that fluctuates in space. In the spirit of the sharp
boundary approximation we consider a uniform spherical
fluctuation of amplitudedc and radiusR within a nucleus~a
kind of ‘‘impurity nucleus’’ embedded in the original one!.
This will change the nucleus energy by

dW5a1dcR
31a2dcR

2, ~1!

where the first and second terms represent the bulk and in-
terface contributions, repectively, anda1 anda2 are material

parameters. In the absence of spatial correlations the prob-
ability of finding a fluctuationdc in the region of the volume
R3 is given by Gaussian statistics,

P~dc!;exp2 F ~dc!2R3

2c G[exp~2S!, ~2!

provided that the average number of impurity atoms in the
fluctuation is large. The most probable, optimum, fluctuation
corresponds to the minimum of the exponentS in Eq. ~2!.
This minimum must be found with respect todc andR under
an additional condition that they satisfy Eq.~1!. On express-
ing dc from Eq. ~1! the exponent to optimize becomes

S5
~dW!2

2R~a1R1a2!
2 .

From this we see that the barrier statistics is Gausssian and
that the optimum fluctuation, if any, is characterized its ra-
dius and amplitude

R52
a2
3a1

and dc5
dW

a1R
31a2R

2 .

Although the above example illustrates the optimum fluctua-
tion method, the sharp boundary approximation we used re-
mains ill controlled. This approximation is known to apply
near the binodal, which is a particular case among those
considered below.

To implement the above idea we use the Cahn-Hilliard
approach, with the free energy functional

F5E @f~c!1k~¹c!2#dr , ~3!

wherek is a constant andf is the local change in the free
energy density due to the deviationc(r ) of the order param-
etern(r ) from its average valuên&. Although the parameter
n stands for the solute concentration in the original Cahn-
Hilliard work,5 its meaning can be extended. For the case of
crystallizationn can be understood as a material density.6 In
both cases the conservation of material law implies

E c~r !dr50. ~4!

The changef can be expressed as

f5 f ~^n&1c!2 f ~^n&!2
] f ~^n&!

]^n&
c, ~5!

where f (n) is the free energy density corresponding to the
order parametern and the last term on the right-hand side
accounts for the conservation condition in Eq.~4!.

In accordance with Cahn-Hilliard, an initially unstable
fluctuationc(r ) grows into a stable one by overcoming a free
energy barrier, the top of which is a saddle point, and the
fluctuation becomes a critical nucleus at that point. Since the
system is in~unstable! equilibrium at a saddle point, the free
energyF in Eq. ~3! must be stationary; that is, its variational
derivative must be zero:

9736 54V. G. KARPOV AND DAVID W. OXTOBY



dF

dc
50. ~6!

The corresponding barrier to nucleation is

W5F@f0#[E @f01k~¹c0!
2#dr , ~7!

wherec0(r ) andf0[f(c0) are determined by Eq.~6!.
Because of static fluctuations of material parameters in a

disordered system, in Eq.~3! the functionf(c) and the pa-
rameterk will change between different local regions. To a
first approximation one can neglect the fluctuations ink. The
reasoning behind this approximation is that in the vicinity of
a phase transition the functionf(c) has a certain shape and
even small deviations from that shape may affect the transi-
tion significantly. In contrast, small variations ink would
cause a correspondingly small effect.

To describe the effect of fluctuations on the function
f(c) we note that the shape of the latter is known to depend
on material parameters, say,j i , that are normally considered
fixed while the order parameterc is allowed to change. As an
example, we mention the Landau-Ginzburg approximation
@see also Eq.~23! below# for which j i are represented by the
three coefficients atc2, c3, andc4. In their turn, the param-
etersj i depend on temperature, pressure, deformations, etc.
It is then natural to consider these parameters random quan-
tities varying between different local regions that possess
different structures in a random system. We thus consider
j i[j i(r ) to be random functions of coordinates. We recall
that a phase transition is described by a qualitative change in
the shape off(c) ~say, from a single-well to a double-well
shape!. This change is typically achieved by small variations
in only one~critical! parameter of the setj i , while all others
are considered constant~such as the coefficient ofc2 in the
Landau-Ginzburg theory!. With that in mind, we assume that
fluctuations of only one of the parametersj i is of impor-
tance. In this one-parameter approximation we put

f~c!5f̄~c!1j~r !f1~c!, ~8!

wheref̄ stands for the functionf(c) averaged over all pos-
sible realizations andj[j(r ) is a random quantity. The
above is the simplest conceivable choice of free energy den-
sity that contains only one random parameter.

Substituting Eq.~8! into Eq. ~3! gives

F5E @f~c!1k~¹c!2#dr1u, ~9!

with

u5E j~r !f1@c~r !#dr

being a random quantity. One limiting case to consider is the
situation in which the random quantityu in Eq. ~9! is the
sum of a large number of random contributions and, in ac-
cordance with the central limit theorem, obeys Gaussian sta-
tistics,

r~u!5expS 2
u2

2s D[exp~2S!, ~10!

with dispersion

s[^u2&5E E drdr 8A~r2r 8!f1@c~r !#f1@c~r 8!#.

~11!

Here the kernelA is the pair correlation function of the dis-
order,

A~r2r 8!5^j~r !j~r 8!&.

As long as Gaussian statistics applies, this function is the
only characteristic of the disorder. Note that Eq.~11! implies
the averaging to be taken over the disorder configurations at
a given~although not specified! function f1(r ) whose par-
ticular optimum shape must be determined in what follows.
A second limiting case~Poisson statistics! is considered in
Sec. IV below.

The most probable fluctuation corresponds to the mini-
mum of the exponent in Eq.~10!, that is,

dS

dc
5

dS

du
50.

The latter equations determine a conditional minimum of the
functionalS provided that the free energyF in Eq. ~9! is an
extremum, in accordance with the Cahn-Hilliard approach.
Optimizing the probability exponentS under the additional
conditiondF50 is tantamount to finding the absolute extre-
mum of the functional

F5
u2

2s
1lF, ~12!

wherel is the undetermined Lagrange multiplier. Optimiz-
ing F overu andc gives, respectively,

u52ls ~13!

and

22k¹2c~r !1
]f~r !

]c~r !
2lF E dr 8A~r2r 8!f1~r 8!G]f1~r !

]c~r !

50. ~14!

The solution of Eq.~14! determines the optimum fluctuation
c0(r ). Note that Eq.~14! can be equally represented in the
form dJ50 with the functional

J5E dr H k~¹c!21f~c!

2
l

2E dr 8A~r2r 8!f1@c~r !#f1@c~r 8!#J , ~15!

which is convenient to use for the direct variational proce-
dure. The Lagrange multiplierl is determined from the con-
dition for the nucleation barrier height,

W5E dr Hk~¹c0!
21f~c0!

2lE dr 8A~r2r 8!f1@c0~r !#f1@c0~r 8!#J . ~16!
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Oncec0(r ) andl have been determined, the probability ex-
ponent is given by

S5
l2

2 E drdr 8A~r2r 8!f1@c0~r !#f1@c0~r 8!#. ~17!

Given particular shapes ofA(r ), f(c), andf1(c), Eqs.~14!,
~16!, and~17! enable one to determine the probability distri-
bution

r~W!5r0exp@2S~W!# ~18!

and thus obtain the solution to the problem under consider-
ation.

Some conclusions can be drawn for the range of small
deviations uW2^W&u!^W& without specifying the above
shapes. Since the first-order correction to a functional corre-
sponds to the zeroth-order approximation for the functions in
its integrand, we get from Eq.~16!

W2^W&52lE drdr 8A~r2r 8!f1@c0~r !#f1@c0~r 8!#,

~19!

wherec0(r ) is the optimum order parameter fluctuation in
the uniform medium~at A50) given by the standard Cahn-
Hilliard theory. Substituting the latter into Eq.~17! leads to
Gaussian statistics for the nucleation barrier height:

S~W!5
~W2^W&!2

2D
, ~20!

where the dispersion is

D52E dr 8drA~r2r 8!f1@c0~r !#f1@c0~r 8!#. ~21!

The latter integral can be estimated as the square of the char-
acteristic free energy fluctuation in the nucleus volume. It is
independent of̂W& and can be very small,D!^W&2. In
particular, there is a range of values forW over which

AD!uW2^W&u!W,

in which case the exponent in Eq.~20! is much larger than
unity, in spite of the fact that it describes relatively small
deviations from the average barrier. It follows from the
above that the barrier distribution functionr(W)
5r0exp@2S(W)# reaches its maximum at the average barrier
^W& and in the proximity of the maximum is a Gaussian
distribution with root-mean-square fluctuation of the order of
the characteristic free energy fluctuation in the nucleus vol-
ume.

Nothing is known about the form of the ‘‘interaction’’
function f1(c) in the general case. In the absence of more
specific information we take the simplest conceivable form

f1~c!5c2, ~22!

corresponding to the first nonvanishing term in the expansion
of f1(c) ~the linear term in the expansion disappears when
integrated over space because of particle number conserva-
tion!.

For the average change in free energy density we shall use
the phenomenological Landau-Ginzburg approximation

f~c!5ac21bc31gc4, ~23!

which allows for the existence of more than one stable phase.
The condition that the two phases have the same energies is

b522Aag, a.0, g.0. ~24!

To describe the difference between the phases one can put
22Aag,b,0.

Near the spinodal the approximation in Eq.~23! repre-
sents the first two nonvanishing terms of a Taylor series if
we put

g50, b,0, and a523csb, ~25!

wherecs(5ns2^n&) is the difference between the order pa-
rameter at the spinodal and its actual average value.5

On the other hand, near the binodal, where the two phases
have almost the same free energies, the capillarity approxi-
mation is applicable5 and gives

R5Rc[
2s

mcb
and W5Wc[

4p

3
sR2, ~26!

wherecb(5nb2^n&) is the difference between the order pa-
rameter at the binodal and its actual average value,s is the
surface tension, andm is a constant determined by the prop-
erties of the second phase. The capillarity approximation will
be used to describe the barrier fluctuations near the binodal.

The most delicate point of the above approach is the as-
sumption of Gaussian statistics for the random functional in
Eq. ~10!. This applies when the fluctuation in energy is de-
termined by a large number of random contributions. In
glasses and noncrystalline films where the structural param-
eters fluctuate in each elemental cell and the critical nucleus
typically contains many cells the above is certainly the case.
For doped crystals, Gaussian statistics is applicable only if
the average number of impurity atoms in the critical nucleus
is considerably greater than unity. This takes place in the
important limiting cases of nucleation near the spinodal or
the binodal, where the critical radius turns out to be large.5

However, the nucleus radius may not be very large for the
case of second-phase nucleation in crystals with small impu-
rity concentration so that the average number of impurity
atoms in a nucleus is less than or of the order of unity. In this
case the above equations are not valid, although the idea of
optimum fluctuations may still survive. This latter case will
be analyzed separately in Sec. IV below.

We end this section with a remark concerning possible
fluctuations of another energy parameter of phase transitions
in systems with static disorder. Because of the fluctuations in
structural material parameters, the free energies of the two
stable~metastable! phases will fluctuate from one local re-
gion to another in a disordered system. The characteristic
binodal and spinodal lines, on the phase diagram~in the
‘‘temperature–order-parameter’’ plane!, then transform into
regions of finite widths. Fluctuations in free energies of the
two phases are described by the same probability distribu-
tions as that derived above for the barrier height. Indeed, the
underlying Eqs.~3!, ~6!, and~7! remain the same for both the
minima and the maximum of the effective double-well po-
tential representing the energy diagram of a first-order phase
transition. We shall see in what follows that in some inter-
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vals near the binodal and spinodal the fluctuations in barrier
height are comparable to its average value. These same in-
tervals determine the width of the binodal and spinodal
smearing in the phase diagram.

III. UNCORRELATED AND STRONGLY CORRELATED
DISORDER

In some cases, such as that of noninteracting frozen im-
purity atoms in a crystal, the disorder is uncorrelated while in
other cases there may be some correlation between fluctua-
tions in different elemental cells of a material. As an ex-
ample of correlated disorder we mention the medium-range
order observed in a variety of glasses by means of neutron
and x-ray scattering.31–34 Medium-range order implies that
the arrangements of structural units in a glass are not com-
pletely random but have correlations on a scaler c larger
than the characteristic interatomic length~typically,
r c;10230 Å!.

The existence of this characteristic correlation range
means that the correlation functionA(r ) is a maximum at
r50 and decreases rapidly~presumably exponentially! for
r@r c . Two limiting cases are independent of the particular
shape ofA(r ). The first is uncorrelated disorder for which
the correlation range is small compared to the characteristic
nuclear radiusR. In that case we may take

A~r !5A1d~r ! for r c!R, ~27!

whered(r ) is the Dirac delta function. In the opposite lim-
iting case of strongly correlated disorder we may take

A~r !5const[A2 for r c@R. ~28!

The two parametersA1 andA2 are related byA1;A2r c
3

Equations~27! and ~28! imply that the disorder is isotro-
pic, and so the optimum fluctuations are expected to be
spherically symmetric. This suggestion about the symmetry
of the optimal fluctuation is the usual one for the optimum
fluctuation method. It is understood in this context that, al-
though a pure symmetric fluctuation rarely appears in a ran-
dom system, small deviations from the symmetric shape pro-
duce only small corrections to the equations for the optimum
symmetric fluctuation@Eqs. ~14!, ~15!, ~16!, and ~17!#.
Hence, these equations remain approximately valid when ap-
plied to slightly asymmetric fluctuations, which have a non-
zero phase volume and thus appear in a random system with
nonzero probability. The problem of describing such slightly
asymmetric fluctuations in the proximity of the optimal one,
however, appears in calculating the preexponential factor in
Eq. ~18! which represents the effective phase volume. Al-
though the standard optimum fluctuation method enables one
to calculate the preexponential as well, and the same can be
extended to the problem under consideration, we do not do
so in the present work. The reason is that the probability
functionr(W) typically enters physical quantities in combi-
nation with the nucleation exponential exp(2W/kT). The lat-
ter dominates any preexponential power dependence, and
will only compete with the probability exponentS(W).

Rather than calculate the preexponentialr0 we give a
simple order-of-magnitude estimate. Supposing the charac-
teristic energy decay scale of the exponentS(W) ~root-mean-

square barrier fluctuation! is AD and taking into account the
normalization condition*r(W)dW51, we getr0;1/AD.

A. Uncorrelated disorder

For the case of uncorrelated disorder, substituting Eqs.
~22! and ~27! into Eqs.~14!, ~15!, ~16!, and ~17! gives, re-
spectively,

2k¹2c1ac1 3
2 bc21~2g2lA1!c

350, ~29!

J5E dr$k~¹c!21ac21bc31~g2lA1/2!c4%, ~30!

W5E dr$k~¹c!21ac21bc31~g2lA1!c
4%, ~31!

and

S5
l2A1

2 E drc4. ~32!

As has been noted in Sec. II above, the barrier probability
distribution is Gaussian when the disorder is small. Particular
expressions for the dispersion of the Gaussian distribution
are given below.

1. Phenomenological description

In accordance with Eq.~24! we put ubu&2Aag in Eq.
~29!. As long as the term proportional tob is close to that
given in Eq.~24!, one can reduce Eq.~29! to dimensionless
form by choosing the characteristic amplitude and radius of
nucleation to be, respectively,

c5A a

2g2lA1
and R5Ak

a
. ~33!

Then, the barrier to nucleation can be estimated as

W5
k3/2a1/2

2g2lA1
S 5g23lA1

2g2lA1
D

to within a numerical factor. The latter equation simplifies
for both ulA1u!g and ulA1u@g. On solving forl into Eq.
~32! we find a Gaussian distribution@Eq. ~20!# with disper-
sion

D5
A1^W&2

a1/2k3/2 , ~34!

which changes by 20% between the cases of small and not
small uW2^W&u/^W&. If a is small enough~near the critical
point!,

a&A1
2/k3,

the dispersion in barriers becomes comparable with the av-
erage barrier.

2. Properties near the spinodal

In the absence of disorder near the spinodal@Eq. ~25!# the
maximum concentration in the center of a nucleus is known5

to be of the order ofcs . Therefore the last term~the one due
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to disorder! in Eq. ~29! can be neglected provided that
ulA1u!b/cs . With that, Eq.~29! reduces to a dimensionless
form by choosing the characteristic nuclear radius and am-
plitude as

R5A k

bcs
and c5cs . ~35!

Correspondingly, the integral in Eq.~32! is estimated as
*c4dr5c4R35(k/b)3/2cs

5/2 andW2^W&5lA1*c
4dr . From

that we get Gaussian statisticsS(W)5(W2^W&)2/D with
dispersion

D'A1S k

b D 3/2~cs!5/2 ~36!

~to within a numerical multiplier!. It follows then that the
characteristic width of the peak in the barrier distribution,
AD}cs

5/4, decreases withcs more slowly than the average
barrier ^W&;ac2R3}cs

3/2. Since the underlying inequality
ulA1u,b/cs is valid provided thatuW2^W&u,^W&, we can
assert that, in the close proximity of the spinodal,

cs&S A1

^W&2D
2/5

,

the disorder makes the barrier to nucleation a random quan-
tity dispersed in a wide bandAD;^W&. Note that as long as
R→` with cs→0, the above nucleation barrier fluctuations
in the close proximity of the spinodal do correspond to the
case of uncorrelated disorder.

3. Properties near the binodal

Following the results in Ref. 5 we use the capillarity ap-
proximation in which the order parameter changes abruptly
and the concept of surface free energy applies. Therefore, the
functions in the integrands of the functionalsJ,W, andS are
considered as constants and the gradient term*drk(¹c)2 is
estimated as 4pR2s, whereR is the nucleus radius ands is
the surface free energy per unit area. Hence, for the case of
uncorrelated disorder

J54pR2s2
4pR3

3 S m1
lA1c

4

2 D ,
W54pR2s2

4pR3

3
~m1lA1c

4!,

S5
2pl2A1c

4R3

3
. ~37!

Optimizing J with respect toR and substitutingR into
W(R) gives

R5
Rc

11lA1c
4/2m

, W5Wc

12lA1c
4/2m

~11lA0c
4/2m!3

, ~38!

whereRc andWc are given in Eq.~26!. For the case of small
disorder (u^W&2Wu!^W&) Eq. ~37! leads to Gaussian sta-
tistics with dispersion

D5
4p

3
A1Rc

3c4. ~39!

Note that although the dispersion diverges withRc→` ~near
the binodal!, the corresponding root-mean-square fluctuation
is proportional toRc

3/2, while the average barrier̂W&}Rc
2 .

Therefore the nucleation barrier fluctuations become rela-
tively small near the binodal. For both the cases of small and
largeW/Wc the statistics is not Gaussian and the distribution
is asymmetric with respect to the average barrier.

B. Strongly correlated disorder

For the case of strongly correlated disorder Eqs.~14!,
~15!, ~16!, and~17! become

2k¹2c1S a2lA2E drc2D c1
3

2
bc212gc350, ~40!

J5E dr H k~¹c!21S a2
lA2

2 E drc2D c21bc31gc4J ,
~41!

W5E dr Hk~¹c!21S a2lA2E drc2D c21bc31gc4J ,
~42!

and

S5
l2A2

2 S E drc2D 2. ~43!

1. Phenomenological description

Based on Eq.~23! one can proceed along the same lines
as for the case of uncorrelated disorder in Sec. III A1 above.
Omiting all the routine details we note that this again leads to
Gaussian statistics with dispersion

D5
A2^W&2a

k3 . ~44!

As opposed to the case of uncorrelated disorder@Eq. ~34!#,
this dispersion goes to zero asa→0 ~near the critical point!.
The average barrier decreases as^W&}a1/2 and thus the rela-
tive root-mean-square fluctuation remains finite with ap-
proach to the critical point in this regime.

2. Properties near the spinodal

Putting into Eqs.~41!, ~42!, and ~43! the parameters de-
termined in Eqs.~25! and~35! for the case of small disorder
(uW2^W&u!W) leads to Gaussian statistics with dispersion

D5
A2k

3cs
b3 . ~45!

As in the case of uncorrelated disorder the width of the dis-
tributionAD decreases withcs more slowly than the average
barrier ^W& does. Close to the spinodal, at

cs&
AA2

b
,
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the root-mean-square fluctuationAD becomes comparable to
the average barrier. Meanwhile, it should be remembered
that the regime of correlated disorder is restricted to the re-
gion cs*k/(br c

2) corresponding to the conditionR,r c .

3. Properties near the binodal

Employing the capillarity approximation for the case of
strongly correlated disorder gives@in place of Eqs.~37!#

J54pR2s2
4pR3m

3
2

lA2

2 S 4pR3c

3 D 2, ~46!

W54pR2s2
4pR3m

3
2lA2S 4pR3c

3 D 2, ~47!

S5
8pl2A2c

4R6

9
. ~48!

For the case of small fluctuationsuW2^W&u!^W& the
Gaussian distribution has dispersion

D5A2S 4p

3
R3c0D 2. ~49!

We note that, as opposed to the case of uncorrelated disorder,
the mean-square fluctuation (AD}Rc

3) diverges near the bin-
odal more strongly than the average barrier (Wc}Rc

2).
Therefore in the regime of strongly correlated disorder the
characteristic fluctuation in the nucleation barrier exceeds its
average value near the binodal~it should be remembered,
however, that this regime is restricted to the caseR,r c and
thus inevitably fails in the nearest proximity of the binodal!.
Beyond the region of small fluctuations the barrier distribu-
tion is asymmetric and not Gaussian.

IV. NON-GAUSSIAN FLUCTUATIONS

As has been mentioned at the end of Sec. II, the disorder
cannot be considered Gaussian for the case of nuclei that
contain on average less than or of the order of one impurity
atom. To tackle the latter problem we use Poisson statistics
which leads to the following expression30,35for the logarithm
of the probability~entropy! of a given impurity concentration
fluctuationm(r ):

S52E dr H @^m&1m~r !# lnF ^m&

^m&1m~r !G1m~r !J ,
~50!

where^m& is the average impurity concentration. The latter
reduces to Gaussian statistics for the case of small fluctua-
tionsm!^m&.

Note that taken asm(r ) the impurity concentration in Eq.
~50! implies the number of impurity atoms in an optimum
nucleus to be considerably larger than unity in spite of the
fact that the average number^m& is small. Therefore we
consider very strong fluctuations causing the barriers far in
the tail of probability distributions. Although the alternative
conceivable case of non-Gaussian fluctuations with a small
number of impurities in an optimum nucleus seems to be
realistic, this case cannot be described analytically in the
framework of the standard optimum fluctuation method,

which is based on a continuity approximation that leads to
integro-differential equations. Aimed at treating the problem
analytically and extending the optimum fluctuation method
to the case of phase transitions, the present paper does not
cover that alternative case.

Assuming that the interaction with impurities has the form
suggested in Sec. II, the free energy functional will take the
form @cf. Eq. ~9!#

F5E @f~c!1k~¹c!22jmf1#dr , ~51!

wherej is a coupling parameter and we consider the case
j.0 in which the barrier to nucleation is decreased due to
impurities. Proceeding along the same lines as in Sec. II we
optimize the functional

F5S1lF,

wherel is the undetermined Lagrange multiplier. This leads
to the equations

m5^m&~elf121!, ~52a!

22k¹2c1
]f̄

]c
2jm

]f1

]c
50. ~52b!

W5E dr @k~¹c!21f̄2jmf1#, ~52c!

S5^m&E dr @elf1~lf121!11#. ~52d!

It follows from the above equations that the capillarity
approximation is suitable for fluctuations that differ consid-
erably from Gaussian ones. The reasoning behind this state-
ment is that assuming the opposite is true@that is,m(r ) and
c(r ) are slowly varying functions of coordinates# will lead to
a contradiction. Indeed, the average number of impurity at-
oms per nucleus is small, while the number of impurity at-
oms in optimum nuclei is taken to be larger than unity. Since
m@^m&, it follows from Eq. ~52a! that the exponential
exp(lf1) is large. If c(r ) is a slowly varying function of
coordinates, then in accordance with the inequality
exp(lf1)@1 and with Eq.~52a!, m(r ) will change in space
much more drastically thanc(r ). Because the functions
m(r ) and c(r ) have exponentially different coordinate de-
pendences, Eq.~52b! cannot be satisfied. To get around this
contradiction we have to assume that both the order param-
eterc(r ) and the impurity concentrationm(r ) are not slowly
varying smooth functions. We may assume instead that these
functions are almost constant in some region and simulta-
neously decrease at the boundary of that region. This picture
corresponds to the capillarity approximation.

In the capillarity approximation we get

J54pR2s2
4p

3
R3~m2l21j^m&elf1!, ~53a!

W54pR2s2
4p

3
R3~m2f1j^m&elf1!, ~53b!
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S5
4p

3
R3^m&lf1e

lf1, ~53c!

wheref1 is a constant inside the nucleus whose value is
determined by the properties of the nucleated phase. In the
limiting case of strong deviations from Gaussian statistics, at
lf1@1, the correction due to disorder in Eq.~53a! is much
smaller than the one in Eq.~53b!. As a result the probability
exponent becomes

S~W!5
^W&2W

jf1
lnS ^W&2W

jf1R
3^m& D . ~54!

V. NUCLEATION RATE

Since the barrier to nucleation is a random quantity char-
acterized by its probability distribution functionr(W), the
steady-state nucleation rate

I s~W!5I 0expS 2
W

kTD ~55!

also becomes a random quantity. If we divide the material
into a set of local regions, the nucleation rates will vary
exponentially between these regions. In what follows we first
consider the kinetics of nucleation in the subset of regions
characterized by a given rateI s and then average the results
over different regions.

Letting nI be the fraction of nucleated regions character-
ized by the rateI , the nucleation kinetics will be described
by the equation

dnI
dt

5IVI f ~ t !~12nI !, ~56!

whose solution is

nI512expF2IVIE
0

t

f ~ t !dtG . ~57!

Here f (t) describes the transient nucleation regime during
which the nucleation rate changes from zero to its steady-
state valueI ~that is, 0, f,1) andVI is the minimum vol-
ume required to create a nucleus at the rateI . The latter
volume can be estimated as 4pR3/3, whereR is the charac-
teristic nucleus radius corresponding to the rateI . We note
that, since the nucleation rate depends on the nucleus param-
eters, such asR, exponentially, bothR andVI are logarith-
mically weak functions ofI . In the first approximation one
can neglect the dependenceVI5V(I ) as compared to the
multiplier I . Another point to note is that the multiplier
12nI in Eq. ~56! describes the effect of saturation arising
from the dwindling of local regions corresponding to the rate
I . This multiplier describes the saturation in the mean-field
approximation, neglecting the possibility of fluctuations that
are free from nuclei and thus determine the nucleation rate at
the late stage of nucleation. Because of the latter remarks,
our consideration of late stage nucleation in what follows can
serve at best as a rough approximation.

In some approaches36 f (t) has been phenomenologically
assumed to have a shape

f ~ t !512exp~2t/t!, ~58!

wheret is the characteristic induction time. As derived in the
framework of the classic nucleation theory37,38 the explicit
form of f (t) is

f ~ t !5expF2expS 22
t2lgt

t D G , ~59!

with

lg5g21/3211 ln@3~12g21/3!/e#,

whereg is the number of molecules in the critical nucleus,

e5S 2
g2

kT

]2F

]g2 D
21/2

,

and with the induction time

t5
g2e2

2D
,

whereD is the rate of collisions between monomers and a
g-mer. Unfortunately, the results forf (t) in Eq. ~59! are
restricted to classical nucleation theory and it is not clear
how they can be extended to the density functional model
underlying the present approach. Yet, since the problem of
transient nucleation in the density functional approach as
such is beyond the scope of this work, we shall employ the
above equations~58! and~59!. An important qualitative fea-
ture of f (t) is that its parameterst andlg do not depend on
the nucleation barrier exponentially, as does the nucleation
rate. It is therefore possible to neglect fluctuations inf (t) as
compared to those inI .

To obtain the number of nuclei as a function of time we
average the result in Eq.~57! over the disorder configura-
tions,

N~ t !5VI
21E dWr~W!H 12expF2I ~W!VIE

0

t

f ~ t8!dt8G J ,
~60!

with the barrier probability distributionr(W) given in the
previous sections. Since the exponent in the integrand in Eq.
~60! is in turn the exponential ofW, it is convenient to inte-
grate over the variableI rather thanW. Its probability distri-
bution function is

c~ I !5r@W~ I !#U dWdI U
'

kT

I 0AD
exp$2S@kTln~ I 0 /I !#1 ln~ I 0 /I !%. ~61!

Then Eq.~60! becomes

N~ t !5VI
21E c~ I !H 12expF2IVIE

0

t

f ~ t8!dt8G J dI.
~62!

The effective nucleation rate measured in experiments can be
expressed as
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I eff[
dN

dt
5 f ~ t !E c~ I !IexpF2IVIE

0

t

f ~ t8!dt8GdI.
~63!

In order to analyze the physical quantitiesN(t) andI eff it
is worth noting some properties of the probability distribu-
tion c(I ) that appears in Eqs.~62! and ~63!. As long as the
barrier distribution is Gaussian@Eq. ~20!# ~near its maxi-
mum, at least!, we can reducec(I ) to log-normal form

c~ I !'
kT

ImAD
expH 2

~kT!2

2D F lnS II mD G22 D

2~kT!2 J .
~64!

Fluctuations in nucleation barriers are important provided
that the characteristic width of the barrier distribution is
large,

AD.kT.

The latter inequality is assumed to hold in what follows and
will be justified in the next section where we estimate the
parameters of the theory. Since the ratioD/(kT)2 is in the
exponent, the above inequality does not have to be strong in
order for the effects of static disorder to be important. The
distributionc(I ) is a maximum at the nucleation rate

I m5I 0expF2
^W&
kT

2
D

~kT!2G , ~65!

which is smaller than the nucleation rate

I ~^W&!5I 0exp~2^W&/kT!

corresponding to the average barrier. One can also calculate
the average nucleation rate

^I &5E
0

`

c~ I !IdI5I 0expF2
^W&
kT

1
D

2~kT!2G , ~66!

which is exponentially larger than bothI (^W&) andI m . Note
that the expression for^I & corresponds to the optimum nucle-
ation barrier

Wopt5^W&2
D

kT
, ~67!

which arises from the competition of two exponential fac-
tors: the increase in the nucleation rate and the decrease in
the probability as the barrier decreases. This also can be
expressed as

^I &;max
W

@r~W!I 0exp~2W/kT!#.

The latter agrees with the preliminary discussion in Sec. I
and with the interpretation in Fig. 1. One other characteristic
of the distributionc(I ) is its dispersion, which can be cal-
culated to give

^~dI !2&5E ~ I2^I &!2c~ I !dI'^I 2&5^I &2expF 3D

2~kT!2G .
~68!

We are now in a position to describe the nucleation kinet-
ics. As is seen from Eqs.~62! and ~63!, the dependence
N(t) is superlinear int at small t,t and saturates at long
times such that̂I &t@1. In other words,N(t) has an S shape,
as is shown in Fig. 3. For the sake of definiteness and be-
cause it is of primary interest for experimental studies of
nucleation, we restrict ourselves to considering the quasilin-
ear region ofN(t) for which the time of experiment is con-
siderable longer thant but still far from saturation. Because
of the latter condition one can set exponentials to unity in the
integrands of Eqs.~62! and ~63!, while the conditiont.t
enables one to putf51. With that we get simply

I eff5^I &, ~69!

where ^I & is given by Eq. ~66!. Note that the disorder
changes both the absolute value and the temperature depen-
dence of the nucleation exponent. The numerical estimate in
Sec. VI below shows that this change may not be small and
may be comparable to the exponent itself.

To be more precise we should examine the position of
inflection pointt i in the S shape ofN(t) that corresponds to
the maximum inI eff(t). In order to determinet i we first
equate the derivationdIeff /dt to zero and then set the expo-
nential in the corresponding integrands close to the unity.
With that we get

dIeff
dt

'^I &VI

d f

dt
2 f 2^I 2&VI

250. ~70!

Substituting Eqs.~66! and ~68! gives

1

f 2
d f

dt
5I 0VIexpS 2

^W&
kT

1
2D

~kT!2D . ~71!

Using either Eq.~58! or ~59! leads to approximately the same
result for the inflection pointt i :

t i5tF2 ln~ I 0VIt!1
^W&
kT

2
2D

~kT!2G . ~72!

FIG. 3. Nucleus concentrationN and effective nucleation rate
I eff5dN/dt depending on the dimensionless timetI m , whereI m is
the most probable nucleation rate. These curves are obtained by
numerical integration with the parameters exp(2l)530, I mt ind
50.005, and (kT)2/2D50.1.
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Here the logarithm on the right-hand side is relatively small
since both the induction timet and the characteristic kinetic
time (VII 0)

21 are determined by the same diffusion pro-
cesses and are thus of the same order of magnitude.

If we examinet i in Eq. ~72! as a function of temperature
putting t}exp(ED /kT)@1, then we find thatt i(T) is a maxi-
mum,

~ t i !max5tS ^W&

4AD
D 2@t at kT5

4D

^W&
. ~73!

Summarizing, we can say that the dependenceN(t) has an S
shape. In the transient region where the number of nuclei is
linear in time, the observed nucleation rate is predicted to
have a maximum at a timet i that is considerably larger than
the induction time, and it reaches this maximum at a tem-
perature determined by the disorder characteristics. It follows
from the above that experimental investigations of the inflec-
tion point in the dependenceN(t) may give information
about the effects of disorder in nucleation kinetics.

Two comments are in order regarding the above conclu-
sion about the maximum in nucleation rate. First, it has been
assumed in the course of the derivation that the inequality
IVI*0

t f (t)dt,1 holds, allowing one to omit the exponentials
in the corresponding integrands. That assumption may not be
valid for some local regions possessing very high nucleation
rates and violating the above inequality. Such fast regions
can be swept out by annealing the material prior studying the
nucleation kinetics.

The second comment is that because the dependence
I eff(t) is nonmonotonic, the linear approximation forN(t)
may be sensitive to the choice of the interval in which that
approximation is applied. In particular, extrapolating super-
linear ~sublinear! time dependenceN(t) at t!t i (t@t i) by a
straight line and interpreting its slope as the nucleation rate
may lead to results that are considerably larger~smaller! than
the real nucleation rate. Sincet i is nonmonotonic in tempera-
ture, such an extrapolation may even lead to a conclusion
that the nucleation rate depends nonmonotonically on tem-
perature. Therefore, care should be taken in the interpretation
of experimental results on nucleation in disordered systems.

VI. CONCLUSIONS

Let us summarize the main results of the investigation
presented. First, we have shown that in materials with static
disorder the local barrier to nucleation is a random quantity
varying considerably between different local regions of the
system. Second, an optimum fluctuation method is developed
to describe the probability distribution of nucleation barriers.
This method extends the well-known density-functional
Cahn-Hilliard approach to the case of disordered systems.
Third, it is shown that local nucleation rates in a disordered
medium form a wide distribution whose position and disper-
sion depend exponentially on temperature. The measured
concentration of nucleus is predicted to be nonlinear in time
~possessing an S shape! and exponentially different from the
classical theory prediction in both its absolute value and tem-
perature dependence. The latter conclusion is in general
agreement with the experimental results quoted above.

Our approach is equally applicable to fluctuations in

nucleation barriers and in stationary minima of the local free
energy density. Because of the fluctuations in these minima,
the lines~spinodal and binodal! that would separate different
regions in phase diagrams of homogeneous materials will
smear into corresponding quasilinear regions for the case of
disordered systems. The above results can be used to esti-
mate the characteristic widths of these regions.

We now estimate numerically the effects of disorder upon
the nucleation. In accordance with the above results the dis-
order enters the nucleation rate in an exponential
exp@D/(kT)2#. An estimate to serve as a rough guide is based
on Eqs.~34! and ~33!:

D

~kT!2
5

D

W2 S WkTD
2

;
A1a

k2

R

a S WkTD
2

, ~74!

wherea is the characteristic atomic length in a solid. The
ratio A1a/k

2;A1a
3/Eat can be estimated as the squared

relative fluctuation in atomic energiesEat. In turn, the latter
can be estimated as the relative dispersion in microscopic
structural parameters.

For the case of amorphous solids this gives a number of
the order of 1023 that corresponds to characteristic fluctua-
tions of the order of several percent in valence angles, bond
length, etc.39–41As a result we get

D

~kT!2
;1023

R

a S ^W&
kT D 2 ~75!

for the case of amorphous solids. PuttingR/a;10 and
^W&;50kT ~which is typical of glasses12,14,16! we get the
estimateD/(kT)2;25. Therefore, the contribution to the
nucleation exponent due to disorder may be comparable to
the exponent itself. This may at least partly explain the many
order-of-magnitude differences between the measured nucle-
ation rates in silica glasses and those predicted by classical
nucleation theory14 ~alternative explanations are based on the
assumptions of temperature-dependent surface energy and/or
failure of the Stokes-Einstein relation between viscocity and
diffusion coefficient.13,17!. Another prediction that agrees
with experimental results on glasses concerns low-
temperature annealing of the material prior to studying the
nucleation kinetics. As was mentioned in Sec. V, this may
sweep out some fast local regions and thus provide condi-
tions for a maximum in the nucleation rate. Such a maximum
in preannealed glassy materials has indeed been observed.16

For the case of doped crystals the squared relative fluc-
tuation in atomic energies can be estimated as the relative
impurity concentrationni , which quantity should be used
instead of the factor 1023 in Eq. ~75!. Bearing in mind the
impurity concentrationni*1023, we conclude that the ratio
D/(kT)2 for the case of doped crystals may be even larger
than that of glasses. That the disorder contribution is pre-
dicted to be proportional to the impurity concentration for
the case of nucleation in crystals offers scope to verify our
theory.

Overall, our approach emphasizes a considerable differ-
ence between the nucleation kinetics in homogeneous and
disordered systems. So far the prevailing hypothesis has been
that data on nucleation in disordered solids can be interpreted
by properly choosing the parameters in the equations of clas-
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sical nucleation theory. For example, a linear temperature
dependence of the surface free energy has been proposed,
corresponding to a negative entropy term of unknown origin,
for the classical theory to describe the observed nucleation
rates.13,17 In contrast, in our theory the effective nucleation
barrier given by Eq.~67! increases as the temperature in-

creases, so that the suggestion of a negative entropy term in
surface energy may not be required.

In conclusion, let us note that our theory can easily be
modified to the two-dimensional case of nucleation and/or
evaporation at random surfaces. Effects of disorder can be
shown to increase as the dimensionality decreases.
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