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The geometric and electronic structures and electron excitation energies for the one-center hole polaron state
and several possible intermediate states corresponding to the hole relaxation in KI are calculated using the
static embedded molecular cluster method. The calculated optical transition energies are close to the maxima
of the transient optical-absorption spectra in KI which were observed experimentally using femto-second
spectroscopy. The mechanism of the self-trapping of the holes in KI is discussed. It is demonstrated that the
experimental spectra can be reasonably understood if we consider that the hole first localizes in the one-center
state which then transforms into the two-center state, and finally into theVK center.@S0163-1829~96!05726-8#

I. INTRODUCTION

Recently femtosecond scale pulse optical spectroscopic
techniques have been applied to the study of the hole polaron
self-trapping in KI and RbI.1 The experiments were per-
formed on the time domain from 0.3 to 100 ps after the
excitation pulse at both room and liquid-nitrogen tempera-
tures. The two-photon excitation with an energy of about 8
eV employed in these experiments first produces an electron-
hole pair in the bulk of KI. The electron is quickly trapped
by the NO2

2 impurity or is delocalized in the lattice. Optical-
absorption spectra in the energy range from 1.5 to 3.2 eV
have been observed both in pure samples of KI and those
doped with the electron-trapping impurity~NO2

2). Transfor-
mation of the optical-absorption spectrum in KI and RbI is
attributed to the hole and takes place via three distinct stages.
~i! At least two intense optical-absorption bands with
maxima near 2.3 and.3.2 eV were already observed at 0.3
ps after the excitation pulse in doped crystals. Their intensity
rises within approximately 1 ps. With some delay~about 0.5
ps! a third absorption band at about 2.6 eV begins to rise and
broadens.~ii ! About 3 ps after the pulse the whole spectrum
transforms into a featureless broad band.~iii ! After that the
well-known optical absorption of theVK center appears and
rises during 10 ps with a time constant of about 3 ps. Similar
transient optical absorption has been observed in RbI. In this
paper we demonstrate that these results can be reasonably
understood if we consider that the hole first localizes in the
one-center state which then transforms into the two-center
state, and finally into theVK center.

Among plausible candidates for such a metastable hole
state in alkali halides, the one-center state has the largest
relaxation energy,S, ~about 1 eV or more2,3! due to the
polarization of the lattice by the strongly localized hole. The
kinetic energy loss due to the hole localization in this state
~localization energy!, B, is determined by the structure of the
upper valence band and may be roughly estimated as a half
of its width,4 which is more than 1 eV in many alkali halides
~see Refs. 3, 5, and 6 for discussion!. If the hole is equally
delocalized between two or more lattice sites, the lattice po-

larization is smaller and these small polaron states are less
favorable than the one-center state.7 However, in alkali ha-
lides and in alkali-earth fluorides, possibly in alumina and
other crystals the two-center state is stabilized by chemical
bonding between the two anions sharing the hole.6,8,9 This
leads to formation of a quasimolecularX2

2 state (X is the
anion! where the distance between anions is much smaller
than that in the perfect lattice. The localization energyB in
this state is smaller than in the one-center state because it is
more delocalized. Thus the overall energy gain~the so-called
self-trapping energy,Est5B2S) in the two-center state in
these crystals is larger than in the one-center state and these
are the only stable hole states observed so far in a pure lat-
tice.

One can try to understand these experimental data from a
different perspective. The most general approach would re-
quire consideration of thetime evolutionof the hole assum-
ing different initial wave packets.10 Sumi11 studied theprob-
ability of the exciton localization in different ‘‘nucleation
states’’ in alkali halides which can be calculated providing
one knows the energetic parameters such asS and B for
these states~see discussion below!. However, since the only
experimental information concerns the optical-absorption
spectra in a narrow energy range, in this paper we focused on
a simple model of the hole relaxation process using a static
approach. This allows us to take into account the lattice po-
larization by the hole and to study the nature of the hole
optical absorption. Since the small polaron theory predicts
more favorable polaron trapping in one-center states than in
more delocalized states, we first study the possibility of for-
mation of the one-center metastable state of the hole in KI
and make our argument on the basis of the static self-
trapping criteria and comparison of the calculated optical
transition energies with the experimental data.

The geometric structure and optical-absorption energies
of the one-center hole state in KI were briefly reported in
Ref. 1 assuming its formation on the first stage of the hole
self-trapping. The calculated transition energies appeared to
be close to the experimentally observed transient absorption
spectrum before its transformation into the broad one. In this
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paper we present a detailed account of calculations on the
hole in the one-center state in KI and consider its transfor-
mation into the two-center state and into theVK center. The
relaxation energies of the one- and two-center holes and their
optical-absorption energies are calculated using a static
many-electron quantum-mechanical approach successfully
applied in recent studies of the models of self-trapped holes
and excitons in several alkali haldies and oxides.6,12–15The
results obtained are then used to discuss the mechanism of
self-trapping of the holes in alkali halides.

II. METHOD OF CALCULATION

We employed the embedded molecular cluster model and
semiempirical molecular-orbital linear combination of
atomic orbitals~MO LCAO! Hartree-Fock method. They are
implemented in aCLUSTER95computer code which takes into
account the polarization of the lattice by the defect. Although
it is based on the algorithm which is broadly similar to those
described in Refs. 14 and 16, it is instructive to briefly out-
line the details of the computational procedure which are
necessary for understanding of the results of the present
work.

The embedded cluster model employed in this study is
based on the approximation that the perfect crystal can be
divided into individual ions. It allows one to combine a
quantum-mechanical treatment of a part of the crystal includ-
ing a defect~quantum cluster! with the classical description
of the rest of the crystal. This is made by substituting a
number of classical ions by a quantum cluster and by using a
‘‘self-consistency’’ procedure based on consecutive iteration
of two computational methods as schematically illustrated in
Fig. 1 and discussed below. To be used together, both meth-
ods must give the same lattice constants of the perfect lattice
and in the more general case must yield the same optimized
structure.

In theCLUSTER95code, the electronic structure of the sys-
tem is calculated using the unrestricted Hartree-Fock~UHF!
method within the approximation of intermediate neglect of
differential overlap~INDO!.17 In this approximation some of
the elements of the Fock matrix are calculated using semi-
empirical parameters.18 In this study we employed a set of
parameters which were optimized in order to reproduce the
characteristics of the KI perfect crystal as well as those of the
KI and I2

2 molecules. Calculations of the band structure and
geometry of the perfect crystal were made using the large
unit cell ~LUC! method18,19for the periodic cell K32I 32. This
allows us to take into account 8k points of the Brillouin
zone. The lattice constanta of KI determined in our calcu-
lations is equal to 6.7 a.u.~6.676 is the experimental value!.
The band gap calculated using a configuration interaction
technique for single-electron excitations20 is equal to 5.9 eV,
which is close to the experimental value of about 6.0 eV.21

The INDO Hamiltonian does not include the spin-orbit inter-
action which is essential for the iodine ion.21,22The width of
the upperp valence band obtained experimentally in Ref. 21
is equal to 2.8 eV. In our calculations, which do not include
the spin-orbit splitting, it was obtained to be 2.05 eV.

The lattice outside the quantum-mechanical cluster is
treated in the Mott-Littleton approximation using a shell

model for ionic polarization.23 The calculations are per-
formed using the General Utility Lattice Program~GULP!.24

We employed the set of interatomic potentials developed in
Ref. 25. The lattice surrounding the defect is divided into a
number of spherical regions about a specified defect center
which is located in the midpoint of the perturbed lattice sites.
The quantum cluster is embedded in the middle of region I
which encompasses all the ions that are strongly displaced by
the defect. The system total energy is calculated as

FIG. 1. Schematic presentation of the embedded molecular clus-
ter technique employed in this study. In the QM calculation, the rest
of the crystal treated classically is represented by an electrostatic
potentialf i produced by the cores and shells outside the cluster at
the position of each nuclei,i , inside the quantum cluster. This po-
tential is calculated using the ionic charges obtained for the perfect
lattice using the same QM method. In theGULP calculation, the
positions of the cores and shells of the classical region outside the
QM cluster are optimized in the electric field produced by the modi-
fied charge distribution in the QM cluster.K is the spring constant
of the shell model used to represent the polarization of the ions. The
charges of the cores located at the nuclei positions of quantum ions
are modified with respect to these in the perfect lattice as
Qcore⇒Qcore2@QQM2QQM~ref!#, where QQM are effective ionic
charges in the quantum cluster, andQQM~ref! are the effective ionic
charge in the perfect lattice. The arrows indicate that calculation of
the lattice polarization and of the electronic structure and the geom-
etry of the quantum cluster embedded in the electrostatic potential
of the polarized lattice are carried out iteratively until the total
energy of the whole system does not change by more than a certain
criterion.
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Etot5EGULP2EGULP~cluster!2ECoul~cluster-environment!

1EQM~cluster!, ~1!

whereEGULP is the total energy of the crystal with defect
calculated using the Mott-Littleton method;EGULP~cluster! is
the total energy of the part of the region I which is substi-
tuted by the quantum cluster calculated as a free molecule
with frozen positions of the cores and shells using the inter-
atomic potentials;ECoul~cluster-environment! is the Coulomb
part of the interaction of the classical cores substituted by
quantum ions with the rest of the crystal; andEQM~cluster! is
the total energy of quantum cluster including its interaction
with the rest of the crystal. In this approach, the contribution
EGULP2EGULP(cluster)2ECoul~cluster-environment! includes
~i! the short-range interactions between the cluster ions and
the surrounding lattice, represented by the interatomic poten-
tials; and~ii ! the polarization energy of the lattice outside the
cluster.

To calculate the lattice polarization by the defect, the
whole system is treated using the Mott-Littleton technique.
To simulate the defect-induced changes of the charge distri-
bution inside the quantum cluster, the classical cores are lo-
cated at the positions of the nuclei of quantum ions with the
corresponding shells attached to them~see Fig. 1!. The
charge distribution in the perfect crystal calculated using the
same quantum-mechanical method in a periodic model is
used as a reference. The charges of the cores located at the
nuclei positions of quantum ions are modified with respect to
these in the perfect lattice asQcore⇒Qcore2@QQM
2QQM~ref!#, whereQQM are effective ionic charges in the
quantum cluster, andQQM~ref! are the effective ionic charge
in the perfect lattice obtained by the LUC method, both cal-
culated in INDO approximation.17 The GULP code uses the
modified effective charges and positions of the cores in order
to adjust the positions of the shells inside and of the cores
and shells outside the cluster. This simple approximation is
adequate for the present case because the hole is well local-
ized in both one- and two-center states. More explicit repre-
sentation of the electron density using, for instance, multi-
pole moments must be used in more complex cases.

The response of the polarized lattice is then given in a
form of the lattice polarization energy and an electrostatic
potentialf i produced by the cores and shells outside the
cluster at the position of each nucleii inside the quantum
cluster. This potential, though, is calculated using not the
formal ionic charges employed in the parametrization of the
shell model, but those obtained for the perfect lattice using
the LUC method~see Fig. 1!. Since the quantum-mechanical
charges are different from the formal ionic charges used in
the Mott-Littleton model, this ensures a homogeneous charge
distribution across the cluster border. Note thatf i includes
both the Madelung term and the dipole polarization term
which were both subtracted in Eq.~1! to avoid double count-
ing. The diagonal matrix elements of this potential calculated
on atomic orbitalsm, ^muf i um&, are then added to the Fock
matrix for the calculation ofEQM~cluster!. The total energy
of the whole system including the quantum cluster embedded
in the infinite polarizable lattice is minimized with respect to
the LCAO coefficients, positions of the nuclei inside the
cluster and of the cores and shells of the rest of the crystal.

Use of the approximate INDO method allows us to calculate
large quantum clusters~up to 150 ions in this study! and to
make sure that ions on the cluster border are not significantly
perturbed by the defect. Therefore the described method pro-
vides a smooth boundary for the embedded cluster. Inside
the cluster, the inertial part of the lattice polarization is ac-
counted for completely whereas the electronic part is treated
in the INDO approximation. The calculation of the lattice
polarization and of the electronic structure and the geometry
of the quantum cluster embedded in the electrostatic poten-
tial of the polarized lattice are carried out iteratively until the
total energy of the whole system does not change by more
than a certain criterion~usually 0.001 eV!.

Optical-absorption energies for the hole states were cal-
culated using the configuration interaction method taking
into account single-electron excitations~CIS!.20 In embedded
molecular cluster calculations boundary effects and the sym-
metry of the quantum cluster can affect the symmetry of
delocalized states of the hole. To eliminate this effect, we
also made calculations using periodic boundary conditions
for a unit cell K32I 32. Since the unit cell for the system with
a hole should be neutral it included an Ag1 ion on one of the
cation sites which is known as a good electron-trapping cen-
ter. The INDO parameters for this ion were taken from our
previous calculations26 of the hole trapping in AgCl. In the
triplet state of the system the excited electron becomes com-
pletely localized in the Ag0 state where the hole is delocal-
ized by the unit cell if no special lattice relaxation is in-
cluded.

III. RESULTS OF CALCULATIONS

We apply the static approach described above first to con-
sider the one-center hole polaron state and then a model of
its transformation into the state where the hole is delocalized
by two nearest anions.

A. The one-center state

To find the geometric and electronic structures of the hole
in one-center state, we first fixed the position of the I atom
carrying the hole in the lattice site whereas all other crystal
ions were allowed to relax. For comparison, the relaxed con-
figuration of this state was calculated using both a cluster
model, accounting for the lattice polarization, and periodic
LUC model.@K 24I 24] quantum cluster and a$K 31I 32Ag% unit
cell were used in these studies. The two calculations gave
very similar results for the displacements of ions nearest to
the I atom carrying the hole~see Fig. 2!; the difference in
ionic displacements for completely relaxed state does not
exceed 0.01a. The nearest-neighbor cations are displaced
outwards by about 0.1a and the next nearest-neighbor anions
are displaced inwards by about 0.015a. The relaxation en-
ergy S calculated using the cluster model as a difference
between the energy of the completely relaxed state and that
without core displacements from their perfect lattice sites,
when only the electronic polarization responds to the pres-
ence of the hole, is equal to 1.3 eV.

The hole in the one-center relaxed configuration almost
completely occupies one of the threep spin orbitals~let us
for convenience consider thepz spin orbital!. The spin den-
sity on this orbital is about 0.95e (e is the electron charge!.
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This hole state is threefold degenerate and the ionic configu-
ration hasD4h symmetry due to a Jahn-Teller lattice distor-
tion. This distortion is mainly induced by the difference in
the interaction of the singly occupiedp atomic spin-orbital
of the central anion with the nearest cations and thep orbit-
als of the four anions located in thexy plane perpendicular to
the hole orientation and the eight nearest-neighbor anions in
the xz and yz planes~see Fig. 2!. However, the calculated
displacements of the latter anions are only about 0.015 Å
larger than those in thexy plane. The energy difference be-
tween the completely symmetric (Oh) and distorted (D4h)
configurations~which is the adiabatic barrier between the
three equivalent minima! in our calculations does not exceed
0.01 eV.

The perturbation produced by the hole charge and the
lattice distortion induces a series of electronic states having
the defect symmetry. However, in a finite embedded molecu-
lar cluster, where all electronic states are localized within the
cluster, the degree of localization of the states due to defect-
induced perturbation can be exaggerated. To check this
point, we compared the calculations for the completely
relaxed one-center hole in the clusters (33333)
@K 14I 13], (43433) @K 24I 24], and (63535) @K 75I 75# and
a periodic cell$K 31I 32Ag% which have different numbers of
electrons, symmetry, and boundary conditions. In the first of
them, the hole was localized on the central I ion. In the three
other systems, the center of symmetry was not located on the
lattice site and the symmetry of the cluster with the localized
hole was much lower. In all four cases hole-induced elec-
tronic states are formed. They can be identified by the sym-
metry of their molecular orbitals which corresponds to the
hole symmetry,D4h , and by the energies and matrix ele-
ments of the electronic transitions from these states to the
single-occupied hole state. The latter depend entirely on the
strength of the defect-induced perturbation. The values of the
polarization potential are different on the anion carrying the
hole and on surrounding anions. This leads to an additional

splitting of the hole electronic states and affects optical-
absorption energies of the hole especially in the one-center
state.

Optical absorption by a small radius polaron has been
considered by many workers in conjunction with the polaron
conductivity~see, for example, Refs. 27 and 28! and polaron
holes trapped by defects in oxides.29 In a two-site model, the
optical absorption was considered to be due to a Franck-
Condon electron excitation to the state localized on another
polaron site. For the stationary one-center polaron case, our
model generalizes this picture as it takes into account the
possibility of the hole delocalization by all nearest-neighbor
sites and considers a more realistic hole wave function. In
the completely symmetrical configuration, the allowed tran-
sitions are fromE1g andA1g states to the single occupied
E1u hole state. Accordingly, instead of a single transition one
should expect two groups of allowed transitions. These are
indeed observed in our calculations.

Calculations of the optical-absorption energies and the
matrix elements of the corresponding dipole electronic tran-
sitions for the relaxed state of the one-center hole were made
using the CIS method. For the cluster@K 14I 13] the CIS cal-
culations were performed for allp states of anions and all
empty states of cations~that is to say for the I 5p valence
and K 4s conduction bands!. For two other clusters, the same
number ~about 900! of excited configurations were used
which were chosen according to the local defect symmetry in
order to include all potentially important states. The transi-
tions with the largest matrix elements for the cluster
@K 14I 13] include az-polarized transition with the energy 2.0
eV, two degeneratex andy polarized transitions of 2.1 eV,
and onez and two degeneratex, y transitions with close
energies of 2.8 eV. Two larger clusters gave similar results
with energies of 2.2, 2.4, and about 3.6 eV and the matrix
elements having very similar relative values to those ob-
tained for the former case. Quantitative differences in the
transition energies and matrix elements are considerable
mainly because of the difference in the cluster charges which
imposes a shift in the energy levels. Nevertheless, the agree-
ment between transition energies and their splitting calcu-
lated for different clusters is satisfactory.

The nature of these charge-transfer transitions can be de-
scribed in terms of local and resonance defect electronic
states. Local states are usually split from the bands whereas
resonance states are more delocalized and their energies are
located within the bands. We should note that the notion of
resonance states induced in occupied or empty electron
bands by a defect is well defined only for an infinite crystal30

~see also discussion in Ref. 15!. To classify the defect states
in a cluster model, one needs to estimate the position of the
hole ground stateEh with respect to the optical excitation
from the top of the valence band. This is the lower limit of
the ‘‘optical’’ hole delocalization energy which determines
an approximate energy range within which electronic transi-
tions are originated from the local states. One way to deter-
mineEh is to calculate the electron affinityA of the center
and then to subtract it from the energy of the interband op-
tical excitation,Eg . In this caseEh5Eg2A. Alternatively,
one can calculate the energies of the electron transitions from

FIG. 2. Schematic representing the first, second, and third
neighbors of the I atom carrying the hole in KI and the nature of the
hole ~unoccupied molecular orbital!. The arrows point into the di-
rections of the ionic displacements. Only a symmetry unique por-
tion of the local defect structure is shown.
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the delocalized electronic states~simulating the ‘‘band’’
states in the cluster calculation! to the single-occupied hole
state.

For comparison, we calculatedEh using both methods in
the cluster@K 24I 24#. The value ofA calculated at core posi-
tions fixed in the relaxed one-center hole configuration and
shells allowed to relax was found to be equal 5.9 eV. The
optical band calculated in the same cluster is 7.8 eV. This
gives Eh51.9 eV. On the other hand, the smallest optical
excitation energies from the delocalized cluster states to the
single-occupied hole state calculated using CIS are about 2.2
eV. The reasonable agreement between the two methods sug-
gests thatEh equal to about 2 eV can be a realistic estimate.
The optical transitions of the one-center hole state have
larger energies thanEh which implies that they originated
from the resonance states and should lead to hole delocaliza-
tion.

This hole delocalization from one site over several lattice
sites should be accompanied by the change in the lattice
polarization which was not taken into account in our CIS
calculations. To check how this can affect the calculated
optical-absorption energies, we used the self-consistent-field
~DSCF! technique, i.e., calculated some of the transitions as
the difference between the total energies of the ground and
excited hole states with the self-consistent account of the
lattice polarization in both states. We should note that be-
cause of the hole delocalization these calculations are diffi-
cult to converge. Therefore our estimate is based on a suc-
cessful calculation for one transition corresponding to that
with an energy of about 3.6 eV. We compared the transition
energy calculated for the electron excitation at the same po-
sitions of the cores and shells as in the ground state~as in the
CIS calculations! with that in which the shells were allowed
to relax in the excited state and the self-consistency proce-
dure has been completed. After the shell relaxation according
to the new hole distribution the transition energy became
smaller by 0.3 eV. If we apply this shift to all transitions
calculated using CIS in the same cluster, they become 1.9,
2.1, and 3.3 eV.

Obtained optical-absorption energies are in the range of
the splitting and positions of the maxima of the absorption
bands observed at 0.3 ps after the excitation pulse at both
room and liquid-nitrogen temperature in KI.1 However, since
the real stage of the hole relaxation process at each measure-
ment time is unknown, it is impossible to establish a direct
correspondence between the theoretical results and the ex-
perimental transient absorption spectra. In particular, the ex-
perimental spectra1 demonstrate a clear shift of the maxi-
mum of the lower energy absorption band to higher energies
by about 0.1 eV on the time domain from 0.3 to 0.7 ps. One
natural explanation of this observation could be that the
spectrum at 0.3 ps does not correspond to a completely re-
laxed state. In terms of our model, this would mean that the
average positions of the ions surrounding the I bearing the
hole have not yet displaced to their ‘‘equilibrium’’ positions
~it makes sense to speak about averaging because 0.7 ps
already corresponds to several lattice vibrations!. The equi-
librium displacements of cations in a completely symmetri-
cal configuration of the hole~0.35 Å! are much larger than
these of the next-nearest-neighbor anions. To check a quali-
tative tendency, we assumed that the cations were those

which did not relax and calculated the optical absorption of
the one-center state corresponding to the displacements of
the nearest cations by 0.30 and 0.25 Å in the embedded
cluster @K 24I 24]. In qualitative agreement with the experi-
ment, the calculated spectrum demonstrated an almost het-
erogeneous shift by about 0.2 and 0.4 eV to smaller energies
with respect to the fully symmetrical configuration.

B. Transformation from one-center into two-center state

The total energy of the fully symmetrical one-center hole
polaron state in KI is 0.44 eV lower than that for the state
where the hole is equally shared between the two nearest
anions located in the perfect lattice sites and the positions of
all other ions are optimized. However, both of these states
are not stable with respect to the displacement of the two
anions closer to each other. Sections of the adiabatic poten-
tial with respect to the symmetrical displacements of the two
I ions towards each other and all other polarizable ions ad-
justing their positions are shown in Fig. 3. Curves~a! and~b!
differ in the hole distribution: in~a! the hole is initially lo-
calized on one of the I ions and remains strongly localized on
it until the two curves cross; in~b! the hole is equally shared
throughout by two I ions. One can see that the curve~a! is
very flat before the crossing point at 4.1 Å which coincides
with the change of the electronic configuration from~1,0! to
~1/2,1/2!. This behavior of the adiabatic potentials results
from the competition between two main factors:~i! the
chemical bonding between two iodines, and~ii ! the lattice
polarization. The latter factor is treated self-consistently with
respect to the charge-density distribution and favors the one-
center hole localization. Therefore chemical bond formation
is a crucial factor which requires accurate treatment.

As has been shown in our recent study of Cl2
2 molecular

ion, without the symmetry constraint, the UHF equations al-
ways have a broken symmetry solution at distances which
are larger than the equilibrium interatomic distance.31 It has
lower energy than a symmetrical one and corresponds to the
predominant localization of the excess electron on one of the

FIG. 3. The adiabatic potential with respect to the symmetrical
displacements of the two I ions towards each other and all other
polarizable ions adjusting their positions. In~a! the hole is initially
localized on one of the I ions and remains strongly localized on it
until the two curves cross; in~b! the hole is equally shared through-
out by two I ions.
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atoms. This effect has been observed in other systems~see,
for example, Ref. 32! and has a simple explanation.33 How-
ever, the dissociation energy corresponding to the broken
symmetry solution of Cl2

2 was obtained to be only 0.4 eV,
which is 0.8 eV smaller than the experimental value. As has
been demonstrated in Ref. 31, this can be improved if one
takes into account electron correlation. After the correlation
correction has been added to the total energy, the symmetri-
cal solution became lower than the broken symmetry one,
and the energy difference between them was less than 0.1
eV. A similar effect must take place also in the case of I2

2

molecular ion, however correlated calculations are yet to be
performed.

The semiempirical technique allows us to mimic qualita-
tively correct behavior of both broken symmetry and sym-
metrical solutions due to the restricted basis set employed
and the choice of parameters. In our calculations, the free
I 2

2 molecular ion has an equilibrium distance of 3.3 Å and a
dissociation energy of 1.24 eV which are close to 3.28 Å and
1.08 eV calculated by Tasker, Balint-Kurti, and Dixon for
the symmetrical solution using anab initio UHF method.34

The symmetrical solution has a lower energy than the broken
symmetry solution and the latter does not exist at I-I separa-
tions smaller than 5 Å . In KI crystal, when two iodines are
displaced towards each other to a distance more than 4.1 Å
the one-center hole localization can be therefore imposed
only by the lattice polarization. At shorter distances, forma-
tion of the chemical bond between iodines enforces a sym-
metrical charge distribution. This technique allows us to
check this effect numerically by starting from the symmetri-
cal charge density distribution between the two iodines and
allowing the system to find the energy minimum correspond-
ing to a consistent charge distribution and lattice polarization
without additional constraints. Although this method is not
rigorous and does not properly take into account the electron
correlation, it nevertheless allows us to demonstrate an im-
portant qualitative effect that the one-center hole polaron
state once formed will not collapse into the two-center state
immediately, but this requires the iodine ions to come closer
than some critical distance. Before that happens, the hole
will remain localized on one of the ions. Dynamics of the
system relaxation from the one-center into the two-center
state is beyond the scope of this paper. We should note that
a similar effect has recently been demonstrated in the calcu-
lations of I21I combination in polar solutions.35,36

The result that the one-center state is in fact a saddle point
and the flatness of the adiabatic potential suggest that the
geometry of the one-center state will be always distorted and
therefore it is interesting to check how the results of the
previous section will change for some plausible distortions.
Assuming that the one-center state, if formed, will relax into
the two-center state we have calculated the optical absorption
at several I-I distances during the initial stages of this pro-
cess. We first considered displacements of one I ion towards
the iodine bearing the hole by 0.025, 0.07, and 0.17 Å and
secondly the symmetrical displacement of the ion with the
hole and another ion towards each other to a distance of 4.34
Å. The results can be summarized as follows. At small dis-
placements of one ion the main features of the spectrum
discussed for the fully symmetrical configuration remain the
same except that the degenerate states split. In addition, a

transition corresponding to the hole transfer from the I0 to
the displaced ion appears. The energy of this transition is
about 2.8 eV. In the case of the strong displacement of the
ions towards each other, the original spectrum is more per-
turbed with several transitions occurring in the energy range
between 2.1 and 3.1 eV. It is interesting to compare these
energies with the polaron theory28 which predicts the energy
of the optical transition from small radius polaron as twice
the polaron lattice relaxation energy 2S. This value in our
calculations is equal to 2.6 eV which is in the range of the
experimentally observed optical transition energies.

It is plausible to assume that when the interaction or some
vibrational fluctuation brings two anions to a distance which
is shorter than the critical distance necessary for formation of
the symmetrical electronic state, the latter gradually relaxes
into theVK-center configuration. This process is mainly de-
termined by the cooling relaxation of the valence vibration of
I 2

2 molecular ion~the wave number of this vibration ob-
tained in our calculations is 150 cm21, which is larger than
experimentally detected37 115 cm21). This should corre-
spond to the broad adsorption band due to the loss of coher-
ence between different relaxing centers. Calculation of the
characteristic time of this process performed in Ref. 38 has
demonstrated that it takes several picoseconds. This is in
good agreement with the observation1 that the time of the
second stage of the spectrum transformation, characterized
by the broad featureless band, and appearance of the optical
absorption of theVK center, is about 4 ps at liquid-nitrogen
temperature.

The relaxed two-center state of the hole which corre-
sponds to theVK-center configuration was calculated in the
same quantum clusters as the one-center state. The energy of
this configuration is lower than that for the one-center state
by about 0.3 eV. This value is similar to 0.27 eV, which is
the activation energy of theVK-center diffusion in KI.39 As
has been shown in the study of the mechanism of a 60°
reorientation ofVK centers in KCl,

40 the saddle point for this
process has an energy close to the one-center state of the
hole. Therefore we consider 0.3 eV to be a good estimate of
this quantity. The optical absorption of theVK center in KI is
discussed in Ref. 15.

IV. DISCUSSION

The optical transition energies for the one-center hole po-
laron state and several possible intermediate states corre-
sponding to the hole relaxation calculated in this paper are
close to the maxima of the experimentally observed transient
optical-absorption spectra in KI. This implies that this state
can be considered as a candidate for the transition hole state
corresponding to the first stage of the hole self-trapping in
this crystal. Let us now discuss possible reasons for and the
mechanisms of the hole trapping in this state.

The static criterion

One simple argument is based on the static energetic cri-
terion that the self-trapped state should have the energy
lower than the bottom of the free hole band, i.e.,Est should
be negative. The band-structure calculation of the KI using a
relativistic technique22 has demonstrated that spin-orbit ef-
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fects split the upperp valence band into two nonoverlapping
subbands. The two-photon excitation with an energy of 8 eV
produces holes in the upper subband with the angular mo-
mentumJ53/2. The width of this subband calculated using
a relativistic mixed basis method and a ‘‘muffin-tin’’
potential22 was found to be equal to about 1 eV whereas the
width of the spin-orbit split valence band is 1.82 eV. This is
about 1 eV smaller than the experimental value21 of 2.8 eV.
The valence band width obtained in our calculation without
the spin-orbit interaction is 2.05 eV, which with the addition
of the spin-orbit splitting gives 2.95 eV.

The localization energyB for the localized one-center
state in the Wannier representation is determined by the po-
sition of the ‘‘center of mass’’ of the density of states~DOS!
in the valence band. For a symmetrical DOS it can be calcu-
lated as a half of the valence band width.3,6 As has been
shown in calculations ofB which were made for KCl,5

AgCl,26 and MgO,13 a more accurate value is usually smaller
than this estimate by abut 20%. This is due to an angular
dependence of transfer integrals forp orbitals which is ne-
glected in this simple approximation.5 Therefore a conserva-
tive estimate for the upper limit of the localization energy
B of the one-center hole is half of one of the two split sub-
bands,1.0 eV. Then the self-trapping energy for the one-
center hole states can be estimated asB2S<20.3 eV. This
is close to the results obtained in previous calculations for
other cubic crystals such as KCl (20.2 eV!,40 MgO (20.4
eV!,13 AgCl (20.1 eV!.26 We should note that the spin-orbit
splitting does not affect the value of the relaxation energy
which depends on ionic polarizabilities. In particular, theS
value in KI is larger than in KCl, where it was calculated
using the same technique to be 1.1 eV. However, in KCl the
valence band is effectively wider, which gives the smaller
Est than in KI.

These estimates suggest that the self-trapping energy of
the one-center polaron state in KI can be negative and there-
fore it can exist as a metastable state. However, this does not
answer the question why holes produced by crystal excita-
tion prefer to be trapped first in this state but not, for in-
stance, in the two-center state.

‘‘Nucleation state’’

Sumi considered a similar problem with respect to exciton
self-trapping11 and proposed that at low temperatures the free
exciton should first tunnel into some so-called ‘‘nucleation
state.’’ This is essentially an already appreciably relaxed
state corresponding to a certain degree of localization of the
particle. Using the phenomenological approach and the
theory of nonradiative tunneling transitions he calculated the
tunneling rate between the free and different nucleation
states of the exciton as a function of the parameters of the
Hamiltonian~localization and relaxation energies! and tem-
perature, and has demonstrated that the nucleation state
should have the scale of a lattice constant. These calculations
demonstrated that the tunneling rate is extremely sensitive to
the energetic parameters. Apparently at some their combina-
tion one can obtain a rate close to the experimental value, but
in reality one should consider a distribution of energetic pa-
rameters corresponding to the lattice fluctuations at a given
temperature.

These fluctuations are of the same nature as those leading
to the exponential behavior of the one-electron density of
states and the Urbach optical-absorption edge in alkali ha-
lides and other crystals~see, for example, Refs. 28 and 41!.
For three-dimensional crystals, a critical strength of a Gauss-
ian fluctuation of potential necessary to produce a bound
state has been evaluated in Ref. 42. For a fluctuation param-
etrized by a depthV0 and a rangea, a dimensionless quan-
tity 2ma2V0 /h

2 has been found to be equal 2.95, wherem is
the electron mass. If one assumes the range of the fluctuation
a equal to the lattice constant, in KI this would correspond
to V050.231 eV. For a simple estimate one can assume fur-
ther that this fluctuation is produced by a symmetrical out-
ward displacement of the six cations surrounding one iodine
ion. For the formal ionic charge of 1.0e, the displacement
necessary to produce such a fluctuation of the potential is
about 0.01a, wherea is the interionic distance. Although
such fluctuations are readily available even at low
temperatures,43 they correspond to rather delocalized states
centered at one lattice site which are impossible to study
using the present technique and localized basis set. Therefore
more detailed studies of the lattice fluctuations and corre-
sponding holes states are needed to elaborate this point.

Another effect which has not yet been properly under-
stood is the much lower optical density of theVK centers
with respect to the initial absorption spectrum. One of the
possibilities is that, since the self-trapping energy for the
one-center hole state is small, i.e., it is close to the bottom of
the free hole band, part of the holes can be thermally delo-
calized. This can correspond to the intermediate case which
has been discussed by Sumi:44 while the small polaron state
is energetically stable, the thermally populated large polaron
states play a dominant role in polaron conduction. This
would explain the considerable decay of the number of holes
by their fast band motion to the acceptors. However, we
should note that this process competes with the two-center
state formation which immobilizes the hole. Therefore, more
data for different crystals, temperatures, and concentrations
of impurity are needed to understand this phenomenon in
more details.

Since our method does not take into account the spin-orbit
interaction on I and employs a valence-only approximation,
it can be considered as representing some general cubic
MX (M is alkali atom! crystal with a relatively narrow va-
lence band. From the point of view of the model discussed in
this paper, there is no reason why similar temporal evolution
of the hole cannot occur in other crystals providing the static
criterion for the one-center polaron state is fulfilled, i.e., the
relaxation energy is larger than the localization energy. How-
ever, this depends on individual crystal. Likely candidates
could be KCl whereEst was found to be20.2 eV, or KBr
which has similar dielectric constants to that in KI and rela-
tively narrow valence band@2.6 eV ~Ref. 21!#.

Finally, we would like to note the similarity of the pro-
cesses of the hole transformation from the one-center state
into theVK center in KI with the I1 I 2↔I2

2 combination
reaction in solutions. As has been calculated in Refs. 35 and
36, because of the competition between the solvent polariza-
tion and chemical bond formation, in the latter process the
transformation from~1,0! into ~1/2,1/2! state also occurs at
some critical distance~3.45 Å in acetonitrile!. However,
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since the dielectric constant of the acetonitrile is 37.5, which
is several times larger than in KI, the combination process
even has some small barrier and the critical distance is much
smaller than found in this paper for KI.
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