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The symmetry properties of theXH3-type molecules are investigated. The possible wave functions of the
molecule in the ground electronic state are calculated in the Born-Oppenheimer approximation and the ques-
tion of the symmetry group of the molecular Hamiltonian~C3 or C3v or other! is considered. Further, the
concept of quantum coherence is examined for the case of tunneling methyl groups. The results are extended
to the high temperature region by introducing a suitable ‘‘pointer basis’’ which appears to be appropriate for
the description of dynamics of the methyl groups interacting with lattice. Finally, the spin-lattice relaxation
time is calculated within this model and is found to agree closely with the semiclassical result.
@S0163-1829~96!09126-6#

I. INTRODUCTION

The rotational motion of hindered methyl groups in solids
has been a subject of considerable interest and research ac-
tivity in recent years. Its single particle aspects have been
thoroughly described in Ref. 1. However, the most interest-
ing aspect of the methyl dynamics and the one which, in our
opinion, is still not yet completely understood, is the continu-
ous transition from quantum mechanical tunneling at low
temperatures to the apparently classical reorientation, or ran-
dom hopping motion, at higher temperatures.1

The proper quantum mechanical description of this phe-
nomenon valid at all temperatures involves, in general, a
complicated many-body Hamiltonian for which no simple
solution can be found. To make the problem tractable, a
single methyl group is usually considered, interacting with
the host lattice vibrations described as a heat bath at well
defined temperature. At low temperatures, in the tunneling
regime, the dynamics of methyl groups can be adequately
described in terms of spin-rotational wave functions com-
monly chosen to belong to theA-type irreducible represen-
tation of the point groupC3.

1 Increasing the temperature, the
question arises of the appropriate basis of the methyl group
wave functions—let us call it ‘‘pointer basis’’2,3—that would
lend themselves naturally, in the high temperature domain, to
the interpretation of the associated methyl dynamics in terms
of random rotational jumps as envisaged by Press.1

The correctness of the ‘‘standard’’ spin-rotational wave
functions classified according to the irreducible representa-
tions of theC3 point group

1 has been questioned in papers by
Cloughet al.,4 and Stevens.5 The authors argue that the me-
thyl wave functions should be classified according to the
irreducible representations of the symmetry groupC3v rather
thatC3. Then, in order that the Pauli exclusion principle be
satisfied also for single permutations, the total wave function

is required to belong to theA2 irreducible representation of
C3v. While it is undoubtedly true that the total wave function
must transform under theC3v symmetry operations in accor-
dance with the Pauli exclusion principle, the introduction of
the groupC3v instead ofC3 at the outset of the calculation
brings, in our opinion, no novel features in the description of
real methyl groups. We maintain that from a practical point
of view, the ‘‘standard arguments’’ as presented in Ref. 1,
and repeated very carefully in Refs. 4 and 5, are perfectly
legitimate. Moreover, we would like to stress that the use of
collective angular coordinates for the description of methyl
rotational motion in no way restricts the rigorous implemen-
tation of the Pauli exclusion principle, contrary to what is
sometimes erroneously suggested.

In Sec. II the problem of the appropriate symmetry point
group,C3 or C3v, and the proper use of the Pauli exclusion
principle in determining the wave functions and energy lev-
els is discussed. In Sec. III, the question of the appropriate
basis, the ‘‘pointer basis,’’ of the methyl group wave func-
tions consistent with the Pauli exclusion principle is outlined,
and its observational consequences regarding the high-
temperature spin-lattice relaxation time are considered.

II. SYMMETRY CLASSIFICATION OF THE ENERGY
LEVELS OF TUNNELING METHYL GROUPS

In discussing the symmetry properties of anXH3-type
molecule of which the methyl group is an example, the Born-
Oppenheimer approximation6 enables one to write the com-
plete molecular wave function as a product of the electronic
and nuclear parts. We shall consider only the nuclear part of
the wave function, as it is an experimental fact that the
ground electronic state of almost all stable polyatomic mol-
ecules is completely symmetric under the operations of the
underlying symmetry group.

PHYSICAL REVIEW B 1 JULY 1996-IIVOLUME 54, NUMBER 2

540163-1829/96/54~2!/955~7!/$10.00 955 © 1996 The American Physical Society



In molecules possessing symmetrical equilibrium con-
figurations, it is convenient to choose three Cartesian coor-
dinates determining the position of the center of mass of the
molecule, the three Euler angles~w, q, x! describing the
orientation in space of a set of rotating coordinate axes~j, h,
z! whose origin coincides with the center of mass, and
3N26 ~N being the number of the nuclei! normal coordi-
nates which determine the positions of the nuclei relative to
each other in the rotating coordinate system. Choosing the
origin of the rotating coordinate system to coincide with the
center of mass of the molecule does not suffice to define
completely the rotating coordinate system. This problem,
however, has a purely mechanical significance and arises
whenever one attempts to separate the vibrational motion of
a system of particles from its rotational motion. It turns out
that a reasonable formulation of ‘‘pure’’ vibrations and
‘‘pure’’ rotations is obtained if the second Eckart-Sayvetz
condition is imposed.7,8

Once a suitable system of coordinates has been chosen,
one can write down the appropriate Lagrangian function and
derive from it the corresponding quantum mechanical Hamil-
tonian. The details of the calculation are given, for example,
in Refs. 9 and 10. In particular, the Hamiltonian separates
naturally into translational, vibrational, and rotational parts
together with a vibration-rotation coupling term. In many
molecules, including most of the simple ones, the vibrational
amplitudes, corresponding to a given equilibrium configura-
tion of the nuclei, are small and the Coriolis interaction terms
may be neglected. In addition, it is possible, in this case, to
choose the rotating axes~j, h, z! to coincide with the prin-
cipal axes of inertia of the molecule, resulting in a further
simplification of the Hamiltonian.

The potential energy of a molecule embedded in a solid
lattice can be approximated by a sum of external field terms
and the vibrational potential energy,

V5(
i51

N

Ui~R1r i !1U~$Qk%!, ~1!

whereR gives the position of the center of mass,r i , the
position of thei th nucleus with respect to the center of mass,
and $Qk% denotes the set of normal vibrational coordinates.
The potential energy termsUi are assumed to have the same
form for identical nuclei. For small vibrations,~1! can be
further simplified by takingUi~R1r i!>Ui~R1r0i! for all i ,
wherer0i is the equilibrium position of thei th nucleus. For a
given value ofR, the variousr0i referring to identical nuclei
are related to each other by symmetry operations of the mo-
lecular point group. The sum( iUi~R1r0i! is therefore in-
variant with respect to these symmetry operations and may
be expressed in terms of the Euler angles~w, q, x! which we
define in accordance with Ref. 10.

Making use of the above simplifications together with the
harmonic approximation, and omitting the motion of the
center-of-mass of the molecule, the molecular Hamiltonian
for an XH3-type molecule embedded in a solid lattice
becomes9,10

H5~J2/2I A!1~Jz
2/2!~1/I C21/I A!1V~w,q,x!

1~1/2! (
k51

3N26

~Pk
21lkQk

2!. ~2!

Jj , Jh , andJz are the components of the total angular mo-
mentumJ of the top, andI A5I B , I C are the principal mo-
ments of inertia. Thez axis is chosen to coincide with the
symmetry axis of the molecule;Pk are vibrational momenta
conjugate to normal coordinatesQk . Three degrees of
freedom—translational motion of the center of mass of the
molecule—have been omitted in~2! since they have no ef-
fect on the rotational motion. Due to the form of the Hamil-
tonian ~2!, the complete wave function of the molecule
~omitting the electronic part! can be written as a product

c total5cvc rcs , ~3!

wherecv , cr , andcs represent the parts of the wave func-
tion dependent, respectively, on vibrational$Qk%, rotational
~w, q, x!, and spin coordinatess ~s1,s2, . . . ,sN represent-
ing spin components of the nuclei along some chosen direc-
tion in space! which refer to identical particles of the mol-
ecule~protons!. Since each of the component wave functions
belongs to one of the irreducible representations~IR! of the
symmetry group of the molecular Hamiltonian, the represen-
tation G~total! to which the total wave function belongs is
given as a direct product

G~ total!5Gv^ G r ^ Gs , ~4!

and is, in general, reducible. If the symmetry group of the
Hamiltonian isC3v, which is not always the case, thenGv ,
Gr , andGs represent IR’sA1, A2, orE. Although the general
case presents no difficulties, let us assume the molecule to be
in the ground vibrational state which is always completely
symmetric underC3v.

9–11 In this case the symmetry of the
total wave function is determined byGr ^Gs . Not all of these
direct products are allowed, however, because of the Pauli
exclusion principle imposing specific requirements on the
behavior of the complete wave function with respect to the
permutations of positions and spins of identical nuclei. Be-
causeC3v is isomorphic to the permutation group of three
particles and since the protons are fermions this implies that
G~total! must belong to theA2 IR. The possible spin symme-
try speciesGs based on spin functionsus1s2s3& ~eachsi can
take on the values61/2! are either of typeA1 or E.

1 Conse-
quently, the allowed symmetry species of the rotational wave
functions areA2 andE with nuclear statistical weights 4 and
2, respectively11 ~we are omitting the multiplicity due to the
spin of theX nucleus!. The products~4! which are compat-
ible with the exclusion principle are thusG r

(A2)^ Gs
(A1) and

G r
(E)

^ G s
(E) (Gv[A1). Moreover, the two wave functions be-

longing to the one-dimensional representationsA1 and A2
contained inG r

(E)
^ G s

(E) are given as11

c r ,1
~E!cs,2

~E!6c r ,2
~E!cs,1

~E! , ~5!

wherec r ,1
(E), c r ,2

(E) and c s,1
(E) , c s,2

(E) are partners of the two-
dimensional IR’sE.
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In what follows, we consider anXH3-type molecule in a
three fold hindering potential. The corresponding results per-
taining to freeXH3-type molecules can be found in Refs.
11–14.

In case of nonzero threefold hindering potential
V(w,q,x)[V(x)5(V3/2)~12cos 3x!, w,q5const, the rota-
tional eigenvalue equation is the Mathieu equation.15 Ac-
cording to Floquet’s theorem, the rotational wave functions
can be written in the form

cs
~ l !~x!5eisx (

n52`

`

An,s
~ l ! ei3nx, ~6!

wheres50,61, andl50,1,2, . . . is recognized, in the limit
of infinite hindering potential, as the librational or torsional
quantum number. Wave functions withs561 representE
symmetry species while those withs50 generate one-
dimensional representations. In the limit of strong hindering
potential and for not too large values ofl , the functions
c s
( l )~x! may be approximated by Bloch sums of the form16

cs
~ l !~x!>~1/) !(

j
«s jH ~ l !~x2 j2p/3!, j50,61. ~7!

H ( l )(x2 j2p/3) are the harmonic oscillator functions cen-
tered at the minima of the hindering potential and obeying
the relationH ( l )(x)5(21)lH ( l )(2x). Note that they refer
to the state of the molecule as a whole not to that of single
protons.

The spin-rotational functions which obey the Pauli exclu-
sion principle are

„c0
~ l !~x!6c0

~ l !~2x!…H uaaa&
@ ubaa&1uaba&1uaab&#

@ uabb&1ubab&1ubba&#
ubbb&

~8a!

cs
~ l !~x!H @ ubaa&1«suaba&1~«* !suaab&#

@ uabb&1«subab&1~«* !subba&#J
6cs

~ l !~2x!H @ ubaa&1~«* !suaba&1«suaab&#

@ uabb&1~«* !suaba&«subba&# J ,
sÞ0, ~8b!

and they are either ofA1 or A2 symmetry~«5e2ip/3, a de-
notes the spin projection value11/2, andb the value21/2!.
However, if the vibrational component hasA1 symmetry,
only the A2 type spin-rotational functions are permissible.
For example, if we takec s

(0)~x! as given by~7! then the6
sign in ~8b! gives theA1 andA2 type functions, respectively,
~8a!, on the other hand, yields only one nonzero function in
this case~for 1 sign! which is ofA1 symmetry.

Next, let us recall that the effective vibrational potential
energy can often have such a form that vibrational wave
functions have appreciable magnitude only in certain small
and fairly delocalized regions of the configuration space$r i%.
For each of these regions or vibrational domains the molecu-
lar Hamiltonian can be approximated by the expression~2!.
The domains are symmetrically equivalent and consequently
give rise to the same set of vibrational levels. The resulting
degeneracy is split, however, in higher-order approxima-

tion.17,18 It turns out that in the case ofXH3-type molecules,
one only needs to consider two distinct domains or, as they
are sometimes referred to,frameworks,17 which are not re-
lated to each other by rigid rotations of the molecule. Since
the rotational properties of each framework, denoted by the
superscriptsa andb, are the same, the complete wave func-
tion with the correctA2 symmetry is obtained by taking the
appropriate linear combinations of the lowest vibrational
wave functions associated with each framework. By analogy
with a ‘‘double-well’’ problem, we can write for the two
lowest vibrational states

cv
~0!;cv

~a!6cv
~b! . ~9!

The energy difference between these two vibrational states
depends on the height of the potential barrier separating the
two configurationsa andb. In mostXH3-type molecules the
barrier is so high that the states~9! are nearly degenerate
which implies that for a given torsional state both signs are
possible in~8b!. Therefore we now have a choice of using
either @for the sake of simplicity we choosel50 in ~8b!#

~cv
~a!6cv

~b!!$c1
~0!~x!@ ubaa&1«uaba&1«* uaab&]

7c21
~0! ~x!@ ubaa&1«* uaba&1«uaab&] % ~10!

or

cv
~a!c1

~0!~x!@ ubaa&1«uaba&1«* uaab&]

2cv
~b!c21

~0! ~x!@ ubaa&1«* uaba&1«uaab&], ~11!

together with another similar expression with the labelsa
andb interchanged. We can simplify the description of mo-
lecular energy levels still further by using the near orthogo-
nality of the statesc v

(a) andc v
(b) and taking into account the

fact that all the relevant matrix elements describing the time
evolution of the system, which are off-diagonal with respect
to the framework superscript, are vanishingly small. In other
words, no spectroscopic information gets lost if the classifi-
cation of the molecular energy levels is carried out with re-
spect to the subgroupC3 instead ofC3v.

III. QUANTUM COHERENCE AT LOW TEMPERATURES
AND THE ONSET OF CLASSICAL REORIENTATION

AT HIGH TEMPERATURES

Let us consider an ensemble of isolated methyl groups in
thermal equilibrium with a heat bath characterized by a tem-
peratureTL . As shown in the preceding section, the methyl
group wave functions may be written as

c l IM
~n! ~x,$s i%!5c l

~v !~x!cs
~v !* ~$s i%!, ~12!

where n5A, Ea , andEb , denoting IR’s of the symmetry
groupC3, has replaced the subscripts50, 61 introduced in
~6!. The spin functionsc s

(n) are identical, up to a normaliza-
tion factor, to the spin functions appearing in~8!, and are
also given, for example, in Ref. 1.I is the total proton spin
andM its z component.I takes on the values 1/2 and 3/2 and
there is a bijection betweenI and the symmetry speciesn,
viz. A↔3/2,Ea andEb↔1/2.

At low enough temperatures, only the lowest-lying tor-
sional states withl50 are populated. With increasing tem-
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perature, however, it soon becomes more convenient to
choose, instead of the basis~12!, a set of states$uci&% defined
as

^xuc1&5~1/) !@H ~0!~x22p/3!1H ~0!~x!

1H ~0!~x12p/3!#uaaa&, ~13a!

^xuc2&5~1/) !@H ~0!~x22p/3!uaba&1H ~0!~x!uaab&

1H ~0!~x12p/3!ubaa&]; ~13b!

the stateŝxuc3& and^xuc4& are obtained from~13b! by cyclic
permutations ofa’s and b’s, while ^xuci&, i55–8, are ob-
tained from~13! by replacinga’s with b’s and vice versa.
The new basis is approximately orthonormal as long as the
overlap between the harmonic oscillator functions
H (0)(x2 j2p/3), centered at different minima of the hinder-
ing potential, may be neglected. It is characteristic of the
statesuci& that they are orientationally localized to the extent
as this is consistent with Pauli exclusion principle and the
temperature range considered.

To discuss the phenomenon of quantum coherence as it
applies, in our opinion, to the problem of methyl groups
embedded in solid lattices, let us imagine that a methyl group
undergoes a ‘‘collision’’ with the lattice after which it is
found in one of the statesuci&. The density matrix immedi-
ately after the ‘‘collision’’ is thus given by the statistical
mixture with respect to the statesuci& as

r5(
j51

8

Pi~0!uc i&^c i u, ~14!

where Pi(0)5d i j , and j51,2, . . . ,8. At some later time
t.0, but before the next ‘‘collision’’ occurs, the time evolu-
tion of the density matrixr(t) is given by

r~ t !5exp~2 iHt /\!r~0!exp~ iHt /\!, ~15!

with H representing the rotational Hamiltonian~including, in
general, also the Zeeman term!. The populations
Pi(t)[Tr$r(t)uc i u&^c i u% of the statesuci& at time t are

Pi~ t !5(
j
Ai j ~ t !Pj~0!, i51,2,...,8, ~16!

where the matrixA is symmetric and can be written as a
direct sum 1%A8%A8%1 with A118 5A228 5A338 [a(t), and
A128 5A138 5A238 [b(t). Here,

a~ t !5~1/9!~514 cosvT
~0!t !, ~17a!

b~ t !5~2/9!~12cosvT
~0!t !, ~17b!

and v T
(0)[[E(0EM)2E(0AM)]/\, is the tunneling fre-

quency. Equations~16! and ~17! represent the phenomenon
of quantum coherence in the case of tunneling methyl groups
which is analogous to the well known problem of a particle
in the double-well potential.19 While in the double-well
problem one is dealing with coherent oscillations of the par-
ticle back and forth between the two potential minima, in the
present case the corresponding motion takes place with re-
spect to the statesuci& as defined by~13!. The label by which
the states~13! can be distinguished is thus not the orientation

of the methyl group but the location, with respect to the
minima of the hindering potential, of the spin down state.
This is a consequence of the Pauli exclusion principle which
insures that there is no discrimination between the three os-
cillator statesH (0)(x2 j2p/3).

It is well known,19 and it also follows directly from the
uncertainty principle,11 that the coherent oscillations dis-
cussed above are observable, in principle, only if the evolu-
tion of the system as described by~15! is left undisturbed
over times of the order at least 1/v T

(0). For barrier heights 10
meV<V3<70 meV this time covers the range 431029

sec<1/v T
(0)<331022 sec. Therefore, with increasing tem-

perature the increased methyl-lattice interaction will tend to
destroy quantum coherence. We can illustrate this by using a
rapid sequence of ‘‘collisionlike’’ processes discussed
above, analogous to the model considered previously, in a
different context, by Simonius20 and Harriset al.21We there-
fore assume that the methyl group is perturbed periodically
at time intervalst!1/v T

(0). During each time interval, the
density matrix evolves according to~15!, while each ‘‘colli-
sion’’ changesr(Nt), the density matrix immediately after
theNth collision, into a statistical mixture,

r~Nt!5(
j51

8

Pi~Nt!uc i&^c i u. ~18!

Here

Pi~Nt!5(
j51

8

„AN~t!…i j Pj~0!, ~19!

with the matrixA given by ~16! and ~17!. Choosing the ini-
tial conditionPi(0)5d i j such thatP3~0!51, taking into ac-
countv T

(0)t!1 and writingt5Nt, we obtain

S P2~ t !
P3~ t !
P4~ t !

D 5S 1/32~1/3!exp~2tvT
~0!2t/3!

1/31~2/3!exp~2tvT
~0!2t/3!

1/32~1/3!exp~2tvT
~0!2t/3!

D , ~20!

with the remainingPi(t)’s equal to zero. This result for the
probabilitiesPi(t) is formally identical to the classical hop-
ping result1 provided the hopping raten3 around the symme-
try axis of the methyl group is identified asn35(2/9)v T

(0)2t.
However, let us stress again that ‘‘hopping’’ is taking place
among the statesuci&, while the classical hopping as visual-
ized in Ref. 1 represents random jumps among the methyl
orientations corresponding to the minima of the hindering
potential.

To extend the above analysis to higher temperatures, we
assume that the set~13!, with the oscillator functions
H (0)(x2 j2p/3) replaced by some arbitrary functions
F~x2j2p/3! peaked sharply at the minima of the hindering
potential, continues to play the role of a suitable pointer
basis.2,3We could imagine this behavior to be a consequence
of continuous ‘‘monitoring’’ of the methyl motion by the
lattice. To check whether this has any observational conse-
quences distinct from the standard random jumps model we
shall analyze the spin-lattice relaxation as caused by the in-
tragroup dipole-dipole interactionHD .

Assuming that the energy values corresponding to the
states~13! may be approximated by the respective expecta-

958 54J. PETERNELJ, T. KRANJC, AND M. M. PINTAR



tion values, i.e.,Ei>^c i uHRuc i&2Mi\v0 , whereHR is the
rotational Hamiltonian,v0 the Zeeman frequency, andMi
the magnetic quantum number, we make use of the model of
Punkkinen and Clough22 in order to calculate the high-
temperature spin-lattice relaxation timeT1. As shown in
more detail in the Appendix, the result is

1/T15~5/2!~9/16!~12cos4q!@vD
2 tc /~11v0

2tc
2!#

1~9/16!~116 cos2q1cos4q!

3@vD
2 tc /~114v0

2tc
2!#, ~21!

whereq is the angle between the direction of the external
magnetic field and the symmetry axis of the methyl group,tc
is the correlation time, andvD is defined in the Appendix. It
is essential to note that in deriving this result one has to
retain, in the dipolar matrix elements^c i uHDuc j&, only those
terms which depend explicitly on the methyl rotation angle
x. This is required in order to be consistent with the inter-
pretation ofHD as a random function of time.

Comparing~21! with the corresponding semiclassical re-
sult as given, for example, in Ref. 23, we see that the results
are identical apart from an additional factor of 5/2 multiply-
ing the first term of~21!. This extra factor is a consequence
of the constraint imposed on the rate equations~A4! by ~20!,
requiring that theM561/2 states are characterized by a
single population number. This is correct as long astc!T1 .
The implications of~21! for the analysis of experimental
results will be discussed in the next section.

IV. CONCLUSIONS

It has been suggested4,5 that methyl wave functions of
correct permutational symmetry cannot be obtained unless
the corresponding eigenvalue problem is formulated explic-
itly in terms of individual coordinates of the methyl protons.
To illustrate this point the case was considered where three
protons are constrained to move on a circle and the problem
was analyzed in terms of Jacobi coordinates.24 It is clear that
physics does not depend on parametrization of the configu-
ration space and, moreover, the use of Jacobi coordinates is
not even a very judicious choice because the permutations of
particle coordinates do not correspond, in general, to any
simple transformations of Jacobi coordinates. What is cru-
cial, in our opinion, is the question of the separability of the
Hamiltonian. If the methyl Hamiltonian can be written as a
sum of electronic, vibrational, and rotational parts, then the
use of a rotating coordinate system~j, h, z! seems to be a
natural choice. As we have shown, symmetrization of the
resulting wave functions as required by Pauli principle can
be carried out consistently also when single permutations are
included.

In Sec. III the concept of quantum coherence, for the case
of tunneling methyl groups, was formulated in a manner to
resemble as closely as possible to the analogous problem of
a particle tunneling in a double well potential. The results
were then extended to the high temperature region by intro-
ducing a suitable ‘‘pointer’’ basis which appears to be ap-
propriate for the description of the dynamics of the methyl
groups interacting with the lattice. When this basis is incor-
porated into a modified Punkkinen-Clough model of spin-

lattice relaxation, the result~21! for T1, the spin-lattice re-
laxation time, is obtained. The powder averaged rate^1/T1&
as given by~A8! has a maximum atv0tc50.74 and its value,
expressed in units ofvD

2 /v0, is 0.96. This is to be compared
with the corresponding semiclassical results23 of 0.62 and
0.64, respectively. Assuming that the temperature depen-
dence of the correlation timetc is given by the Arrhenius
law, tc5t0 exp(Ea/kT), the maxima of̂ 1/T1& and the semi-
classical expression occur at approximately the same tem-
perature. Fort0>10212 sec andEa>2 kcal/mol the corre-
sponding temperature difference isDT>3 K. Furthermore,
the two models agree fairly well on the high-temperature
side of thê 1/T1& maximum, i.e., forv0tc!1. In this range of
temperatures~A8! yields ^1/T1&52.92v0tc , while the semi-
classical result23 gives 2.25v0tc . The discrepancy is some-
what larger on the low-temperature side~v0tc@1! where the
corresponding results, expressed again in units
of vD

2 /v0, are 1.57/v0tc and 0.90/v0tc , respectively. If, for
example, 1/̂1/T1& is plotted against the inverse temperature,
we observe that, on the average,~A8! predicts slightly
smaller values than those obtained from the result quoted in
Ref. 23. This is illustrated in Fig. 1 fort0510212 sec and
Ea>2 kcal/mol.

To summarize, we propose the following scheme of me-
thyl dynamics as it emerges from the above calculation. At
the lowest temperatures, where the methyl spin-rotational
states are well defined, the spin-lattice relaxation time can be
calculated using the Punkkinen-Clough model22 with the
low-temperature tunneling frequencyv T

(0). When the tem-
perature is increased, andv T

(0)tc!1, the symmetry adapted
spin-rotational states~12! loose their validity as the proper
stationary states, and should be replaced by a ‘‘pointer ba-
sis’’ set, such as~13! with H (0)(x2 j2p/3) replaced by
some reasonably localized pocket statesF~x2j2p/3!. The
modified Punkkinen-Clough model, as described in the Ap-
pendix, could then be applied to calculateT1. At still higher
temperature whenvctc'1, vc being the classical librational
frequency, the ‘‘collisions’’ of the methyl group with the
lattice are very frequent and it is usually assumed that the
semiclassical model of Hiltet al.23 is valid. In terms of the
present work this is equivalent to saying that the density
matrix ~18! becomes effectively indistinguishable from the
statistical mixture

FIG. 1. Plot of2ln~1/̂ T1&!, where 1/̂T1& is expressed in units of
vD
2 /v0, versus inverse temperature. The parameters used in the

graph aret0510212 sec andEa52 kcal/mol. SC andN denote the
semiclassical result and the result~A8!, respectively.
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r~ t !5S jS$s%Pj ,$s%~ t !~ uF j&^F j u!~ us1s2s3&^s3s2s1u!,
~22!

where^xuF j&[F(x2 j2p/3). The weight factorsPj ,$s%(t)
are taken to be of the form~20! with a rate of jumpingn3
replacing 2v T

(0)2t/9.
In conclusion, we suggest that the experimental data on

T1 could possibly be explained using only the two versions
of the Punkkinen-Clough model. Consequently, the assump-
tion of classical hopping motion as embodied in~22! may
not even be necessary.
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APPENDIX

We calculate the rate of nuclear Zeeman spin-lattice re-
laxation assuming that in the temperature range where
v T
(0)t!1 holds, the appropriate basis to describe methyl dy-

namics is given by~13! modified to the extent that the func-
tionsH (0)(x2 j2p/3) are replaced by some arbitrary pocket
statesF~x2j2p/3! peaked sharply at the minima of the hin-
dering potential. To this end, we make use of the model,
appropriately modified, used previously by Punkkinen and
Clough22 for the calculation of the relaxation rate in the tun-
neling regime. Denoting byDNi the deviation of the popu-
lation of the stateuci& from the thermal equilibrium value, we
can write the corresponding deviation of the magnetization,
DMz5Mz2M0 , from its equilibrium value as

DMz5g\$~3/2!~DN12DN8!11/2@~DN21DN31DN4!

2~DN51DN61DN7!#%, ~A1!

whereg is the proton gyromagnetic ratio. The assumption of
spin temperature and ‘‘particle’’ number conservation yield,
respectively, DN12DN85DN(11/2)2DN(21/2), and
DN11DN852[DN(11/2)1DN(21/2)], where

DN~11/2![DN21DN31DN4 , ~A2!

DN~21/2![DN51DN61DN7 . ~A3!

Equation ~20! further suggests thatDN25DN35DN4 and
DN55DN65DN7 . Using the above relations we can write

~d/dt!S DMz /g\
DN D52S k11k21

k12
k22

D S DMz /g\
DN D , ~A4!

and we have introduced

DN[DN~11/2!1DN~21/2!. ~A5!

The rate coefficientsk11, k22, k12, andk21 are given in terms
of the transition probabilities per unit time,Wi↔ j , induced
between the statesuci& and ucj & by the dipolar interaction
HD , as

k115~2/3!(
i52

4

(
j55

7

Wi↔ j1~1/3!(
i52

4

~2Wi↔82Wi↔1!

1~1/3!(
j55

7

~2W1↔ j2W8↔ j !, ~A6a!

k125~4/3!F(
i52

4

~Wi↔11Wi↔g!2(
j55

7

~W1↔ j1W8↔ j !G ,
~A6b!

k215~1/6!F(
i52

4

~2Wi↔g2Wi↔1!2(
j55

7

~2W1↔ j2W8↔ j !G ,
~A6c!

k225~2/3!F(
i52

4

~Wi↔11Wi↔8!1(
j55

7

~W1↔ j1W8↔ j !G .
~A6d!

Considering the intragroup dipolar interactionHD as a ran-
dom function of time, the transition probabilities
Wi↔ j5Wj↔ i are

Wi↔ j5~1/\2!u^c i uHDuc j&u2$2tc /„11~Mi2M j !
2v0

2tc
2
…%,
~A7!

v0 being the Zeeman frequency andtc the correlation time.
Using the expression forHD as given in Ref. 25, the follow-
ing nonvanishing results forWi↔ j are obtained:

W1↔55W1↔65W8↔35W8↔2

5~9/256!@~11cos2q!2112 cos2q#

3$2vD
2 tc /~114v0

2tc
2!%,

W1↔75W8↔45~9/64!~11cos2q!2$2vD
2 tc /~114v0

2tc
2!%,

W1↔25W1↔35W8↔55W8↔6

5~9/252!sin2q~31cos2q!$2vD
2 tc /~11v0

2tc
2!%,

W1↔45W8↔75~9/64!sin2q cos2q$2vD
2 tc /~11v0

2tc
2!%,

W2↔65W3↔55~27/64!sin2q$2vD
2 tc /~11v0

2tc
2!%,

W2↔75W3↔75W4↔55W4↔6

5~27/256!~3 sin2q cos2q1sin2q!

3$2vD
2 tc /~11v0

2tc
2!%.

vD5g2\/R0
3, where R0'1.78 Å is the proton-proton

distance andq is the angle between the direction of exter-
nal magnetic field and the symmetry axis of the methyl
group.

Inserting the above results forWi↔ j in ~A6! yields
k125k2150, and the spin-lattice relaxation timeT1 is
foundto be equal to 1/k11, and is given by~21!. The corre-
sponding powder average^1/T1& is

^1/T1&5~9/8!$vD
2 tc /~11v0

2tc
2!%

1~9/5!@vD
2 tc /~114v0

2tc
2!#. ~A8!
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