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Rotational motion of methyl groups in solids
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The symmetry properties of théH5-type molecules are investigated. The possible wave functions of the
molecule in the ground electronic state are calculated in the Born-Oppenheimer approximation and the ques-
tion of the symmetry group of the molecular Hamiltonié®, or Cg, or othe) is considered. Further, the
concept of quantum coherence is examined for the case of tunneling methyl groups. The results are extended
to the high temperature region by introducing a suitable “pointer basis” which appears to be appropriate for
the description of dynamics of the methyl groups interacting with lattice. Finally, the spin-lattice relaxation
time is calculated within this model and is found to agree closely with the semiclassical result.
[S0163-182696)09126-9

I. INTRODUCTION is required to belong to tha, irreducible representation of
Cs,. While it is undoubtedly true that the total wave function
The rotational motion of hindered methyl groups in solidsmust transform under th€;, symmetry operations in accor-
has been a subject of considerable interest and research &@nce with the Pauli exclusion principle, the introduction of
tivity in recent years. Its single particle aspects have beethe groupCs, instead ofC; at the outset of the calculation
thoroughly described in Ref. 1. However, the most interestbrings, in our opinion, no novel features in the description of
ing aspect of the methyl dynamics and the one which, in ouf€@ methyl groups. We maintain that from a practical point
opinion, is still not yet completely understood, is the continu-Of view, the “standard arguments” as presented in Ref. 1,
ous transition from quantum mechanical tunneling at low@nd repeated very carefully in Refs. 4 and 5, are perfectly
temperatures to the apparently classical reorientation, or rargitimate. Moreover, we would like to stress that the use of
dom hopping motion, at higher temperatutes. coIIe_ctlve ang_ular_ coordinates fqr the de§cr|pt|on of methyl
The proper quantum mechanical description of this phefotational motion in no way restricts the rigorous implemen-
nomenon valid at all temperatures involves, in general, dation _of the Pauli exclusion principle, contrary to what is
complicated many-body Hamiltonian for which no simple SOmetimes erroneously suggested. _
solution can be found. To make the problem tractable, a '" Sec. Il the problem of the appropriate symmetry point
single methyl group is usually considered, interacting with9"Up, Cs or Cs,, and the proper use of the Pauli exclusion
the host lattice vibrations described as a heat bath at weRfnciple in determining the wave functions and energy lev-
defined temperature. At low temperatures, in the tunnelin?IS is discussed. In Sec. ll, the question of the appropriate
I

regime, the dynamics of methyl groups can be adequatel(@Sis, the “pointer basis,” of the methyl group wave func-
described in terms of spin-rotational wave functions com-fions consistent with the Pauli exclusion principle is outlined,

monly chosen to belong to thé-type irreducible represen- @nd its observational consequences regarding the high-
tation of the point grouC,.! Increasing the temperature, the temperature spin-lattice relaxation time are considered.
guestion arises of the appropriate basis of the methyl group
wave functions—let us call it “pointer basié®—that would I SYMMETRY CLASSIFICATION OF THE ENERGY
Ienq themselv_es naturally, in the high temperaturg dqmam, to LEVELS OF TUNNELING METHYL GROUPS
the interpretation of the associated methyl dynamics in terms
of random rotational jumps as envisaged by Pfess. In discussing the symmetry properties of Xis-type

The correctness of the “standard” spin-rotational wavemolecule of which the methyl group is an example, the Born-
functions classified according to the irreducible representa©ppenheimer approximatidrenables one to write the com-
tions of theC, point groug has been questioned in papers by plete molecular wave function as a product of the electronic
Cloughet al,* and Steven3.The authors argue that the me- and nuclear parts. We shall consider only the nuclear part of
thyl wave functions should be classified according to thethe wave function, as it is an experimental fact that the
irreducible representations of the symmetry gr@p rather  ground electronic state of almost all stable polyatomic mol-
thatC5. Then, in order that the Pauli exclusion principle be ecules is completely symmetric under the operations of the
satisfied also for single permutations, the total wave functiorunderlying symmetry group.
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_ In r_nolec_uk_as possegsing symmetrical equilibrigm con- H=(J%2l A)+(J§/2)(1/|C—1/|A)+V((,D,Q9,X)
figurations, it is convenient to choose three Cartesian coor-
dinates determining the position of the center of mass of the " B
molecule, the three Euler anglég, 9, x) describing the +(1/2) gl (Pict MQjo)- @
orientation in space of a set of rotating coordinate d¥e%,

{) whose origin coincides with the center of mass, andj,, J, , andJ, are the components of the total angular mo-
3N—6 (N being the number of the nucjenormal coordi- mentumJ of the top, and ,=1g, | are the principal mo-
nates which determine the positions of the nuclei relative tanents of inertia. The axis is chosen to coincide with the
each other in the rotating coordinate system. Choosing theymmetry axis of the moleculd, are vibrational momenta
origin of the rotating coordinate system to coincide with theconjugate to normal coordinateQ,. Three degrees of
center of mass of the molecule does not suffice to defindreedom—translational motion of the center of mass of the
completely the rotating coordinate system. This problemmolecule—have been omitted i@) since they have no ef-
however, has a purely mechanical significance and arisdéct on the rotational motion. Due to the form of the Hamil-
whenever one attempts to separate the vibrational motion dpnian (2), the complete wave function of the molecule
a system of particles from its rotational motion. It turns out(omitting the electronic parican be written as a product

that a reasonable formulation of “pure” vibrations and

“pure” rotations is obtained if the second Eckart-Sayvetz iota= Yo r g ()
condition is imposed?

Once a suitable system of coordinates has been chosef{herey, , ¢, andy, represent the parts of the wave func-
one can write down the appropriate Lagrangian function andion dependent, respectively, on vibratio§&,}, rotational
derive from it the corresponding quantum mechanical Hamil{¢> ¥; x), and spin coordinates (oy,07, . . . oy represent-
tonian. The details of the calculation are given, for example!Nd SPin components of the nuclei along some chosen direc-

in Refs. 9 and 10. In particular, the Hamiltonian separate ion in spacg Wh.iCh refer to identical particles of the mpl-
naturally into translational, vibrational, and rotational partsecule(protons. Since each of the component wave functions

. o . : belongs to one of the irreducible representatidf of the
together with a vibration-rotation coupling term. In many o

; . . I ymmetry group of the molecular Hamiltonian, the represen-
molecules, including most of the simple ones, the vibrationa

) . . o . ation I'(total) to which the total wave function belongs is
amplitudes, corresponding to a given equilibrium configura-_ g
. . T i given as a direct product
tion of the nuclei, are small and the Coriolis interaction terms
may be neglected. In addition, it is possible, in this case, to

choose the rotating axdg, », ¢) to coincide with the prin-

cipal axes of inertia of the molecule, resulting in a furtherand is, in general, reducible. If the symmetry group of the
Squ'pr:glcp?gltzat?afl tgﬁelj;ymg;oglrirglecule embedded in a Solicpamiltonian IsCs,, which is not always the case, thép,
lattice can be approximated by a sum of external field term&;'sgl r;)?g‘s’gﬁgizegi#i?uﬁé’sAé;tonEé?Slmg%Eet k;ﬁo?:;i;a{o be
and the vibrational potential energy, in the ground vibrational state which is always completely
symmetric undeC,.° ** In this case the symmetry of the
total wave function is determined By ®I’,;.. Not all of these
direct products are allowed, however, because of the Pauli
V:izl Ui(R+r)+U({Qu), (1) exclusion principle imposing specific requirements on the
behavior of the complete wave function with respect to the
permutations of positions and spins of identical nuclei. Be-

where R gives the position of the center of mass, the = CauseCs, is isomorphic to the permutation group of three
position of theith nucleus with respect to the center of mass Particles and since the protons are fermions this implies that
and{Q,} denotes the set of normal vibrational coordinates. (total) must belong to thé, IR. The possible spin symme-
The potential energy terms; are assumed to have the same!"Y Specied’; based on spin functiorisr; o,05) (ea‘ih"i can
form for identical nuclei. For small vibrationgl) can be take on the values:1/2) are either of_typd\l or E. C_Zonse-
further simplified by takindJ;(R+r;)=U;(R+ry;) for all i, quen.tly, the allowed Syf.“me”y Species OT the roFatlonaI wave
wherer; is the equilibrium position of theth nucleus. For a functions areA, andE with nuclear statistical weights 4 and

given value ofR, the various (; referring to identical nuclei 2, respectively (we are omitting the multiplicity due to the

are related to each other by symmetry operations of the mos-pln of theX nucleus. The productd4) which are compat-

; ; B (A2) (A7)
lecular point group. The su®;U;(R+ry;) is therefore in- 'bl(i)w'th(;)he exclusion principle are this='aI'; , and
ll; eI (I';=A,). Moreover, the two wave functions be-

3N-6

I'(tota) =T, @I, &I, 4

N

variant with respect to these symmetry operations and may " . . : i
be expressed in terms of the Euler andlesd, x) whichwe ~ '0N9INg to_the(E?ne-?IEl)menspnal rejseresentatlmsand A
define in accordance with Ref. 10. contained inl’;~®I';~ are given &

Making use of the above simplifications together with the
harmonic approximation, and omitting the motion of the t//(r,El)wf,E}i w@wf{ )
center-of-mass of the molecule, the molecular Hamiltonian
for an XHytype molecule embedded in a solid lattice where (%, ¥(8 and {5}, ¥F) are partners of the two-
become¥® dimensional IR’sE.
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In what follows, we consider aXHs-type molecule in a tion.}"8It turns out that in the case &H,-type molecules,
three fold hindering potential. The corresponding results perene only needs to consider two distinct domains or, as they
taining to freeXH,-type molecules can be found in Refs. are sometimes referred terameworks'’ which are not re-
11-14. lated to each other by rigid rotations of the molecule. Since

In case of nonzero threefold hindering potentialthe rotational properties of each framework, denoted by the
V(e, 3, x)=V(x)=(V3/2)(1—cos ), ¢,0=const, the rota- superscripta andb, are the same, the complete wave func-
tional eigenvalue equation is the Mathieu equatiomc- tion with the correctA, symmetry is obtained by taking the
cording to Floquet’'s theorem, the rotational wave functionsappropriate linear combinations of the lowest vibrational
can be written in the form wave functions associated with each framework. By analogy
with a “double-well” problem, we can write for the two
lowest vibrational states

PO~y gl 9)

The energy difference between these two vibrational states
depends on the height of the potential barrier separating the
two configurations andb. In mostXHs;-type molecules the
arrier is so high that the stat€8) are nearly degenerate
hich implies that for a given torsional state both signs are
possible in(8b). Therefore we now have a choice of using
either[for the sake of simplicity we choode=0 in (8b)]

dD0=(1W3)D, eSHD(x—j2m/3), j=0,+1. (7)  (PP=y PP Baa)+elaBa)+e*|aap)]
]
TP ([ Baa)+e*|aBa)+e|aap)]} (10)

lﬂ(sl)(X):eiS)(nZ Ag’)seiSr‘l)(' (6)

wheres=0,+1, andl=0,1,2 ... isrecognized, in the limit
of infinite hindering potential, as the librational or torsional
guantum number. Wave functions witl==*1 represent
symmetry species while those witk=0 generate one-
dimensional representations. In the limit of strong hinderin
potential and for not too large values bf the functions
#{(y) may be approximated by Bloch sums of the fétm

HO(y—j2m/3) are the harmonic oscillator functions cen-
tered at the minima of the hindering potential and obeyingor
the relationH"(x)=(—1)'H"(— x). Note that they refer
to the state of the molecule as a whole not to that of singles'® ¥ (x)[|Baa)+&|aBa)+*|aaB)]
protons.

The spin-rotational functions which obey the Pauli exclu-  — #3” ¢ l(xX)[|Baa)+&*|aBa)+slaap)], 11

sion principle are together with another similar expression with the labels

andb interchanged. We can simplify the description of mo-
lecular energy levels still further by using the near orthogo-
W0 = e~ x)) [|Baa)+|aBa)+|aaB)] 8a  nality of the stateg(® andy{” and taking into account the

|laaa)

[laBB)+|BaB)+|BBa)] fact that all the relevant matrix elements describing the time
|BBB) evolution of the system, which are off-diagonal with respect
to the framework superscript, are vanishingly small. In other

0(y) [|Baa)+efaBa)+(e*)%|aap)] words, no spectroscopic information gets lost if the classifi-
¥s'(x [laBB)+e%|BaB)+(e*)%|BBa)] cation of the molecular energy levels is carried out with re-

e )[[|Baa)+(s*)s| aﬂa>+ss|aa,8>]] spect to the subgrou@; instead ofCg,.
— Xl app)+ (e*laparetippa)] |

s#0, (8b
2im/3

. QUANTUM COHERENCE AT LOW TEMPERATURES
AND THE ONSET OF CLASSICAL REORIENTATION
AT HIGH TEMPERATURES

and they are either of; or A, symmetry(e=e“'™", a de-
notes the spin projection valuel/2, andg the value—1/2).
However, if the vibrational component has, symmetry,
only the A, type spin-rotational functions are permissible.
For example, if we takes?)(y) as given by(7) then the+

Let us consider an ensemble of isolated methyl groups in
thermal equilibrium with a heat bath characterized by a tem-
peratureT, . As shown in the preceding section, the methyl
group wave functions may be written as

sign in(8b) gives theA; andA, type functions, respectively, (v) 1) — ) W% (f +. 12
(8a), on the other hand, yields only one nonzero function in il Qi) == 00 ve ™ (o), 12
this casg(for + sign) which is of A; symmetry. where v=A, E,, andE,, denoting IR’s of the symmetry

Next, let us recall that the effective vibrational potential groupCs;, has replaced the subscrigpt0, £1 introduced in
energy can often have such a form that vibrational wave6). The spin functions){" are identical, up to a normaliza-
functions have appreciable magnitude only in certain smaltion factor, to the spin functions appearing (@), and are
and fairly delocalized regions of the configuration spage  also given, for example, in Ref. 1.is the total proton spin
For each of these regions or vibrational domains the molecuandM its z componentl takes on the values 1/2 and 3/2 and
lar Hamiltonian can be approximated by the express)n  there is a bijection betweehnand the symmetry species
The domains are symmetrically equivalent and consequentlyiz. A—3/2, E, andE,—1/2.
give rise to the same set of vibrational levels. The resulting At low enough temperatures, only the lowest-lying tor-
degeneracy is split, however, in higher-order approximasional states with=0 are populated. With increasing tem-
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perature, however, it soon becomes more convenient tof the methyl group but the location, with respect to the
choose, instead of the bagi?), a set of state§;)} defined  minima of the hindering potential, of the spin down state.
as This is a consequence of the Pauli exclusion principle which
insures that there is no discrimination between the three os-
(xl41)=(AV3)[HO(x—27/3) +HO(x) cillator statesH@)(X1g j2m/3).
0 It is well known;* and it also follows directly from the
THOc+2ml3)]aaa), (139 uncertainty principlé! that the coherent oscillations dis-
_ 0 0 cussed above are observable, in principle, only if the evolu-
(x|92) =(IV3)[HO(x—27/3)|aBa)+HV(x)|aaB) tion of the system as described k§5) is left undisturbed
+HO(y+27/3)| Baa)]; (13  over times of the order at leastd). For barrier heights 10
) ) meV=V,;<70 meV this time covers the rangex40 °
the statesx|ys) and(x|,) are obtained froni13b) by cyclic  see<1/w{)<3x1072 sec. Therefore, with increasing tem-
permutations ofa’s and g's, while (x|1), 1=5-8, are ob-  perature the increased methyl-lattice interaction will tend to
tained from(13) by replacinga’s with S's and vice versa. gestroy quantum coherence. We can illustrate this by using a
The new basis is approximately orthonormal as long as thgapig sequence of “collisionlike” processes discussed
o%g)rlap _between the harmonic oscillator functionsapgye, analogous to the model considered previously, in a
H™(x—j2m/3), centered at different minima of the hinder- gitferent context, by Simonid8and Harriset al?* We there-
ing potential, may be neglected. It is characteristic of thégre assume that the methyl group is perturbed periodically
stategy;) that they are orientationally localized to the extent 5t time intervalsr<1/0{?). During each time interval, the
as this is consistent with Pauli exclusion principle and thejensity matrix evolves according t@5), while each “colli-

temperature range considered. sion” changesp(N7), the density matrix immediately after
To discuss the phenomenon of quantum coherence as dte Nth collision, into a statistical mixture,

applies, in our opinion, to the problem of methyl groups

embedded in solid lattices, let us imagine that a methyl group 8

undergoes a “collision” with the lattice after which it is p(NT)= > P{(NT)| i) (il. (18
found in one of the statdg;). The density matrix immedi- =1

ately after the “collision” is thus given by the statistical gre

mixture with respect to the statég) as

8
8
Pi(N7)= >, (AN(7));;P;(0), 19
p=3, PO}, (14 (N7 =2, (BN PHO) 9
with the matrixA given by (16) and(17). Choosing the ini-
tial condition P;(0)= &;; such thatP5(0)=1, taking into ac-
countw{®) <1 and writingt=Nr, we obtain

where P;(0)=¢;;, and j=1,2,...,8. Atsome later time
t>0, but before the next “collision” occurs, the time evolu-
tion of the density matrixp(t) is given by

p(t)=exp(—iHt/%)p(0)exp(iHt/A), (15) P,(1) 1/3— (1/3)exp( — ro{*?t/3)

- : , S L - + — 70{02
with H representing the rotational Hamiltoniéncluding, in P3(t) 13+ (2/3)exp T“’(To)ztle’)

general, also the Zeeman term The populations P4(t) 13— (1/3)exp( — Ty t/3)
Pi(t)=Tr{p(t)| )|} of the stategy;) at timet are

. (20

with the remainingP;(t)’s equal to zero. This result for the
probabilitiesP;(t) is formally identical to the classical hop-
Pi(t):Z Aij(HP;(0), 1=12,....8, (16) ping result provided the hopping rate; around the symme-
J try axis of the methyl group is identified ag= (2/9)w {»?r.
where the matrixA is symmetric and can be written as a HOWever, let us stress again that “hopping” is taking place

direct sum BA'@A’®1 with Aj,=Aj,=Al=a(t), and among the statelg;), while the classical hopping as visual-
AL=Al.=AL=h(t). Here ized in Ref. 1 represents random jumps among the methyl
1277 T2l ' : orientations corresponding to the minima of the hindering

a(t)=(1/9)(5+4 cosn{’'t), (179 ~ Potential. o
To extend the above analysis to higher temperatures, we
b(t)=(2/9)(1—COSw(TO)t) (17b assume that the sefl3), with the oscillator functions

HO(x—j2m/3) replaced by some arbitrary functions
and o {9=[E(0EM)—E(0AM)]/#, is the tunneling fre- ®(x—j2m/3) peaked sharply at the minima of the hindering
guency. Equation$16) and (17) represent the phenomenon potential, continues to play the role of a suitable pointer
of quantum coherence in the case of tunneling methyl groupbasis>® We could imagine this behavior to be a consequence
which is analogous to the well known problem of a particleof continuous “monitoring” of the methyl motion by the
in the double-well potentid® While in the double-well lattice. To check whether this has any observational conse-
problem one is dealing with coherent oscillations of the parquences distinct from the standard random jumps model we
ticle back and forth between the two potential minima, in theshall analyze the spin-lattice relaxation as caused by the in-
present case the corresponding motion takes place with réragroup dipole-dipole interactioi .
spect to the statdg;) as defined by13). The label by which Assuming that the energy values corresponding to the
the state€13) can be distinguished is thus not the orientationstates(13) may be approximated by the respective expecta-
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tion values, i.e.E;=(¢i|Hg| ;) —M oy, whereHg, is the T
rotational Hamiltonian,w, the Zeeman frequency, ard;,

the magnetic quantum number, we make use of the model of 8
Punkkinen and Cloudf in order to calculate the high-

temperature spin-lattice relaxation tinlg. As shown in 6
more detail in the Appendix, the result is

1T, =(5/2)(9/16) (1~ cos ) w7/ (1+ w)72)]
+(9/16)(1+6 cog 9+ cosd)

2
X[wDTC/(1+4wST§)], (21) 2.5 5 7.5 10 12.5 15 1000t

where ¥ is the angle between the direction of the external

magnetic field and the symmetry axis of the methyl grop, w3lwy, versus inverse temperature. The parameters used in the

is the cor_relat|on time, ana_iD is d_eflned in the Appendix. It graph aren,=10"*2 sec ancE, =2 kcal/mol. SC andN denote the
is essential to note that in deriving this result one has tQgpiciassical result and the res(AB), respectively.

retain, in the dipolar matrix elementg;|Hp|4;), only those

terms which depend explicitly on the methyl rotation angle ) ) .

. This is required in order to be consistent with the inter-lattice relaxation, the resu®1) for T,, the spin-lattice re-
pretation ofHD as a random function of time. laxation time, is obtained. The pOWder averaged (m]}

Comparing(21) with the corresponding semiclassical re- as given by(A8) has a maximum aby7.=0.74 and its value,
sult as given, for example, in Ref. 23, we see that the resultexpressed in units ab3/wy, is 0.96. This is to be compared
are identical apart from an additional factor of 5/2 multiply- with the corresponding semiclassical resiiitsf 0.62 and
ing the first term of(21). This extra factor is a consequence 0.64, respectively. Assuming that the temperature depen-
of the constraint imposed on the rate equatiohé) by (20), dence of the correlation time, is given by the Arrhenius
requiring that theM ==*1/2 states are characterized by alaw, 7,= 7, exp(E,/kT), the maxima of1/T;) and the semi-
single population number. This is correct as longrgs T, . classical expression occur at approximately the same tem-
The implications of(21) for the analysis of experimental perature. Forry=10 2 sec andE,=2 kcal/mol the corre-
results will be discussed in the next section. sponding temperature difference AST=3 K. Furthermore,
the two models agree fairly well on the high-temperature
side of the(1/T;) maximum, i.e., fofwy7.<1. In this range of
temperature$A8) yields (1/T,)=2.92w, 7., while the semi-

It has been suggesttdthat methyl wave functions of classical resuft gives 2.2%,7.. The discrepancy is some-
correct permutational symmetry cannot be obtained unlesshat larger on the low-temperature sidey7.>1) where the
the corresponding eigenvalue problem is formulated expliceorresponding  results, expressed again in  units
itly in terms of individual coordinates of the methyl protons. of w3/w,, are 1.57d,7, and 0.90k,7, , respectively. If, for
To illustrate this point the case was considered where threexample, 1{1/T,) is plotted against the inverse temperature,
protons are constrained to move on a circle and the problemwe observe that, on the averag@8) predicts slightly
was analyzed in terms of Jacobi coordindtkl.is clear that ~ smaller values than those obtained from the result quoted in
physics does not depend on parametrization of the configuRef. 23. This is illustrated in Fig. 1 for,=10 * sec and
ration space and, moreover, the use of Jacobi coordinates i5,=2 kcal/mol.
not even a very judicious choice because the permutations of To summarize, we propose the following scheme of me-
particle coordinates do not correspond, in general, to anghyl dynamics as it emerges from the above calculation. At
simple transformations of Jacobi coordinates. What is cruthe lowest temperatures, where the methyl spin-rotational
cial, in our opinion, is the question of the separability of thestates are well defined, the spin-lattice relaxation time can be
Hamiltonian. If the methyl Hamiltonian can be written as acalculated using the Punkkinen—CIou%;h md@elith the
sum of electronic, vibrational, and rotational parts, then thdow-temperature tunneling frequenay!®). When the tem-
use of a rotating coordinate systei® », {) seems to be a perature is increased, amjiro)fc<1, the symmetry adapted
natural choice. As we have shown, symmetrization of thespin-rotational state§l2) loose their validity as the proper
resulting wave functions as required by Pauli principle carstationary states, and should be replaced by a “pointer ba-
be carried out consistently also when single permutations arsis” set, such as(13) with H©(x—j2#/3) replaced by
included. some reasonably localized pocket stad®g—j2#/3). The

In Sec. Il the concept of quantum coherence, for the casenodified Punkkinen-Clough model, as described in the Ap-
of tunneling methyl groups, was formulated in a manner topendix, could then be applied to calculdte. At still higher
resemble as closely as possible to the analogous problem t&mperature whem 7.~1, o, being the classical librational
a particle tunneling in a double well potential. The resultsfrequency, the *“collisions” of the methyl group with the
were then extended to the high temperature region by introlattice are very frequent and it is usually assumed that the
ducing a suitable “pointer” basis which appears to be ap-semiclassical model of Hilet al?® is valid. In terms of the
propriate for the description of the dynamics of the methylpresent work this is equivalent to saying that the density
groups interacting with the lattice. When this basis is incor-matrix (18) becomes effectively indistinguishable from the
porated into a modified Punkkinen-Clough model of spin-statistical mixture

FIG. 1. Plot of—In(1KT4)), where 1{T,) is expressed in units of

IV. CONCLUSIONS
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7 4

t:E'Eg—P' (1 )P '
p(1) =231 Pj (D (| PN D) (| 010203)(T30204]) ] Wi<_>]-—|—(1/3)__22 (2W;g— Wi 1)

4
(22)  ky= (2/3)22

where(x|®;)=®(x—j27/3). The weight factor®; ;,,(t)

7
are taken to be of the forrfR0) with a rate of jumpingr; +(13 D (2Wy.. —Wg..)), (A6a)
replacing 20{"27/9. =5 - -

J':

In conclusion, we suggest that the experimental data on
T, could possibly be explained using only the two versions 4
of the Punkkinen-Clough model. Consequently, the assumpi2= (4/3) ;2 (WiHlJFWng)_Z5 (Wi j+Waj) |,
tion of classical hopping motion as embodied(#2) may - . (A6b)
not even be necessary.

7

r o4 7

ACKNOWLEDGMENT Kp1=(1/6) 22 (2Wi<—>g_Wi<—>1)_]_25 (2W1<—>j_W8<—>j)}

This work was supported by the Ministry of Science and (ABC)
Technology of Slovenia under the Contract No. J1-7260- 7

4
0106-95. o= (213)] 3, (Wit W) + 3 <W1H1+W8H,-)]
' (A6d)

, i Considering the intragroup dipolar interactiél, as a ran-

We calculate'the rate _of nuclear Zeeman spin-lattice regom  function  of time, the transition probabilities
laxation assuming that in the temperature range whergy _\  gre
P <1 holds, the appropriate basis to describe methyl dy- '~ "'
namics((i))s givgn by13) modified to the extent thgt the func- ij=(1/ﬁ2)|<l/fi|HD|¢j>|2{27c/(1+('\/|i— Mj)Zw(Z)Tg)},
tionsH'"/(x—j2m/3) are replaced by some arbitrary pocket (A7)
statesP(y—j2m/3) peaked sharply at the minima of the hin- i L
dering potential. To this end, we make use of the model® P€ing the Zeeman frequency amdthe correlation time.
appropriately modified, used previously by Punkkinen and!sing the expression fdi;, as given in Ref. 25, the follow-
Clougt? for the calculation of the relaxation rate in the tun- 9 Nonvanishing results faw;_; are obtained:

APPENDIX

neling regime. Denoting bAN; the deviation of the popu- Wi c=We c=Wa =W,
lation of the statéy) from the thermal equilibrium value, we 1osm o6 183 182
can write the corresponding deviation of the magnetization, =(9/256[(1+cog¥)?+ 12 cogd]

AM,=M,—My, from its equilibrium value as
2o o X {2037, /(1+ 40372},

AM,= yh{(3/2)(AN;—~ ANg) + L/Z (AN, + AN3+ AN
= YMEDANZANG) P VAN FANGFANG) )\ = (01681 + cog9)2[205 7, /(14 46272)),

—(ANs+ANg+AN;) ]}, (AL)
. . . . Wi 2=W;. 3=Wg. 5=Wsg._¢
wherevy is the proton gyromagnetic ratio. The assumption of _ ) -
spin temperature and “particle” number conservation yield, =(9/252sir*9(3+ coS 9 {2wp 7./ (1+ wiTe)},
respectively, AN;—ANg=AN(+1/2)—AN(—-1/2), and _ ) -
AN;+ANg=—[AN(+1/2)+ AN(—1/2)], where Wy, 4=Wg. 7= (9/64)si’ 9 cosH{2wp7./(1+ wyTe)},
AN(+1/2)=AN,+ANg+ ANy, (A2) W, 6=W;_ 5= (27/64sit {205 7o/ (1+ wi70)},
AN(—1/2=ANs+ANg+AN;. (A3) War7=War7=Waos=Waes

_ =(27/256(3 sirt® cog ¥+ sit9)
Equation (20) further suggests thaAN,=AN;=AN, and ) s
)

ANg=ANg=AN,. Using the above relations we can write X{2w3 7 /(1+ wiT2)}.

wp=7Yy*hIR3, where Ry~1.78 A is the proton-proton

(d/dt) AM,/yh) _ _ kir  Kiz (AMZ/Vﬁ) (A4) distance andy is the angle between the direction of exter-
AN ka1 kao/l AN )7 nal magnetic field and the symmetry axis of the methyl
, group.
and we have introduced Inserting the above results fow;_; in (A6) yields
ki,=k,;=0, and the spin-lattice relaxation time&; is
AN=AN(+1/2)+AN(-1/2). (A5)  foundto be equal to ki, and is given by(21). The corre-

o o sponding powder averad&/T,) is
The rate coefficientk,, ko, kK45, andk,; are given in terms

of the transition probabilities per unit tim&;.;, induced (LIT1)= (98 {wp e (1+ wi72)}
between the statelg;) and |¢;) by the dipolar interaction 5 ) 5
Hp, as +(9/5) [ wp T/ (1+4wyTe)]. (A8)
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