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The problem of weakly correlated electrons on a square lattice is formulated in terms of a one-loop renor-
malization group. Starting from the action for theentireBrillouin zone we reduce successively the cutoffL
about the Fermi surface and follow the renormalization of the couplingU as a function of three energy-
momenta. We calculate the intrinsic temperature scaleTco where the renormalization-group flow crosses over
from the regime (L.Tco) where the electron-electron (e-e) and electron-hole (e-h) terms are equally impor-
tant to the regime (L,Tco) where only thee-e term plays a role. In the low-energy regime only the pairing
interactionV is marginally relevant, containing contributions from all renormalization-group steps of the
regimeL.Tco . We identify the most attractive eigenvaluelmin of VL5Tco

. At low filling, lmin corresponds
to the B2 representation (dxy symmetry!, while near half filling the strongest attraction occurs in theB1

representation (dx22y2 symmetry!. In the direction of the van Hove singularities, the order parameter shows
peaks with increasing strength as one approaches half filling. We also give a possible interpretation of angle-
resolved photoemission spectroscopy experiments trying to determine the symmetry of the order parameter in
the high-Tc compound Bi2Sr2CaCu2O8. @S0163-1829~96!06537-X#

I. INTRODUCTION

The problem of the interplay between a correlation-
induced metal-insulator transition, antiferromagnetism, and
superconductivity remains an important challenge, in par-
ticular in view of an understanding of the high-Tc cuprates.
Since Anderson’s original discussion of the importance of
the two-dimensional Hubbard model in the vicinity of half
filling,1 enormous theoretical effort has been devoted to this
problem, in particular concerning the case of strong repul-
sion. Nevertheless, many issues still remain controversial,
largely because of the absence of general and reliable theo-
retical methods for handling the strong correlation problem.
One might hope that the weakly correlated case provides at
least some insight because the weak-coupling limit shares
some general features with the strongly correlated case: in
both cases the half-filled band Hubbard model is an antifer-
romagnetic insulator, and upon~sufficient! doping one re-
covers a conducting state. As the weak-coupling case at least
in principle is tractable by perturbative techniques, it is
clearly of interest to understand this limit further.

In the present analysis we search to know whether the
Hubbard model with repulsive on-site interaction can lead to
superconductivity, and if it does, to what form of the gap
function. In particular, we are interested in the dependence of
the results on the density of electrons. It is hoped that the
results can help us to clarify the origins of the existence of a
highly anisotropic BCS gap function in the cuprates where
considerable experimental evidence in favor ofd-wave or at
least highly anisotropic superconductivity exists.

The d symmetry of the gap function is generally consid-
ered to be a sign of a pairing interaction of electronic origin,
implying the absence of the standard phononic mechanism
for superconductivity. The idea of a superconducting state
induced by fluctuations of purely electronic origin in systems
of electrons with Coulomb repulsion is originally due to
Kohn and Luttinger2 for the case of the three-dimensional

electron gas. Similar effects exist in a two-dimensional elec-
tron gas, and generally they depend strongly on the form of
the Fermi surface. Perturbative calculations of the four-point
vertex for a weakly filled band in the Hubbard model show
that the model is instable againstdxy superconductivity.3

Quantum Monte Carlo calculations on the same model, in
the vicinity of metal-insulator transition, show that the attrac-
tive pairing interaction ofdx22y2 symmetry is dominant,

4 in
agreement with the earlier arguments that antiferromagnetic
fluctuations are the mediator of pairing interactions.5–12 Di-
rect evidence fordx22y2 superconducting ordering has how-
ever not yet been found in quantum Monte Carlo studies.

On the experimental side a large number of experiments
have been performed to determine the shape of the gap func-
tion of the high-Tc superconductors.13 Josephson-junction
experiments,14,15 measurements of the London penetration
depth,16,17 and of the Cu NMR relaxation rate18 are consis-
tent with adx22y2-gap. Particularly interesting are the angle-
resolved photoemission spectroscopy~ARPES! data which
provide rather precise information about the detailed angular
dependence of the amplitude of the gap function. The experi-
ments on the Bi2Sr2CaCu2O8 compound show that the or-
der parameter is maximal along the (0,p) direction19,20 and
that its amplitude in the (p,p) direction seems to attain a
nonzero value at a new critical temperature belowTc .

21

In a theoretical treatment of superconductivity in the vi-
cinity of a correlation-driven metal-insulator transition one
has to take into account that antiferromagnetic fluctuations
become stronger and stronger as one approaches half filling.
For weakly interacting electrons, these fluctuations are asso-
ciated with a ln2T divergence of the electron-hole (e-h) loop
diagram, caused by nesting of the Fermi surface and van
Hove singularities of the two-dimensional problem at hand.
On the other hand the pairing fluctuations, characterized by
the electron-electron (e-e) loop, normally only linear in
logarithms, cross over to a ln2T form in the vicinity of half
filling. The perturbative treatment of an interacting system of
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electrons should thus be based on the summation of all itera-
tions of these two types of loops. The renormalization group
seems to be the best way to do this. Applied to interactions
between electrons placed at the van Hove points it gives an
antiferromagnetic instability at half filling and superconduc-
tivity of dx22y2 symmetry if the deviation of the chemical
potentialm from its value at half filling becomes of the order
of critical temperature of the antiferromagnetic state.8 The
equivalent parquet approach has been used for half filling
and also finds the antiferromagnetic state.22,23 A direct cal-
culation of the zero-temperature free energy24 up to the sec-
ond order in the bare interactionU0 confirms that at half
filling the antiferromagnetic order is stable, but finds no fi-
nite superconducting order parameter at any filling.

The renormalization-group technique for fermionic sys-
tems in two and three dimensions has recently been devel-
oped, but with some limitations. The Wilsonian mode-
elimination technique was applied by Shankar25 mainly to
systems with an either isotropic or open, perfectly nested
Fermi surface. Weinberg26 has written the flow equations for
a general case of an anisotropic Fermi surface, but taking
into account only the electron-electron channel of the flow.
Moreover, a common tendency is to do the renormalization-
group procedure only for a thin ring of degrees of freedom
around the Fermi surface and to linearize the spectrum in the
radial direction. The starting model for such kind of ap-
proach is then called the low-energy effective action. This
makes it difficult or impossible to make statements about the
phase diagram of lattice models like those relevant for the
description of the cuprates, due to the absence of a proper
description of high-energy degrees of freedom, the elimina-
tion of which may considerably affect the low-energy effec-
tive action, in particular the interaction parameters appearing
in it.

In the present paper we formulate the renormalization
group starting from the Hubbard model, with the whole Bril-
louin zone involved in renormalization. Reducing the high-
energy cutoffL about the Fermi surface, we follow the
renormalization of two-particle interaction as a function of
the energy-momenta of interacting particles. We show that
for a finitem ~i.e., away from half filling! there exists a finite
crossover temperature~or energy! Tco such that forL.Tco
both electron-electron and electron-hole contributions to the
renormalization are important, while forL,Tco only
electron-electron part remains. SinceTco is small compared
to the Fermi energy , the shell6Tco around the Fermi sur-
face can be described by a low-energy effective action
S$Tco% whose interaction is the result of all degrees of free-
dom withL.Tco . The temperatureTco is always inferior to
umu, which means that the available phase space is a closed
smooth ring, where we can apply the tree-level~zero-order!
scaling transformation and power counting argument25 to the
dispersion relation and coupling function appearing in
S$Tco%. The remaining model contains then a one-particle
dispersion linearized in the radial direction around the Fermi
surface and a pairing interactionV(u1 ,u2), where u1 and
u2 are the polar angles of incoming and outgoing zero-
energy Cooper pairs. The renormalization equation for
V(u1 ,u2) then can be easily solved in terms of the initial
conditionsVL5Tco

.

For a given Hubbard interactionU0, two different regimes

exist with respect to the filling. Far from half filling, the
pairing interactionVL5Tco

is approximately given by the

constantU0 plus a small momentum–dependent correction
of the orderU0

2, which however is important because it gives
rise to anisotropic superconductivity with a very lowTc
@Tc;8texp(21/U0

2)#. If the filling gets very close to one
half, Tco becomes very low ('umu), and the
renormalization-group flow very strong even forL.Tco ,
which means that it cannot be treated perturbatively as it was
in the first case. In this paper we give the results only for the
first regime. The analysis of the second case, where the
renormalization group is necessary even forL.Tco will be
published subsequently.

We must add that our renormalization group, since trun-
cated at one loop, can provide unique information on
whether the Fermi liquid is a fixed point or not. If the inter-
action flows to strong coupling, we can say in which direc-
tion it flows, for example in thed-type superconducting di-
rection, but we cannot say whether another fixed point with a
finite superconducting order parameter withd symmetry ex-
ists or not. This kind of problem is well known, e.g., from
the renormalization group in quasi-one-dimensional com-
pounds, where the most divergent flow in some direction is
always associated with the corresponding long-range order
~LRO! because already infinitesimal interchain coupling suf-
fices for its stabilization.27 Similarly, the dimensionality rea-
son for the nonexistence of LRO in two dimensions at finite
temperature can be ignored as soon as small hopping in the
third direction exists. This, however, does not mean that
LRO and Fermi-liquid fixed points are the only possibilities,
on this question the one-loop renormalization group simply
cannot give an answer.

The problem is formulated in Sec. II in terms of the func-
tional integral for fermions. Neglecting the self-energy renor-
malization we derive the one-loop renormalization-group
flow equation for the coupling function, starting with the full
bandwidth and the exact nearest-neighbor tight-binding one-
electron spectrum. In Sec. III we~a! calculate the crossover
energyTco to the purely electron-electron (e-e) part of the
flow, ~b! apply zero-order scaling analysis to the dispersion
relation and the interaction,~c! derive the renormalization-
group equation for the pairing functionV, and give the for-
mal solution in the case of the actualD4 crystal symmetry. In
Sec. IV we diagonalize the pairing interactionVTco

, limiting

ourselves to the case when all energiesL.Tco can be
treated perturbatively. We determine the most attractive
eigenfunction and the resulting critical temperature as func-
tions of the chemical potentialm. In Sec. V we give a pos-
sible interpretation of the gap viewed by ARPES experi-
ments. The conclusions are given in Sec VI.

II. MODEL AND FORMULATION OF THE
RENORMALIZATION GROUP THEORY

The Hubbard model for a two-dimensional system of
electrons on a square lattice is described by the Hamiltonian

H52t (
^ i , j &,s

~ai ,s
† aj ,s1aj ,s

† ai ,s!1
U0

2 (
i
nini2m(

i
ni

~2.1!
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whereai ,s(ai ,s
† ) is an electron destruction~creation! opera-

tor at sitei with spin projections, t is the intersite transfer
integral,m is the chemical potential, andU0 is the onsite
Coulomb repulsion. In momentum space the Hamiltonian is

H5(
sk

jk
0ask

† ask

1
1

2
U0(

s
(

k1 ,k2 ,k3
a2s,k11k22k3
† a2sk2

ask3
† ask1

,

~2.2!

where jk
0522t(coskx1cosky)2m and the momenta are

within the first Brillouin zone. The renormalization-group
calculation is best formulated using the path-integral
formalism.25,28The properties of the model are then given by
the partition function

Z5E
L0

DC̄DceS$L0 ,jk
0 ,U0%, ~2.3!

where the functional integration is over Grassmann variables
C̄(C) corresponding to the fermionic fieldsa†(a) and the
phase space is cut off atjk

056L0 around the Fermi surface.
The actionS is given by

S$L0 ,jk
0 ,U0%5E

2`

` dv

2p(
sk

Q~L02ujk
0u!C̄sK~ iv2jk

0!CsK

1
1

2(ss8
E

2`

` S )
i51

3
dv i

2p D
3 (

k1,k2,k3
U0Qk1,k2,k3,k4

~L0!

3C̄sK3
C̄s8K4Cs8K2CsK1

. ~2.4!

The Grassmann variables are momentum and energy depen-
dent: we write K5(k,v). Qk1,k2,k3,k4

(L) [) i51
4 Q(L2ujki

0 u)
constrains all four momenta to lie within the energy shell
6L058t around the Fermi surface. The energy and momen-
tum are conserved so thatK4(K1 ,K2 ,K3)5(v1
1v22v3 ,k11k22k3). Note that the size of the cutoff is
equal to the bandwidth, i.e., the whole Brillouin zone is
available for integration. Thus, theQ functions have no
meaning yet: they become important when the cutoff, re-
duced by the renormalization group, becomes lower than the
distance from the Fermi level to the band boundary. Note
that for a non-half-filled band the effective phase space is not
particle-hole symmetric.

The renormalization-group transformation that we will
use, known as the field theory approach, is defined as the
mapping

S$L0 ,jk
0 ,U0%→S85S$L0→L0e

2 l ,jk
0→jk ,U0

→U~K1 ,K2 ,K3!%, ~2.5!

wherejk andU depend onl in a way so that the physical
properties ofS8 andS are the same for energies lower than
L5L0e

2 l . This requirement is fulfilled if all one-particle

irreducible vertices are invariant under reduction of the cut-
off from L0 to L0e

2 l . The renormalization group can be
thought of as a set of successive, infinitesimally small steps
increasing l by dl. This allows us to formalize the
renormalization-group requirement in a set of differential
equations] lG i50, wherei52,4,6, . . . . Up tosecond order
in U, it suffices to consider onlyG2 and G4, because all
higher vertices are of higher order inU. The solutions of the
equations] lG250 and] lG450 give us the renormalization-
group flow forjk andU(K1 ,K2 ,K3).

Conservation of spin allows us to write the general
K-dependent interaction part of the action as a sum of the
singlet (usW 1sW 8u50 and triplet (usW 1sW 8u5A2 parts:

s̄~K4 ,K3!U
S~K1 ,K2 ,K3!s~K2 ,K1!

1 t̄m~K4 ,K3!U
A~K1 ,K2 ,K3!tm~K2 ,K1!,

~2.6!

wheres andtm are the variables of annihilation of the singlet
and triplet states

s~K2 ,K1![
1

A2(s sCsK2
C2sK1

, ~2.7!

t0~K2 ,K1![
1

A2(s CsK2
C2sK1

;

t61~K2 ,K1![C↑,↓K2C↑,↓K1. ~2.8!

The singlet state is symmetric and the triplet antisymmetric
under exchange of the momenta of two particles. Corre-
spondingly, the coupling functionUS(K1 ,K2 ,K3) can be
taken to be symmetric andUA(K1 ,K2 ,K3) to be antisym-
metric under the momentum exchange operationX, defined
as

XF~K1 ,K2 ,K3!5F~K2 ,K1 ,K3!, ~2.9!

F being a function of four energy-momenta which conserves
energy and momentum. IfF possesses time-reversal symme-
try

F~K1 ,K2 ,K3!5TF„K1 ,K2 ,K3…

[F„K3 ,K4~K1 ,K2 ,K3!,K1…, ~2.10!

which certainly is a property of the vertex, then it is equiva-
lent whetherX exchangesK1 and K2 or K3 and K4, i.e.,
F(K2 ,K1 ,K3)5F„K1 ,K2 ,K4(K1 ,K2 ,K3)…. Formally, US

andUA are given by

UA5
1

2
~12X!U, US5

1

2
~11X!U. ~2.11!

On the other hand, the interaction can also be written as a
sum of one term with equal (s5s8) and one with opposite
(s52s8) spin quantum numbers, with corresponding cou-
pling functions namedU i(K1 ,K2 ,K3) andU'(K1 ,K2 ,K3),
respectively. From two equal-spin electrons one can build
only a triplet state, which make us conclude that

U i5UA, ~2.12!
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while

U'5U5UA1US, ~2.13!

containing the singlet and the triplet interactions.
We proceed now with the derivation of renormalization-

group equations. For simplicity, we will ignore the renormal-
ization flow of jk , which follows from conservation ofG2,
renormalizing the form of the Fermi surface, the effective
mass, etc. This approximation is justified in the case of the
circular Fermi surface.25 In the anisotropic case, the dia-
grams forG2 have a dependence on the direction ofk. More-
over, even a small renormalization of the Fermi energy can
give important changes of the form of the Fermi surface if
one is close to half filling, because of the van Hove singu-
larities. For filling not too close to one-half one can expect
that the essential of the physics is given by just the renor-
malization of the couplingU using the bare dispersion rela-
tion jk

0 which we will call jk from now on. However, it was
recently argued29 that if the spin-fluctuation propagator is
strongly peaked atq5(p,p) ~which certainly is the case for
half or nearly half filling!, the self-energy corrections kill
superconductivity. As we go away from half filling, antifer-
romagnetic fluctuations are more and more suppressed, and
the spin-fluctuation propagator becomes smoother, which
lowers the importance of self-energy renormalization com-
pared to the renormalization of the interactions.

The Feynman diagrams forG2 andG4'5G4 are given in
Fig. 1. The first loop in the expression forG4 is of the
electron-electron (e-e) and all others of the electron-hole
(e-h) type. Making use of the relations~2.12!, ~2.13!, and
~2.11!, we get the expression forG4 in terms of U and
XU. If we write the integration measure of the loop diagrams
in the form

E dv

2pE2L

1L

dj R ds

v~s,j!
, ~2.14!

s being the curves of constant energyj, then dG4 corre-
sponds to the integration of the two energy shells of width
uLudl at j56L. We obtain the following flow equation:

]U

] l
5bee$U,U%1b̃eh$U,U%, ~2.15!

with

b̃eh$U,U%52beh$U,U%2beh$U,XU%2beh$XU,U%

2Xbeh$XU,XU%. ~2.16!

The functionalsbee$U1 ,U2% andbeh$U1 ,U2% are the partial
derivatives with respect tol of the e-e and e-h loops and
both are bilinear forms in U1(K1 ,K2 ,K3) and
U2(K1 ,K2 ,K3). They read

bee$U1 ,U2%5~J$U1 ,U2%1J$XU1 ,XU2%!
11kee

2
~2.17!

and

beh$U1 ,U2%5~P$U1 ,U2%1TP$U1 ,U2%!
11keh

2
,

~2.18!

with

J$U1 ,U2%5
2L

~2p!2 (
n51,2

E dsn

vn
Q~L2ujkn2qee

u!

3E
2`

1`dv

2p

1

iv2nL

1

i ~2v1vee!2jkn2qee

3U1~K1 ,K2 ,K ~n!!U2~K3 ,K4 ,K ~n!!, ~2.19!

P$U1 ,U2%5
2L

~2p!2 (
n51,2

E dsn

vn
Q~L2ujkn1qeh

u!

3E
2`

1`dv

2p

1

iv2nL

1

i ~v1veh!2jkn1qeh

3U1~K1 ,K ~n! ,K3!U2~K4 ,K ~n! ,K2!.

~2.20!

The indexn51,2 symbolizes two energy shells at1L and
2L; vn stands for v(sn ,j5nL); vee[v11v2;
veh[v12v3; qee[k11k2; qeh[k12k3; Kn[(kn ,v),
wherekn is the momentum running along the pathsn . kee
andkeh are nonanalytic functions of the momenta, given by

kee5H 0 for qee50

1 otherwise;

keh5H 0 for qeh5~6p,6p!; m50

1 otherwise.

Their origin is in the derivatives overL of the products like

Q~L2ujk1qu!Q~L2ujku!

whenjk5jk1q .

FIG. 1. The one-particle irreducible diagrams for the vertices
G2 and G4, generating the renormalization of the self-energy and
the interaction, respectively.
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III. CROSSOVER TEMPERATURE AND
RENORMALIZATION GROUP FOR THE LOW-ENERGY

EFFECTIVE ACTION

A. The crossover temperatureTco

A particularity of the renormalization-group approach
treatinge-e ande-h fluctuations in more than one dimension
is the absence of self-similarity of the problem. In fact, there
is an intrinsic energy scale which is a function of the band
filling. It is associated with charge and spin fluctuations com-
ing from thee-h term. We will proceed by estimating the
characteristic energy scales which appear inbee and beh ,
when all four particles are at the Fermi surface, with zero
energy. If we are exactly at half filling, it is known that in the
limit v→0 bothe-e ande-h loops scale likel 2, which cor-
responds to the square-logarithmic divergence in both chan-
nels. This gives an explicit; l dependence in theb func-
tionals. Let us suppose now that the filling is slightly lower
than one-half, i.e., thatm is small and negative. We expect
two regimes. One is forl& l x; lnu8t/mu, where the flow is
still unaffected by the small changes of the Fermi surface due
to nonzerom and remains proportional tol . In the second
regime, wherel* l x , thee-e flow is just a constant~i.e., only
a ln divergence!, while the e-h flow decays exponentially
due to disappearance of nesting. Even far from half filling it
is possible to define a crossoverl x , beyond which the flow in
thee-h channel disappears exponentially. We can summarize
saying that for any filling,l x is a crossover from a regime
where bothe-e ande-h loops contribute to a regime where
beh starts to behave likebeh;Lh(q). Hereh(q) is positive
for all values of the momentum transferq5qeh .

To estimate the dependence ofl x on the filling ^n&, we
consider the static limit of the partially integratede-h loop

Peh~ l ,q,v50!5
1

U0
2E

0

l

dlbeh$U0 ,U0% ~3.1!

with the momentum transferq equal to 2kF in the direction
(p,p). Note that the energy integration is performed over
8t,j,8texp(2l). The derivative ofPeh( l ,q,v50) with re-
spect tol gives the explicitl dependence in thebee func-
tional. Figure 2 showsPeh( l ) and] lPeh( l ) for two different
values ofm. It is reasonable to definel x as the point where
] lPeh( l ) starts to decrease. In the exponential regime the
function ] lPeh( l ) decays like exp(2l/2) @i.e., h(2kF)51/2,
valid for any orientation ofkF#, while the regimel, l x re-
members the ln2 divergence ofPeh at half filling.

30 The de-
pendencel x(^n&) is shown in Fig. 3. Near̂n&51 there is a
divergence of the forml x(^n&)' lnu8t/m(^n&)u because of
nesting, while the increasingl x as the filling goes to zero
mirrors the fact that, for low density, the Fermi energy ap-
pears as the new scale instead of the bandwidth being used.
The inset shows the function̂n&(m).

Once in the exponential regime,beh can be neglected
after it becomes smaller thane21 of its value atl5 l x . Put-
ting h51/2, this defines the crossover

l co~m!5 l x~m!12 , ~3.2!

corresponding to the crossover temperatureTco
58texp(2lco). Suppose that we now integrate the flow equa-
tion ~2.15! from l50 to l5 l co . Oncel has reachedl co , only

the termbee$U% remains in the flow equations, and one has
a partially renormalizedU( l5 l co) as initial condition.

B. Tree-level „zero-order… scaling for L5Tco

We will now use the fact thatTco/8t is a small parameter,
i.e., the inequalityujku,Tco determines a thin ring of de-
grees of freedom, containing no van Hove points, as one can
conclude looking at Fig. 3. This allows us to rescale the

FIG. 2. Thee-h bubble ~solid line! and its derivative overl
~dashed line! for m/4t520.25 ~a! andm/4t520.02 ~b!, for mo-
mentum transferqeh52kFi(p,p).

FIG. 3. The scalel x as a function of filling^n&. For l. l x the
e-h flow decays exponentially. The inset shows the relation be-
tweenm and ^n&.
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momentak'5n̂(k2kF), wheren̂ is the unit vector normal to
Fermi surface, dependent on the direction ofk. To clarify the
reason for which a tree-level scaling is not allowed for ener-
gies higher than the deviation of the Fermi level from van
Hove singularity, let us write the phase-space integration
measure in terms of energy (j) and polar angle (u) variables

1

2pE dk5
1

2pE djduJ~j,u! ~3.3!

with J(j,u)5k(j,u)/v(j,u), k being the radial wave num-
ber andv is the group velocity. Tree-level scaling25 tells us
via a power counting argument to considerJ(j,u) as func-
tion of u, neglecting anyj dependence aboutj50, which is
possible ifJ(j,u) is an analytic function ofj at the whole
shell6L which, consequently, should contain no singular-
ity.

We can also rescale the frequencies ifU( l co) is an ana-
lytic function of v in the interval6Tco about the Fermi
surface, which we assume to be the case.31 In the scope of
the tree-level scaling, the slope of the electronic dispersion
around the Fermi surface is irrelevant and the two marginal
interactions correspond to two different constraints on the
four-momenta inU. Since anyk' andv dependence inU is
irrelevant, both marginal interactions depend only on coordi-
nates of the zero-frequency particles placed at the Fermi sur-
face. For the first, ‘‘Fermi liquid’’ or forward interaction, the
momenta satisfy the equationk15k3, where the meaning of
momenta can be seen from the Eq.~2.4!. This interaction is
slightly (;U0

2) renormalized by the high-energy-modes
( l, l co), and is not involved in further renormalization. The
second interaction is the pairing potentialV, where the mo-
menta satisfy the conditionk152k2. The pairingV depends
only on angular coordinates of annihilated and created pairs.
Keeping in mind the above remarks, we can write the action
for the electrons in the ring6Tco around the Fermi surface
as

S5E
0

`

dtH (s E
e,Tco

de

2p R ds

2pv~u!
C̄s~e,u!

3~]t2e!Cs~e,u!1
1

2(ss8
E dqee

~2p!2
R ds

2pv~u!

3 R ds8

2pv~u8!
D̂̄s8,s,qee~u8!Vl5 l co

~u,u8!

3D̂s8,s,qee~u!1FL J , ~3.4!

wheree5k'v(u), closed-loop integrations are over the the
Fermi surface, and FL stands for the effective Fermi-liquid
interaction.D̂s8,s,qee(u) is the energy-integrated number of
pairs defined as

D̂s1 ,s2 ,qee
~u![E

e,Tco

de

2p
Cs1

~k!Cs2
~2k1qee!

3Q~Tco2u~kF~u!2k1qee!•n̂v~u!u!.

~3.5!

Note that the integration measure over small momentum
qee goes to zero asl→`. A form similar to Eq.~3.4! has
been used by Weinberg,26 but takingVl5 l co

(u,u8) phenom-

enologically and not as the partially renormalized pairing
interaction which we get fromUl5 l co

(u1 ,u2 ,u3) putting in-

coming particles 1 and 2 tou andu1p and outgoing 3 and
4 to u8 andu81p. Note that the loop integration overs can
be understood as the scalar product over ‘‘vector compo-
nents’’ of a ‘‘spin,’’ where the number of componentsN
corresponds to 8t/Tco .

25,32

C. The renormalization of the pairing potential V

The integrations in Eq.~3.4! have the weight factor
1/v(u), v(u) being the anisotropic Fermi velocity, what sug-
gests to introduce a new angular coordinate

z~u!5
*s@ds/v~u!#

2pNF
, ~3.6!

whereNF is the density of states at the Fermi level. The
function z(u) is shown in Fig. 4 for few different values of
m. Starting from the new action Eq.~3.4! we can calculate
now the functionbee$V% in z space and obtain the flow
equation

] lV~z,z8!52
NF

2p R dz9V~z,z9!V~z9,z8!, ~3.7!

where the coordinatez appears instead ofu(z). For initial
condition we takeVl5 l co

@u(z),u(z8)#.
To make the differential equation~3.7! solvable one has

to diagonalize the pairing potentialV(z,z8).25,26 Since it is
invariant under all symmetry elements of theD4 point group,
its most general form inz space can be written as

V~z,z8!5(
g

(
m,n

Vm,n
g f m,n

g ~z,z8!, ~3.8!

where Vmn
g [^mguVung& and f m,n

g (z,z8)[^mguz&^nguz8&.
The function^mguz& is themth basis state of theg repre-
sentation of the point groupD4. It is proportional to the
function cos4mz, sin4mz, cos(4m12)z, sin(4m12)z, and
@cos(2m11)z6sin(2m11)z#, for g5A1 , A2, B1 , B2, andE
respectively. Using Eq.~3.8!, the flow equation~3.7! be-
comes

FIG. 4. The relation between the angular variablez and the
observable polar angle u for 2m/4t523102n;
n51(a),2, . . . ,9(i ).
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] lVm,n
g 52

NF

2p(
n

Vm,n
g Vn,n

g ~3.9!

with the initial condition

Vm,n
g ~ l5 l co!5E dzdz8 f m,n

g ~z,z8!Vlco
~z,z8!. ~3.10!

To solve exactly Eq.~3.9! one has to diagonalize five infinite
dimensional matricesVm,n

g ( l5 l co), thus decoupling com-
pletely the flow Eq.~3.9! into a set of differential equations
whose solution is

Vl
g~ l !5

Vl
g~ l co!

11@NFVl
g~ l co!/2p#~ l2 l co!

. ~3.11!

Herel labels the eigenvalues within the representationg. If
Vl

g( l co) is negative, the denominator has a zero at
l5 l c(g,l) and an instability occurs.

IV. PERTURBATIVE CALCULATION OF V„ l co…

One can expandV( l co) in a perturbative series inU0

V~ l co!5U0~11I 1U01I 2U0
21••• !. ~4.1!

We can stop at the termI 1U0 if

I 1U0,1. ~4.2!

All other terms will then converge rapidly sinceI n;I 1
n ,8. It

is easy to calculateI 1 from first iteration of the renormaliza-
tion equation~2.15!: it corresponds to a sum of partially
integrated electron-electron and electron-hole loops

I 15Pee~ l co!1Peh~ l co!'Pee~ l co!1Peh~`!, ~4.3!

where Pee( l ) is an integral ofbee, in a same way as
Peh( l ) in Eq. ~3.1!. In Peh the argumentl co can be replaced
by ` in Eq. ~4.3! simply by the definition of l co : for
l co, l,` the e-h flow can be neglected. The line
I 1(m)U0;1 is shown in Fig. 5; below the line the perturba-
tive calculation ofV( l co) is justified.

Pee( l co) has no dependence onz andz8, since it depends
on external momenta only throughk11k2, which we put to
zero. Consequently, its only nonzero component is
^0A1uPeeu0A1&. Thus, for the calculation of all other com-
ponents ofV( l co) we use just the bubblePeh(`) with the
momentum transferq5kF(z)2kF(z81p). Figure 6~a!
showsPeh( l→`) as a function ofz and z8 for chemical
potentialm/4t520.2.

The minimal eigenvalues ofV( l co) in all five channels,
namedlmin

g are shown in Fig. 6~b! as functions ofm. These
curves indicate which kind of superconducting symmetry be-
comes critical at some givenm. The eigenvalues for each
channel are calculated taking only the first four harmonics
for A1, A2, B1 andB2, and the first six harmonics for the
E representation. The corresponding eigenvectors determine
the Fourier spectrum of the gap function. A very important
result is that the relevant harmonic of the superconducting
fluctuations in theB1 channel occurs very close to just
cos(2z), being thus determined only by the structure of the
Fermi surface and not by the interaction. Figure 7~a! show

FIG. 5. The curveU0Peh( l→`)51. Below the curve, thee-h
contribution to the renormalization can be treated perturbatively.
This is the region considered in the present paper.

FIG. 6. ~a! The shape of the functionPeh( l→`) in (z,z8) space
at 2m/4t50.2. The nesting at half filling occurs forz5z85p/4.
The split singular lines show the best incommensurate nesting vec-
tor. ~b! The minimal eigenvalue of the pairingV(z,z8) in each of
the five irreducible representations of theD4 point group.
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the instable order parametersDB2
for m520.5, DE for

m520.31, andDB1
for m520.001 as a function of the

Fermi-surface angleu. The evolution of the function
cos2z(u) ~i.e., the first harmonic ofB1) with log(2m), given
only by the dependence ofz on u, is shown in Fig. 7~b!. The
strength of the peaks near the van Hove points increases and
the magnitude in the area between the peaks decreases as one
approaches half filling.

The critical temperature is given by a cutoff for which the
most attractive diagonal component ofV diverges, i.e.,

Tc58texp@2 l c~g,lmin!#, ~4.4!

wherelmin5min$lmin
g %. Figure 8 showsl c as a function of

ln(m). The critical temperature decreases extremely fast as
we go away from the half filling. An increase ofU0 could
save the situation, but in that case our perturbative method
ceases to be sufficient~see Fig. 5!. Since the cuprates are
superconductors for fillings quite far from one electron per
site (̂ n&;120.17), this result means that the small-U Hub-
bard model cannot describe these systems quantitatively.
However, the model gives very precious informations about
the form of the gap function in theB1-instable regime, which
will not change considerably with increasingU0, as long as
cos„2z(u)… is the dominant attractive harmonic inV( l co).

V. MIXED-SYMMETRY SUPERCONDUCTIVITY

Once the renormalization flow has been integrated for
l, l co , assuming that the interaction did not diverge earlier
in the antiferromagnetic channel, the detailed angular depen-
dence of the superconducting gap function can be easily
found. In general, a superconducting state with the symmetry
corresponding to the lowest of the eigenvalueslmin

g will be
formed. However, when two of thelmin

g are close to each
other, a more complicated situation can occur: for definite-
ness, consider the region 0.206,um/4tu,0.276 in Fig. 6~b!,
where theB2 eigenvalue is the most attractive after theB1.
Let us suppose that theB1 order of the simplest form
DB1

;cos2z has formed and that the temperature is close to

Tc . Among the remaining symmetry channels,B2 is the only
one which can give a large gap function in the node points of
DB1

and zero in the points whereDB1
is maximal. Conse-

quently, we expect that the flow of the type Eq.~3.11! with
g5B2 will not be strongly affected by the existingB1 order.
Considering to a first approximation the two flow equations
(g5B1 andg5B2) as independent, and taking only the first
harmonics of theB1 and B2 representations, we can con-
struct the relevant part of the pairing interaction which gives
two phase transitions, one withB1 and the other withB2
symmetry:

Vlco
~u1 ,u2!5V~B1!

1

p
cos2z~u1!cos2z~u2!

1V~B2!
1

p
sin2z~u1!sin2z~u2!, ~5.1!

where all details of the Fermi surface are contained in the
dependence ofz on u. From Eq.~3.11! one finds that the
ratio between two critical temperatures is given by
Tc8/Tc5exp@22p(1/V(B1)21/V(B2))/NF#. From Fig. 6~b!
note that the ratioTc8/Tc is very sensitive to the variation of
the chemical potential. The gap function resulting from Eq.
~5.1! has the form

FIG. 7. ~a! The shape of three possible gap functions:DB1
(u)

for m/4t520.001 ~dot-dashed!, DB2
(u) for m/4t520.5 ~dashed!,

andDE(u) for m/4t520.31 ~solid line!. ~b! A very good approxi-
mation forDB1

(u) is just cos2z(u), shown here for the same choice
of m as in Fig. 4. The dashed line shows cosu to comparison.

FIG. 8. The scalel c52 lnTc/8t as a function of the logarithm of
the chemical potential, for a few values of couplingU0. For very
small m and for U0/4t.0.5 the curves are out of the range of
validity ~see Fig. 5!.
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D~u!5DB1
eif1cos2z~u!1DB2

eif2sin2z~u!, ~5.2!

whereDB1
, DB2

, f1, andf2 are real. These parameters can
be determined minimizing the mean-field expression for the
free energy per site33

F52
2T

N (
k

Q~Tco2ujku!lncosh
Ek

2T
1uD1u2/V~B1!

1uD2u2/V~B2!, ~5.3!

whereEk[Ajk
21uD(u)u2 and theu function constrains the

momentum summation to run only over the states within the
energy shell6Tco about the Fermi surface. The minimiza-
tion of F with respect to cos(f12f2) gives

f5f12f256
p

2
, ~5.4!

i.e., the resulting gap function is of the typeB16 iB2. It is
interesting to remark that the same kind of gap function has
been obtained by Laughlin using the anion picture.34 The
particularity of this gap function~and of any gap consisting
of two different symmetry terms with a phase difference of
6p/2) is that it breaks time-reversal symmetry.

We can now try to understand recent ARPES measure-
ments by Ma and co-workers21 on the Bi2Sr2CaCu2O8
compound. From their experiment it appears that two super-
conducting instabilities occur; the first one is atT5Tc and
has probably theB1 symmetry. The second instability occurs
at Tc850.81Tc ; it introduces a nonzero gap at the points
u5(2n11)p/4, i.e., halfway between the corners of the
half-filled Fermi surface. The function measured by ARPES
is uD(u)u and in the picture discussed above has no zeros and
minima on the diagonals of the Brillouin zone if bothDB1
andDB2

are finite, uDB1
u.uDB2

u andf56p/2. This is in
agreement with the experiments because the gap in the diag-
onal direction is just equal toDB2

, introduced atT5Tc8. The

minimum of uD(u)u on the diagonals is in agreement with
other ARPES experiments19,20as well. One should of course
notice that in our model closeness of two differentl ’s only
occurs in very narrow parts of the parameter space and there-
fore to a certain degree is accidental.

VI. CONCLUSIONS

We have investigated the problem of electrons on a
square lattice interacting via a weak repulsion, as described
by the Hubbard model. The problem of coexisting fluctua-
tions in the electron-electron and electron-hole channels has
been approached using a one-loop renormalization-group ap-
proach. Considering only the renormalization of the interac-
tion function and ignoring the self-energy corrections, which
is certainly justified if we are far enough from half filling, we
have in particular demonstrated the existence and type of
superconducting instabilities which we generally found to be
of thed-wave type.

We have in particular considered the case of band filling
different from one-half~the half-filled case almost certainly
has an antiferromagnetic ground state! and have taken into
account contributions to the interactions from the whole Bril-
louin zone~i.e., initially the energy cutoffL equals the full
bandwidth 8t). We have shown that there is an important
energy ~temperature! scale,Tco , separating a high-energy
regime where both electron-electron and electron-hole-type
diagram contribute from a low-energy regime where only the
electron-electron-type diagrams are important, however with
effective interactions containing renormalizations from the
high-energy regime. Correspondingly, the renormalization-
group flow for l5 ln(8t/L) inferior to some crossover
l co[ ln(8t/Tco) contains contributions from both the
electron-electron and electron-hole diagrams. On the other
hand, forl, l co only the electron-electron diagram contrib-
utes, while the electron-hole contribution decays exponen-
tially as exp(2l/2). Herel co depends on band filling, but is
independent on the strength of the interaction. The degrees
of freedom with energy inferior toTco lie then in a thin and
smooth ring around the Fermi surface. They can be described
by a low-energy effective action containing a dispersion re-
lation linearized in the direction perpendicular to the Fermi
surface with angle-dependent Fermi velocity. The only mar-
ginally relevant interaction remains the BCS pairing interac-
tion V(u1 ,u2), a function only of the angular positions of
incoming (u1) and outgoing (u2) Cooper pairs. We decom-
pose the pairing interaction into its Fourier components in
the five irreducible representations of theD4 point group,
defined at the Fermi surface. DiagonalizingV( l co) in each
representation, we get five sets of decoupled BCS flow equa-
tions. The minimal~i.e., the most negative! eigenvalue of
V( l co) determines the critical temperature and the eigenvec-
tor gives the form of the gap function. Unlike the usual
approach,35 the characteristic of the procedure presented here
to obtain the symmetry of the gap function is that only the
angular coordinates at the Fermi surface is relevant, while
the radial dependence is ‘‘scaled out.’’ Moreover, the
renormalization-group treatment of the whole Brillouin zone,
and not only of the narrow belt about the Fermi surface has
allowed us to show that the origin of the attractive part of the
pairing interaction in the Hubbard model is in electron-hole
fluctuations on rather high energy scales, up to the band-
width.

Two regimes exist in interaction-chemical potential space:
In the first regimeU0Peh(2kF),1 ~essentially weak cou-
pling and far from half filling! the pairingV( l co) is a result
of a simple perturbative integration of all degrees of freedom
at 0, l, l co . The second regime is the one with still weak
U0, butU0Peh(2kF).1 due to the enhanced nesting so that
we have to do a full renormalization group even for
0, l, l co . In this paper, we give results only for the first
case: the diagonalization ofV( l co) in terms of angular har-
monics gave us the type of superconducting instability: for
weak filling, the instability occurs in theB2 (dxy) singlet
channel, while for filling close to one-half, theB1 (dx22y2)
singlet instability strongly overwhelms all others, in agree-
ment with previous work.3,9,10 Particularly interesting is the
fact that the order parameterDB1

(u) can be very well ap-

proximated by the function cos2z(u), where the function
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z(u) depends only on the anisotropic Fermi velocity and on
the geometry of the Fermi surface. This gives forDB1

(u) a
function that has peaks in the directions of the van Hove
singularities. The slope of the peaks increases as we ap-
proach half filling. This can be a justification to consider the
interaction only between electrons in the close vicinity of the
van Hove points as relevant if we are very close to half
filling.8 We believe that the form ofDB1

(u) does not depend
considerably on the strength of interaction, and recent
T-matrix calculations36 for realistic values of the interaction
U0 give a gap function in agreement with this.

We find a superconducting instability at any electron con-
centration away from half filling. The underlying physical
mechanism, namely exchange of spin- or charge-density
fluctuations, is the same as in previous approaches.5–12 We
do however feel that our present results are on a more solid
footing than the previous work because the present one-loop
renormalization-group scheme does not make anya priori
assumptions about important or unimportant diagrams and
provides a more systematic way of handling the dynamics of
the fluctuations being exchanged. The only restrictions come
from ~i! the limitation to one-loop order~equivalently, lowest
nontrivial order in perturbation theory!, necessitating weak
coupling, and~ii ! the requirement that thee-h diagram are a
perturbation with respect to thee-e diagrams, implying that
we cannot be too close to half filling. The region of validity
of the approach is shown in Fig. 5. Further, self-energy dia-
grams have been neglected, however, these are expected to
produce important effects only at two-loop order, and there-
fore are expected to be negligible in weak coupling.

In our weak-coupling model the superconducting critical
temperature is very small~but it exists, for any filling! if we
are not in the immediate vicinity of half filling, which means
that the Hubbard model with smallU0 and small~perturba-
tive! antiferromagnetic fluctuations does not suffice to de-
scribe the high critical temperature (;0.02t) of the cuprates.
There exist two possible ways~related to two restrictions of
our calculations! to increase the critical temperature. The
first is to simply increaseU0 and to remain far from the half
filling, keeping thee-h channel nonsingular. To treat this
case, an approach perturbative inU0 is only of limited use.
Ideally, renormalization should be done exactly, and not us-
ing a simple one-loop~or n-loop! scheme~which is actually
just an ‘‘intelligent’’ version of the perturbative summation!.
We can speculate and suppose that even in the case of strong
coupling there exists the crossoverl̃ co , above which the flow
is of the BCS type. It is to be expected thatl̃ co is not very
different from thel co that we have calculated. This means

that the cutoff T̃co for the effective BCS theory is
L0exp(2lco) @see Fig. 3. and Eq.~3.2!#, whereL0 is the
initial cutoff of the theory, equal to 8t. The second possibil-
ity to increaseTc is to approach half filling very closely,
making Fermi-surface nesting important but remaining in a
weak-coupling regime. For that case, a simplified one-loop
renormalization-group calculation8 has shown that supercon-
ductivity wins over antiferromagnetism only if thee-h con-
tribution to the flow decays before the divergence in the an-
tiferromagnetic channel takes place. Thus, we can say that
here too, the effective theory is of the BCS type. The differ-
ence with the first scenario is that the effective cutoff is very
small ~Fig. 3!, and that the coupling constant is very strong,
due to the strong flow in bothe-e and e-h channels at all
scalesl, l co . A very important feature of the nested case
with a smallU0 is that it can be treated in terms of the
one-loop renormalization group, renormalizingU as a func-
tion only of three angular variables. This is allowed because
all important physics~i.e., the majority of thee-e and e-h
flow! is contained in the vicinity of the Fermi surface, mak-
ing the effective phase space to be a rather narrow square
region6L i ; (8t@L i@Lco) where the marginally relevant
interaction is a function only of the angular position of the
particles on the square. This is one of the key ideas of the
renormalization-group analysis treating nesting and pairing
divergence on the same footing which will be published sub-
sequently.

Finally, we have discussed the possibility of a supercon-
ducting state with a mixed symmetry in a narrow region in
parameter space. In the presence ofB1 order, the flow in the
B2 channel ~which is the second most attractive one for
0.206,m,0.276) will be only weakly affected by a nonzero
order parameter ofB1 symmetry. This gives rise to two su-
perconducting instabilities, with the critical temperaturesTc
for theB1 andTc8 for theB2 channel, andTc8,Tc . We have
given the form of the pairing function for the effective BCS
theory. AtT,Tc8 the relative phase of two order parameters
is f56p/2. The resulting form of the energy gapuD(u)u
has no zeros and minima are in diagonal directions, provid-
ing a possible qualitative explanation of ARPES experiments
by Shen19 and the decrease of the anisotropy with decreasing
T.21
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