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Superconducting instabilities of the non-half-filled Hubbard model in two dimensions
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The problem of weakly correlated electrons on a square lattice is formulated in terms of a one-loop renor-
malization group. Starting from the action for tkeatire Brillouin zone we reduce successively the cutdff
about the Fermi surface and follow the renormalization of the couplings a function of three energy-
momenta. We calculate the intrinsic temperature s€glevhere the renormalization-group flow crosses over
from the regime A >T,,) where the electron-electror+e) and electron-holed-h) terms are equally impor-
tant to the regime A <T.,) where only thee-e term plays a role. In the low-energy regime only the pairing
interactionV is marginally relevant, containing contributions from all renormalization-group steps of the
regimeA>T.,. We identify the most attractive eigenvalg,, of Va1, At low filling, A\, corresponds
to the B, representationdy, symmetry, while near half filing the strongest attraction occurs in &g
representationd,2_,2 symmetry. In the direction of the van Hove singularities, the order parameter shows
peaks with increasing strength as one approaches half filling. We also give a possible interpretation of angle-
resolved photoemission spectroscopy experiments trying to determine the symmetry of the order parameter in
the highT, compound B}jSr,CaCu,0g. [S0163-18206)06537-X

[. INTRODUCTION electron gas. Similar effects exist in a two-dimensional elec-
tron gas, and generally they depend strongly on the form of
The problem of the interplay between a correlation-the Fermi surface. Perturbative calculations of the four-point
induced metal-insulator transition, antiferromagnetism, andoertex for a weakly filled band in the Hubbard model show
superconductivity remains an important challenge, in parthat the model is instable againdy, superconductivity.
ticular in view of an understanding of the high-Euprates. Quantum Monte Carlo calculations on the same model, in
Since Anderson’s original discussion of the importance ofthe vicinity of metal-insulator transition, show that the attrac-
the two-dimensional Hubbard model in the vicinity of half tive pairing interaction ofi,2_,2 symmetry is dominartt,in
filling,* enormous theoretical effort has been devoted to thiggreement with the earlier arguments that antiferromagnetic
problem, in particular concerning the case of strong repulfluctuations are the mediator of pairing interactions Di-
sion. Nevertheless, many issues still remain controversialect evidence fod,._,2 superconducting ordering has how-
largely because of the absence of general and reliable theever not yet been found in quantum Monte Carlo studies.
retical methods for handling the strong correlation problem. On the experimental side a large number of experiments
One might hope that the weakly correlated case provides dtave been performed to determine the shape of the gap func-
least some insight because the weak-coupling limit shareion of the highT. superconductors Josephson-junction
some general features with the strongly correlated case: iexperiments'> measurements of the London penetration
both cases the half-filled band Hubbard model is an antiferdepth'®” and of the Cu NMR relaxation rafé are consis-
romagnetic insulator, and updsufficieny doping one re- tent with ad,2_,2-gap. Particularly interesting are the angle-
covers a conducting state. As the weak-coupling case at leastsolved photoemission spectroscoyRPES data which
in principle is tractable by perturbative techniques, it isprovide rather precise information about the detailed angular
clearly of interest to understand this limit further. dependence of the amplitude of the gap function. The experi-
In the present analysis we search to know whether thenents on the BiSr,CaCu,Og compound show that the or-
Hubbard model with repulsive on-site interaction can lead taler parameter is maximal along the £9,direction®?° and
superconductivity, and if it does, to what form of the gapthat its amplitude in the#,#) direction seems to attain a
function. In particular, we are interested in the dependence afonzero value at a new critical temperature belbw?*
the results on the density of electrons. It is hoped that the In a theoretical treatment of superconductivity in the vi-
results can help us to clarify the origins of the existence of ainity of a correlation-driven metal-insulator transition one
highly anisotropic BCS gap function in the cuprates wherehas to take into account that antiferromagnetic fluctuations
considerable experimental evidence in favodefvave or at  become stronger and stronger as one approaches half filling.
least highly anisotropic superconductivity exists. For weakly interacting electrons, these fluctuations are asso-
The d symmetry of the gap function is generally consid- ciated with a IAT divergence of the electron-hole-f) loop
ered to be a sign of a pairing interaction of electronic origin,diagram, caused by nesting of the Fermi surface and van
implying the absence of the standard phononic mechanistHove singularities of the two-dimensional problem at hand.
for superconductivity. The idea of a superconducting statén the other hand the pairing fluctuations, characterized by
induced by fluctuations of purely electronic origin in systemsthe electron-electronete) loop, normally only linear in
of electrons with Coulomb repulsion is originally due to logarithms, cross over to ain form in the vicinity of half
Kohn and Luttinget for the case of the three-dimensional filling. The perturbative treatment of an interacting system of

0163-1829/96/54.3)/950911)/$10.00 54 9509 © 1996 The American Physical Society



9510 D. ZANCHI AND H. J. SCHULZ 54

electrons should thus be based on the summation of all iteraxist with respect to the filling. Far from half filling, the
tions of these two types of loops. The renormalization grougpairing interactionV, _v_ is approximately given by the

seems to be the best way to do this. Applied to interactiongonstantU, plus a small momentum—dependent correction
betyveen electro'ns. placgq at the van Hove points it gives ags the orderUZ, which however is important because it gives
antiferromagnetic instability at half filling and superconduc-ise 1o anisotropic superconductivity with a very IoW
tivity of d,2_,2 symmetry if the deviation of the chemical [TC~8texp(—1/U§)]. If the filling gets very close to one
potentialy from its value at half filling becomes of the order half T becomes very low +|u), and the

of c_ritical temperature of the antiferromagnetic sl%féhe_ _ ren(;rma(fi(’zation-group flow very strong evén A>T,
qu'v?len}. pdarqttﬁet a[;.[?roach has tpeet%ftlé?id df_or rt1alf|f|II|n hich means that it cannot be treated perturbatively as it was
and aiso Ninds the antirerromagnetc s éf‘. Iréct cal- —in the first case. In this paper we give the results only for the
culation of the zero-temperature free enefgyp to the sec- first regime. The analysis of the second case, where the

?IT‘d otrger mt_]:[he bare m;c_eracgddq COtnka)rImetf‘;a]:[. ?jt half i renormalization group is necessary even for T, will be
illing the antiferromagnetic order is stable, but finds no fi- published subsequently.

nite supercondugting order parameter at any fiIIing. . We must add that our renormalization group, since trun-
The renormalization-group technique for fermionic Sys'?ated at one loop, can provide unique information on

temz mbtv;/o E’.Ed three d|_|m_?nt§|0ns r_ﬁ]s reV(\:/_elntIy_been d;Ne\/\'/hether the Fermi liquid is a fixed point or not. If the inter-
olpe_, t'u \tNI h some fimita 'Olhsd b eSh rl%goma_nl mto € action flows to strong coupling, we can say in which direc-
elimination techniqué was applied by Sharkanainty to (ﬁion it flows, for example in thel-type superconducting di-

's;ys;trﬁims r\;wth a:/r\} ?r']tge?r@ﬁ Otr(\?vﬁ)’:g[ onr tf? p(:ln,wperfecttilynn?s:e ection, but we cannot say whether another fixed point with a
ermi suriace. Weinberghas en the flow equations Tor e superconducting order parameter witlsymmetry ex-

a general case of an anisotropic Fermi surface, but takin ts or not. This kind of problem is well known, e.g., from

into account only the electron-electron channel of the flowy, o000 group in quasi-one-dimensional com-
Moreover, a common tendency is to do the renormalization-

roup procedure only for a thin ring of dearees of freedompounds, where the most divergent flow in some direction is
group p only Ing ot deg -~ always associated with the corresponding long-range order
around the Fermi surface and to linearize the spectrum in th

radial direction. The starting model for such kind of ap- ﬁ_RO) because already infinitesimal interchain coupling suf-

proach is then called the low-energy effective action. Thisﬂces for its stabilizatio! Similarly, the dimensionality rea:

makes it difficult or impossible to make statements about th?Son for the nonexistence of LRO in two dimensions at finite
. " . emperature can be ignored as soon as small hopping in the
phase diagram of lattice models like those relevant for th P g bping

&hird direction exists. This, however, does not mean that

descr!pt!on of the cuprates, due to the absence of a PropFRo and Fermi-liquid fixed points are the only possibilities,
description of high-energy degrees of freedom, the elimina-

. : . on this question the one-loop renormalization group simpl
tion of which may considerably affect the low-energy effec- q P group Py

. L . ) . . _cannot give an answer.
tive action, in particular the interaction parameters appearing The problem is formulated in Sec. Il in terms of the func-
in it. )

.. tional integral for fermions. Neglecting the self-energy renor-
"malization we derive the one-loop renormalization-group
flow equation for the coupling function, starting with the full
bandwidth and the exact nearest-neighbor tight-binding one-
electron spectrum. In Sec. lll w@) calculate the crossover
nergyT., to the purely electron-electrore{e) part of the
ow, (b) apply zero-order scaling analysis to the dispersion
relation and the interactioric) derive the renormalization-
roup equation for the pairing functiow, and give the for-
al solution in the case of the actu2y, crystal symmetry. In

group starting from the Hubbard model, with the whole Bril-
louin zone involved in renormalization. Reducing the high-
energy cutoff A about the Fermi surface, we follow the
renormalization of two-particle interaction as a function of
the energy-momenta of interacting particles. We show thaﬁ
for a finite u (i.e., away from half filling there exists a finite
crossover temperatufer energy T, such that forA>T,
both electron-electron and electron-hole contributions to th
renormalization are Important, .Wh'le. fon <T¢, only Sec. IV we diagonalize the pairing interactivp _, limiting
electron-electron part remains. Sin€g, is small compared co

to the Fermi energy , the sheti T, around the Fermi sur- OUrselves to the case when all energis-Te, can be
face can be described by a low-energy effective actiorjreated perturbatively. We determine the most attractive
S{T..} whose interaction is the result of ail degrees of free_elgenfunctlon and_ the result_lng critical temperature as func-
dom with A>T,,. The temperatur@,, is always inferior to  tions Of the chemical potentigl. In Sec. V we give a pos-

| 1|, which means that the available phase space is a closéiP!€ interpretation of the gap viewed by ARPES experi-
smooth ring, where we can apply the tree-lef@@ro-ordey ~ MenNts. The conclusions are given in Sec V.

scaling transformation and power counting argurfretat the

dispersion relation and coupling function appearing in Il. MODEL AND FORMULATION OF THE

S{T.o}- The remaining model contains then a one-particle RENORMALIZATION GROUP THEORY

dispersion linearized in the radial direction around the Fermi ) )

surface and a pairing interactiovi(6; ,6,), where 6, and The Hubbard model for a two-dimensional system of

9, are the polar angles of incoming and outgoing sero-£lectrons on a square lattice is described by the Hamiltonian

energy Cooper pairs. The renormalization equation for

V(61,65) then can be easily solved in terms of the initial B + + U

conditionsV_t_. H= _t<i%:0 (@] 48j,0F 8] 4&i,) + 72 nini_MZ n;
For a given Hubbard interactidu, two different regimes (2.7
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Whereai,(,(af’(,) is an electron destructioftreatior) opera- irreducible vertices are invariant under reduction of the cut-
tor at sitei with spin projectione, t is the intersite transfer off from Ay to Age™". The renormalization group can be
integral, . is the chemical potential, and, is the onsite thought of as a set of successive, infinitesimally small steps

Coulomb repulsion. In momentum space the Hamiltonian igncreasing | by dl. This allows us to formalize the
renormalization-group requirement in a set of differential

ot equationss,I';=0, wherei=2,4,6 .. .. Up tosecond order
H=E e a ; ; ; ;
& SkSakSok in U, it suffices to consider only’, andI',, because all
higher vertices are of higher order th The solutions of the
1 equations? I',=0 andg,I"'4=0 give us the renormalization-
- t t q 12 1'2=04g
+2 UO},,: kl%ka A g kgt k- ok Aok ok, group flow for &, andU(K;,K5,K3).

Conservation of spin allows us to write the general
(2.2 K-dependent interaction part of the action as a sum of the
where ¢0=—2t(cok,+cok)—u and the momenta are singlet (oc+¢'|=0 and triplet (¢+0c'| =2 parts:
within the first Brillouin zone. The renormalization-group

=] S
caIcuIatior; zlg best formulated using the path-integral S(K4,Kg)U™(Ky,K7,Kg)s(Kz,Ky)
. 5' . . .
formallsm. The_ properties of the model are then given by +tM(K4,K3)UA(K1 Ko, Ka)t, (K Ky),
the partition function
(2.6
7= D\?Dz/;eS{AO'gg'UO}, (2.3 wheres andt,, are the variables of annihilation of the singlet
Ag and triplet states
where the functional integration is over Grassmann variables 1
Y (¥) corresponding to the fermionic fields'(a) and the s(Ky,Ky)=— U‘I’UKz‘P—aKl- (2.7
phase space is cut off aﬁz + Ay around the Fermi surface. V2%
The actionS is given by
1
% daw — to(Kz,Ky)= =2 Vo, ¥ ok, s
S{Ao.gﬁ,uo}=f_ 72 O &) Wo(io—E)W ok v2's
3 tea(Ko, K)=¥y 1k, ¥y 1k, (2.9
1 * da)i
+ 52 _w( iﬂl ﬁ) The singlet state is symmetric and the triplet antisymmetric
77 under exchange of the momenta of two particles. Corre-
(Ao) spondingly, the coupling functiotyS(K;,K,,K3) can be
Xk ;k U0®kl,k2,k3,k4 taken to be symmetric and*(K,,K,,K3) to be antisym-
s metric under the momentum exchange operaXomlefined
XV York,Vork, ¥ ok, - (2.4 as
The Grassmann variables are momentum and energy depen- XF(Ky, Kz, Kaz)=F(Ky,Ky,K3), 2.9

dent: we write K=(k,w). O i, 1, == 1O(A—|&]) F being a function of four energy-momenta which conserves
constrains all four momenta to lie within the energy shellenergy and momentum. Jf possesses time-reversal symme-
*+ A =8t around the Fermi surface. The energy and momentry
tum are conserved so thatK,(K;,K;,K3)=(w;
+ w,— w3,k +ky—ks). Note that the size of the cutoff is F(K1,Kz,Ka) =TF(K1,Kz,Ks)
equal to the bandwidth, i.e., the whole Brillouin zone is _
available for integration. Thus, th® functions have no = 7Kg Ka(K1 Kz Kg) Ky), (210
meaning yet: they become important when the cutoff, rewhich certainly is a property of the vertex, then it is equiva-
duced by the renormalization group, becomes lower than thient whetherX exchangesk; and K, or K5 and K4, i.e.,
distance from the Fermi level to the band boundary. NoteF(K,,K,,K3)=F(K;,K»,K4(K;,K5,K3)). Formally, US
that for a non-half-filled band the effective phase space is naandU” are given by
particle-hole symmetric.

The renormalization-group transformation that we will

1 1
A_(1_ s__
use, known as the field theory approach, is defined as the U _2(1 XU, u _2(1+X)U' (213

mapping On the other hand, the interaction can also be written as a
S[Ag, &0, Ug}—S' =S{Ag—Age ", E0— £, Uy sum of one term with equals(=¢') and one with opposite
(o= —0¢') spin quantum numbers, with corresponding cou-
—U(Kq,Kp,Kg)}, (2.5 pling functions namedJ;(K,K;,K3) andU, (K;,K;,K3),

respectively. From two equal-spin electrons one can build

where ¢, andU depend onl in a way so that the physical only a triplet state, which make us conclude that
properties ofS’ and S are the same for energies lower than

A=Aye"". This requirement is fulfilled if all one-particle Uj=U4, (2.12
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Oc’ ou _
i W=,Bee{U,U}+,6’eh{U,U}, (2.19

with

+ Sy KT Ber{U,U}=2Br{U,U} — Ber{U, XU} — Berf XU, U}
—XBeri XU, XU}, (2.16

= R The functionalsB.{U,U,} andB.{U;,U,} are the partial
< = - derivatives with respect tb of the e-e and e-h loops and

. N both are bilinear forms in U;(K{,K5,K3) and
. “O . W U,(K4,K,,Ks). They read

»Aum,x

-c -G -c

_ . 1+ kee
BeelU1, Uz} =(E{Uy, Uz} + E{XU1,XUs})—
FIG. 1. The one-particle irreducible diagrams for the vertices (2.1

I', andI',, generating the renormalization of the self-energy and
the interaction, respectively. and

hil 1+ K,
whre BerfUs, U} =(I1{Uy, U} + TTI{U; U, — 2"

U, =U=U”+US, (2.13 (2.18

containing the singlet and the triplet interactions. with

We proceed now with the derivation of renormalization-
group equations. For simplicity, we will ignore the renormal- —A
ization flow of £, which follows from conservation df ,, E{U1,Uz}= (2m (2m)2,- E f
renormalizing the form of the Fermi surface, the effective
mass, etc. This approximation is justified in the case of the +eodw 1 1
circular Fermi surfac& In the anisotropic case, the dia- X f_wﬁ iw— VA i(— 0+ weg) — & —
grams forl', have a dependence on the directiorkoMore- v~ flee
over, even a small renormalization of the Fermi energy can XU (Ky, Ky, Ki)Ua(K3,Ky,K(y), (2.19
give important changes of the form of the Fermi surface if
one is close to half filling, because of the van Hove singu- _
larities. For filling not too close to one-half one can expect II{U;,U}l= ——>5 > f
that the essential of the physics is given by just the renor- (2m), =7 -
malization of the couplingJ using the bare dispersion rela- Fwdw 1 1

X

ds,

|§k _qee|)

- | gkﬁqeh')

tion gﬁ which we will call ¢, from now on. However, it was

recently argued that if the spin-fluctuation propagator is

strongly peaked aj= (,7) (which certainly is the case for

half or nearly half filling, the self-energy corrections Kkill U1K K Kg)Ua(Ka Ky Ko)

superconductivity. As we go away from half filling, antifer- (2.20

romagnetic fluctuations are more and more suppressed, aﬂ%

the spin-fluctuation propagator becomes smoother, whic € indexv=+,— symbolizes two energy shells &tA and

lowers the importance of self-energy renormalization com-— 4 U» stands for o(s,,é=vA);  wee= w1t vy

pared to the renormalization of the interactions. wen=w1~ 03, Jee=Kitky Gen=ki—ks K,=(k,,0),
The Feynman diagrams fdt, andT',, =T, are given in wherek,, is the momgntum running along the path. Kee

Fig. 1. The first loop in the expression fdt, is of the and k., are nonanalytic functions of the momenta, given by

electron-electron €-e) and all others of the electron-hole

(e-h) type. Making use of the relation®.12), (2.13, and . :|0 for Qee=0

(2.11), we get the expression fdF, in terms of U and ®¢ |1 otherwise;

XU. If we write the integration measure of the loop diagrams

. 2mio—vA i(w+weh)—§ky+qeh

in the form 0 for Qep=(xm *=m); u=0
e 11 otherwise.
[oofgef i gy, I ore |
(s,8)’ Their origin is in the derivatives ovek of the products like
s being the curves of constant energy thendI', corre- O(A— &g OA—&D

sponds to the integration of the two energy shells of width
|A|dl at é=+A. We obtain the following flow equation: ~ whené,= & 4.
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Ill. CROSSOVER TEMPERATURE AND
RENORMALIZATION GROUP FOR THE LOW-ENERGY
EFFECTIVE ACTION

08

A. The crossover temperatureT ., 06

A particularity of the renormalization-group approach
treatinge-e ande-h fluctuations in more than one dimension

is the absence of self-similarity of the problem. In fact, there 4T

is an intrinsic energy scale which is a function of the band '

filling. It is associated with charge and spin fluctuations com- e

ing from thee-h term. We will proceed by estimating the 21 Ny

characteristic energy scales which appeapin and Be, \\\

when all four particles are at the Fermi surface, with zero |/ “Tee—e_____ .
energy. If we are exactly at half filling, it is known that in the *%0 2 40 80 80

limit w—0 bothe-e ande-h loops scale likd?, which cor-
responds to the square-logarithmic divergence in both chan-
nels. This gives an explicit-1 dependence in th@ func-

(@) !

5.0

tionals. Let us suppose now that the filling is slightly lower 4o
than one-half, i.e., that is small and negative. We expect
two regimes. One is fot=<I,~In|8t/u|, where the flow is 30|

still unaffected by the small changes of the Fermi surface due
to nonzerow and remains proportional th In the second
regime, wheré=|I,, thee-e flow is just a constant.e., only

a In divergencg while the e-h flow decays exponentially
due to disappearance of nesting. Even far from half filling it

—— (4P 2k,)
20 — == (dt)(d/d)P(12k;)

0 r

—————
[ ~—

is possible to define a crossovgr beyond which the flow in 7 Tl

thee-h channel disappears exponentially. We can summarize 00 . ‘ e

saying that for any filling), is a crossover from a regime o "’ 20 o 50 100
where bothe-e ande-h loops contribute to a regime where

Ben Starts to behave lik@en~A 7% Here 5(q) is positive FIG. 2. Thee-h bubble (solid ling) and its derivative ovet
for all values of the momentum transfgr=gep,. (dashed ling for u/4t=—0.25 (a) and u/4t=—0.02 (b), for mo-

To estimate the dependence lgfon the filling (n), we  mentum transfeg.,= 2kg||(, 7).
consider the static limit of the partially integrateeh loop

1 the termB.{ U} remains in the flow equations, and one has
Per(1,0,0=0)= Ff dlBer{Ug,Ug} (3.2 a partially renormalized) (I =1.,) as initial condition.
0J0

with the momentum transfer equal to X in the direction B. Tree-level (zero-order) scaling for A=Te,
(7,7). Note that the energy integration is performed over We will now use the fact thal.,/8t is a small parameter,
8t< &< 8texp(—1). The derivative oP4(l,q,0=0) withre- i.e., the inequality| &|<T,, determines a thin ring of de-
spect tol gives the explicitt dependence in thg.. func-  grees of freedom, containing no van Hove points, as one can
tional. Figure 2 show®.(1) andd,P.i(l) for two different  conclude looking at Fig. 3. This allows us to rescale the
values ofu. It is reasonable to definlg as the point where
dPer(l) starts to decrease. In the exponential regime the
function d,P (1) decays like expfl/2) [i.e., n(2kg)=1/2,
valid for any orientation okg], while the regime <lI, re- 10
members the fdivergence ofP, at half filling>° The de-
pendencé,({n)) is shown in Fig. 3. Nea(n)=1 there is a
divergence of the forml,({n))~In|8t/u((n))| because of
nesting, while the increasinly as the filling goes to zero
mirrors the fact that, for low density, the Fermi energy ap-
pears as the new scale instead of the bandwidth being used.
The inset shows the functiofm)(u).

Once in the exponential regim@,,, can be neglected
after it becomes smaller than ! of its value atl =1,. Put-
ting »=1/2, this defines the crossover

8.0

20 -

0.0 . L . L
0.0 02 0.4 06 0.8 1.0

leo(m)=1x()+2, (3.2 <n>

corresponding to the crossover temperaturg, FIG. 3. The scalé, as a function of filling(n). For |>1, the
=8texp(—l). Suppose that we now integrate the flow equa-e-h flow decays exponentially. The inset shows the relation be-
tion (2.15 from1=0 tol=1.,. Oncel has reacheti.,, only  tweenu and{n).
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momentak, =n(k—kg), wheren is the unit vector normal to
Fermi surface, dependent on the directiokoT o clarify the
reason for which a tree-level scaling is not allowed for ener-
gies higher than the deviation of the Fermi level from van
Hove singularity, let us write the phase-space integration
measure in terms of energg)(and polar anglef) variables

2(0)/n

1 1
ﬁj dk—zj deded(é,6) (3.3

with J(¢,0)=Kk(¢&,0)/v(&,0), k being the radial wave num-
ber andv is the group velocity. Tree-level scalifigells us
via a power counting argument to considki, 8) as func-
tion of 4, neglecting any dependence abogt=0, which is

“0.00 0.10 0.20 0.30 0.40 0.50

possible ifJ(&,6) is an analytic function of at the whole om

shell = A which, consequently, should contain no singular-

ity. FIG. 4. The relation between the angular variabl@and the
We can also rescale the frequencied)ffl.,) is an ana- observable polar angle 6 for  —u/4t=2x10"";

lytic function of w in the interval =T, about the Fermi n=1(a),2,...,9().

surface, which we assume to be the cHsim the scope of

the tree-level scaling, the slope of the electronic dispersionologically and not as the partially renormalized pairing
around the Fermi surface is irrelevant and the two marginainteraction which we get frontu|=,co( 61,6,,63) putting in-

interactions correspond to two different constraints on theoming particles 1 and 2 té and 6+ 7 and outgoing 3 and
four-momenta inJ. Since any, andw dependence il is 410 ¢’ and ¢’ + «. Note that the loop integration overcan
irrelevant, both marginal interactions depend only on coordibe understood as the scalar product over “vector compo-

nates of the zero-frequency particles placed at the Fermi sufrents” of a “spin,” where the number of component$
face. For the first, “Fermi liquid” or forward interaction, the corresponds to 8T, .2>

momenta satisfy the equatidn =ks, where the meaning of
momenta can be seen from the E&4). This interaction is
slightly (~U§) renormalized by the high-energy-modes ) i , i
(I<lg), and is not involved in further renormalization. The The integrations in Eq(3.4) have the weight factor
second interaction is the pairing potenti&l where the mo-  1/v(6), v(0) being the anisotropic Fermi velocity, what sug-
menta satisfy the conditioky, = — k,. The pairingV depends ~ 9€Sts to introduce a new angular coordinate

C. The renormalization of the pairing potential V

only on angular coordinates of annihilated and created pairs. 5
R ; . [ldsiv(6)]
Keeping in mind the above remarks, we can write the action 2(0)=—————, (3.6
for the electrons in the ring= T, around the Fermi surface 27Ng
as where Ng is the density of states at the Fermi level. The
(" de ds — function z(6) is shown in Fig. 4 for few different values of
S= 0 dr 2 cet. 27 ] 270(0) Wo(e,0) . Starting from the new action E@3.4) we can calculate
° 1 q d now the functionB.4V} in z space and obtain the flow
X(3,— €)W (€,0)+=> J Gee é S equation
T e 25~ (2m)? J 2mv(6)
§ dS, A_ ! vV ’ Vv 1y — NF %dzﬂv " \V /- (37)
X P 2o Aotaaed 0 )Vi=1,,(0,07) V(z2')=— 5 (z2")V(z",2'), :
XAU, eq. (O)+FL L, (3.4  where the coordinate appears instead of(z). For initial

condition we takev,=,co[ 0(2),6(z")].

_ ) . . To make the differential equatiof8.7) solvable one has
wheree=k, v(#6), closed-loop integrations are over the theto diagonalize the pairing potential(z,2').252% Since it is

Fermi surface, and FL stands for the effective Fermi-liquid. i :
int tion A o) is th int ted b f invariant under all symmetry elements of the point group,
n c'erac 'O_n' o' 0,0,4 ) IS the energy-integrated number o its most general form iz space can be written as

pairs defined as

de V(zz')=2, mZn V2nfha(2,2), (3.9
A"1*"’2!’51ee( 0)5J'E<Tcozlpfrl(k)q,(r2(_k+qee) 4 '

where Vi, .=(my|V[ny) and {7, (z,z")=(my|z){ny|Z").
X O(Teo— |(Ke(0) —k+deo) - N0 (H)]). The function{my|z) is the mth basis state of the repre-
3.5 sentation of the point group,. It is proportional to the
' function cos4nz sindmz cos(4n+2)z, sin(4m+2)z, and
Note that the integration measure over small momentunicos(2n+1)z=sin(2m+1)z], for y=A,, A,, B;, B,, andE
Jee gO€S to zero ab—x. A form similar to Eq.(3.4) has respectively. Using Eq(3.8), the flow equation(3.7) be-
been used by Weinber§ but takingV|:|Co(0,0’) phenom- comes
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Ne
W=~ EEV VLV, (3.9 0%

with the initial condition 040 1

V%,n(|=|co)=J’ dzdzfg]’n(z,z’)vko(z,z’). (3.10 $°‘3°'
To solve exactly Eq(3.9) one has to diagonalize five infinite " ol
dimensional matrices/]] ,(I=I¢), thus decoupling com-
pletely the flow Eq(3.9) into a set of differential equations o010 L
whose solution is

VZ ( | c o) 0905 0z 04 06 08 1.0
V)\’}/(l): (31]) <n>

1+[NeV(Ieo)2m] (1 =1co) |
Here\ labels the eigenvalues within the representatioiff FIG. 5. The curveloPep(l—)=1. Below the curve, the-h
VY(l.,) is negative, the denominator has a zero gtcontribution to the renormalization can be treated perturbatively.
|:)‘| (y,\) and an instability occurs This is the region considered in the present paper.

C 1 .

IV. PERTURBATIVE CALCULATION OF  V(l¢o)
One can expan¥(l.,) in a perturbative series i W/4t=-0.2
V(lgo)=Ug(1+1,Ug+1,U3+ - -). (4.0 2

We can stop at the terinU, if

I 1U 0< 1 (42) 1.2
. . _ ‘ M :
Al other terms will then converge rapidly sinég~17,%. It : 5 A .,.//,l',j/f’ff‘/";j/ 1 P, (->inf)
. . . . . ! e e -
is easy to calculatg; from first iteration of the renormaliza- . ! i 4 Mo.s (arbitrary

tion equation(2.15: it corresponds to a sum of partially units)

integrated electron-electron and electron-hole loops

|1: Pee(lco)+ Peh(lco)%Pee(lco)+Peh(°°)a (4-3)

where P.(l) is an integral of 8., IN @ same way as
Per(D) in Eqg. (3.2). In P,y the argument,, can be replaced
by « in Eq. (4.3 simply by the definition ofl.,: for
l[.o<I<x the e-h flow can be neglected. The line
I1.(#)Up~1 is shown in Fig. 5; below the line the perturba- (@) >
tive calculation ofV(l.,) is justified.

P.dl:0) has no dependence @arandz’, since it depends |
on external momenta only throudf +k,, which we put to P =" T, (oxtendeds)
zero. Consequently, its only nonzero component is S ‘ I
(0A1|P¢dOA;). Thus, for the calculation of all other com- U
ponents ofV(l;,) we use just the bubbl®,,() with the
momentum transferq=kg(z) —kg(z' + ). Figure Ga) f
shows P.(I—») as a function ofz and z' for chemical S R P
potential u/4t=—0.2. g

The minimal eigenvalues d¥(l.,) in all five channels,
named\ };, are shown in Fig. @) as functions ofu. These
curves indicate which kind of superconducting symmetry be- , .
comes critical at some givep. The eigenvalues for each o2 o4
channel are calculated taking only the first four harmonics o o

for A;, A,, B; andB,, and the first six harmonics for the (b) ' e

E representation. The corresponding eigenvectors determine

the Fourier spectrum of the gap fL_mctlon. A very important |G, 6. (a) The shape of the functioRe(1 — =) in (z,2') space
result is that the relevant harmonic of the superconductingt — ,,/4t=0.2. The nesting at half filling occurs fa=z' = /4.
ﬂUCtUﬁtion_S in theB; Char_mel occurs very close to just The split singular lines show the best incommensurate nesting vec-
cos(2), being thus determined only by the structure of thetor. (b) The minimal eigenvalue of the pairing(z,z') in each of
Fermi surface and not by the interaction. Figufe) Bhow the five irreducible representations of thg point group.
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== 8, ) [7, WA=-0.001 1000
- Aez(e) [d, ], w4t=-0.5
—— 4,0) . 1], wH=-0.31

1.0 —

80.0 |-
UJ(49=0.1

60.0 -

1.0 y ¥ ¥ ¥ o0 40 30
0.0 0.2 0.4 0.6 0.8 1.0 50 - -~ ] :
(a) o

2.0 -1.0 0.0

FIG. 8. The scalé,= —InT/8t as a function of the logarithm of
the chemical potential, for a few values of couplidg. For very
small . and for Uy/4t>0.5 the curves are out of the range of
validity (see Fig. 5.

cos[22(0)]
——=— cos(28)

V. MIXED-SYMMETRY SUPERCONDUCTIVITY

Once the renormalization flow has been integrated for
I<l.o, assuming that the interaction did not diverge earlier
in the antiferromagnetic channel, the detailed angular depen-

dence of the superconducting gap function can be easily
10 ‘ ‘ ‘ ‘ found. In general, a superconducting state with the symmetry
" o1 2 ' ' corresponding to the lowest of the eigenvalaés, will be
formed. However, when two of the?;, are close to each

FIG. 7. (@) The shape of three possible gap functions; (6) other, a more complicated situation can occur: for definite-
for u/4t=—0.001(dot-dashel] Ag,(6) for w/4t=—0.5 (dasheq| ness, consider the region 0.206u/4t|<0.276 in Fig. €b),
andAg(6) for w/4t=—0.31(solid line). (b) A very good approxi- Where theB, eigenvalue is the most attractive after the
mation forAg (6) is just cos2(6), shown here for the same choice Let us suppose that th8; order of the simplest form
of u as in Fig. 4. The dashed line shows éds comparison. ABl~cosZ has formed and that the temperature is close to

T.. Among the remaining symmetry channdls, is the only
the instable order parametefss, for u=-0.5, Ag for  one which can give a large gap function in the node points of
u=-0.31, andAg for 4=—0.001 as a function of the Ag, and zero in the points wherkg is maximal. Conse-

Fermi-surface angled. The evolution of the function quently, we expect that the flow of the type E§.11) with
cos(6) (i.e., the first harmonic oB,) with log(— ), given ~ y=B; will not be strongly affected by the existirigy order.
only by the dependence afon 6, is shown in Fig. ®). The  Considering to a first approximation the two flow equations
strength of the peaks near the van Hove points increases afi’=B; andy=B,) as independent, and taking only the first
the magnitude in the area between the peaks decreases as didgmonics of theB; and B, representations, we can con-

approaches half filling. struct the relevant part of the pairing interaction which gives
The critical temperature is given by a cutoff for which the two phase transitions, one witB; and the other withB,
most attractive diagonal component\fdiverges, i.e., symmetry:
Te=8texd —Ic(v,Amin) ], (4.9

V, (6y,6,)=VEBD Ecos2z( 6,)cos22( 6,)
where X min=min{\2;}. Figure 8 showd. as a function of ° ™

In(x). The critical temperature decreases extremely fast as 1

we go away from the half filling. An increase &f, could + VB2 —sin2z(9;)sin2z(6,), (5.1
save the situation, but in that case our perturbative method &

ceases to be sufficieritsee Fig. 5. Since the cuprates are

superconductors for fillings quite far from one electron perwhere all details of the Fermi surface are contained in the
site (n)~1—0.17), this result means that the smidliHub- ~ dependence ot on 6. From Eqg.(3.11) one finds that the
bard model cannot describe these systems quantitativelyatio between two critical temperatures is given by
However, the model gives very precious informations aboutl ¢/ Tc=exd —2m(1NVED —1NED)/NL]. From Fig. 6b)

the form of the gap function in th@,-instable regime, which note that the ratid /T is very sensitive to the variation of
will not change considerably with increasitfy, as long as the chemical potential. The gap function resulting from Eg.
cog2z(#)) is the dominant attractive harmonic (I ;o). (5.2) has the form
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A(0)=ABlei¢lcOSZZ( 0)+ABZe“f’23in22( 6), (5.2 We have in particular considered the case of band filling
different from one-half(the half-filled case almost certainly
has an antiferromagnetic ground sjaéed have taken into
account contributions to the interactions from the whole Bril-
Ffouin zone(i.e., initially the energy cutofi\ equals the full
bandwidth &). We have shown that there is an important
energy (temperaturg scale, T.,, separating a high-energy

whereAg , Ag,, ¢1, and ¢, are real. These parameters can

be determined minimizing the mean-field expression for th
free energy per sité

3 2TE Ey 2\ /(BY) regime where both electron-electron and electron-hole-type
F=-N4 O (Teo— [&l)Incoshy— +]A4 7V diagram contribute from a low-energy regime where only the
electron-electron-type diagrams are important, however with

+| 4,2V, (5.9 effective interactions containing renormalizations from the

high-energy regime. Correspondingly, the renormalization-
whereE, = \/§E+|A(6)|2 and thed function constrains the group flow for I=In(8t/A) inferior to some crossover
momentum summation to run only over the states within the ,=In(8t/T,,) contains contributions from both the
energy shell+= T;, about the Fermi surface. The minimiza- electron-electron and electron-hole diagrams. On the other
tion of F with respect to cost; — ¢») gives hand, forl <lI., only the electron-electron diagram contrib-
utes, while the electron-hole contribution decays exponen-
- tially as exp(-1/2). Herel ., depends on band filling, but is
d=Pp1— Ppr= tE, (5.9 independent on the stre_ngth of the |.nteract|9n. Th.e degrees
of freedom with energy inferior t@ ., lie then in a thin and
. . L , , smooth ring around the Fermi surface. They can be described
€., the' resulting gap function is of the tylBg = iB,. It, IS by a low-energy effective action containing a dispersion re-
interesting to remark that the same kind of gap function hagysion jinearized in the direction perpendicular to the Fermi
been obtained by Laughlin using the anion pictthahe g ace with angle-dependent Fermi velocity. The only mar-
particularity of this gap functiortand of any gap consisting gina|ly relevant interaction remains the BCS pairing interac-
of two (.:hfferen.t symmetry terms with a phase difference ofy; | V(6,,65), a function only of the angular positions of
+/2) is that it breaks time-reversal symmetry. incoming (6,) and outgoing ¢,) Cooper pairs. We decom-

We %an now tr(;j/ to ”nde;;fnd rehcent.ARPES MeaSUr€pse the pairing interaction into its Fourier components in
ments by Ma and co-workerson the BpSr,CaChOs  he five irreducible representations of tBy point group,

compou_nd. _From f[h_eir experiment if[ appears that two SUP€13efined at the Fermi surface. DiagonaliziNgl .,) in each
conducting instabilities occur; the first one 'S&TC and representation, we get five sets of decoupled BCS flow equa-
has probably th&, symmetry. The second instability 0ccurs yjong The minimal(i.e., the most negatiyeeigenvalue of
at T;=0.81IT; it introduces a nonzero gap at the pointsy/(|_ determines the critical temperature and the eigenvec-
6=(2n+1)w/4, i.e., halfiway between the corners of the tor gives the form of the gap function. Unlike the usual
half-filled Fermi surface. The function measured by ARPES;;5104c175 the characteristic of the procedure presented here
'3_|4(9)| and in the picture discussed above has no zeros a"l?fobtain the symmetry of the gap function is that only the
minima on the diagonals of the Brillouin zone if boty,  angular coordinates at the Fermi surface is relevant, while
and Ag, are finite,[Ag |>[Ag | and ¢==m/2. This is in  the radial dependence is “scaled out.” Moreover, the
agreement with the experiments because the gap in the diafgnormalization-group treatment of the whole Br_illouin zone,
onal direction is just equal td g , introduced aff =T;. The and not only of the narrow belt about the Fermi surface has
allowed us to show that the origin of the attractive part of the
pairing interaction in the Hubbard model is in electron-hole
fluctuations on rather high energy scales, up to the band-
idth.

" Two regimes exist in interaction-chemical potential space:
In the first regimeU P (2kg) <1 (essentially weak cou-
pling and far from half filling the pairingV(l.,) is a result
of a simple perturbative integration of all degrees of freedom
VI. CONCLUSIONS at 0<I<l.,. The second regime is the one with still weak

We have investigated the problem of electrons on aJo, PutUoPer(2kg)>1 due to the enhanced nesting so that
square lattice interacting via a weak repulsion, as describef€ have to do a full renormalization group even for
by the Hubbard model. The problem of coexisting fluctua-0<!<lco- In this paper, we give results only for the first
tions in the electron-electron and electron-hole channels hd&@se: the diagonalization &f(l,) in terms of angular har-
been approached using a one-loop renormalization-group af2onics gave us the type of superconducting instability: for
proach. Considering only the renormalization of the interacWeak filling, the instability occurs in th®; (d,,) singlet
tion function and ignoring the self-energy corrections, whichchannel, while for filling close to one-half, tH#, (dz-2)
is certainly justified if we are far enough from half filling, we Singlet instability strongly overwhelms all others, in agree-
have in particular demonstrated the existence and type dfhent with previous work:**° Particularly interesting is the
superconducting instabilities which we generally found to befact that the order parametér (6) can be very well ap-
of the d-wave type. proximated by the function coz@), where the function

minimum of |A(6)| on the diagonals is in agreement with
other ARPES experimerits?®as well. One should of course
notice that in our model closeness of two differarg only
occurs in very narrow parts of the parameter space and ther
fore to a certain degree is accidental.
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z(6) depends only on the anisotropic Fermi velocity and onthat the cutoff T., for the effective BCS theory is
the geometry of the Fermi surface. This gives th;l(a) a  Agexp(-ls) [see Fig. 3. and Eq(3.2)], where A, is the
function that has peaks in the directions of the van Hovenitial cutoff of the theory, equal tot8 The second possibil-
singularities. The slope of the peaks increases as we ajy to increaseT, is to approach half filling very closely,
proach half filling. This can be a justification to consider themaking Fermi-surface nesting important but remaining in a
interaction only between electrons in the close vicinity of theweak-coupling regime. For that case, a simplified one-loop
van Hove points as relevant if we are very close to halfrenormalization-group calculatiBimas shown that supercon-
filling.® We believe that the form afig, () does not depend ductivity wins over antiferromagnetism only if treeh con-
considerably on the strength of interaction, and recengibution to thg flow decays before the divergence in the an-
T-matrix calculation® for realistic values of the interaction fiferromagnetic channel takes place. Thus, we can say that
U, give a gap function in agreement with this. here top, the e_ffect|ve the_or_y is of the BCS _type. The_d|ﬁer-

We find a superconducting instability at any electron con-€Nce wth the first scenario is the_lt the effecuvg cutoff is very
centration away from half filling. The underlying physical Small (Fig. 3), and that the coupling constant is very strong,
mechanism, namely exchange of spin- or charge—densit9ue to the strong flow in botk-e and e-h channels at all
fluctuations, is the same as in previous approathBsie sgalesl<|co. A very important feature of the nested case
do however feel that our present results are on a more soliffith & small U, is that it can be treated in terms of the
footing than the previous work because the present one-loopne-loop renormalization group, renormalizibgas a func-
renormalization-group scheme does not make anyriori  tion only of three angular variables. This is allowed because
assumptions about important or unimportant diagrams andll important physicgi.e., the majority of thee-e and e-h
provides a more systematic way of handling the dynamics O}Iow) is conta|.ned in the vicinity of the Fermi surface, mak-
the fluctuations being exchanged. The only restrictions com#d the effective phase space to be a rather narrow square
from (i) the limitation to one-loop ordeequivalently, lowest ~fegion =A;; (8t>A;>A.,) where the marginally relevant
nontrivial order in perturbation theorynecessitating weak interaction is a function only of the angular position of the
coupling, andii) the requirement that the-h diagram are a  Particles on the square. This is one of the key ideas of the
perturbation with respect to theee diagrams, implying that rénormalization-group analysis treating nesting and pairing
we cannot be too close to half filling. The region of validity divergence on the same footing which will be published sub-
of the approach is shown in Fig. 5. Further, self-energy diaSeguently. _ o
grams have been neglected, however, these are expected toFinally, we have discussed the possibility of a supercon-
produce important effects only at two-loop order, and thereducting state with a mixed symmetry in a narrow region in
fore are expected to be negligible in weak coupling. parameter space. In the presenc@pforder, the flow in the

In our weak-coupling model the superconducting criticalB2 channel(which is the second most attractive one for
temperature is very smalbut it exists, for any filling if we ~ 0.206<1<0.276) will be only weakly affected by a nonzero
are not in the immediate vicinity of half filling, which means order parameter oB; symmetry. This gives rise to two su-
that the Hubbard model with small, and small(perturba- ~ Perconducting instabilities, with the critical temperatufigs
tive) antiferromagnetic fluctuations does not suffice to de-for theB,; andT, for theB, channel, and (<T,. We have
scribe the high critical temperature-0.02) of the cuprates. given the form of the pairing function for the effective BCS
There exist two possible wayselated to two restrictions of theory. AtT<T/ the relative phase of two order parameters
our calculations to increase the critical temperature. Theis ¢= = 7/2. The resulting form of the energy gap(6)|
first is to simply increas&; and to remain far from the half has no zeros and minima are in diagonal directions, provid-
filling, keeping thee-h channel nonsingular. To treat this ing a possible qualitative explanation of ARPES experiments
case, an approach perturbatively is only of limited use. by Shert® and the decrease of the anisotropy with decreasing
Ideally, renormalization should be done exactly, and not usT.%
ing a simple one-loofor n-loop) schemegwhich is actually
just an “intelligent” version of the perturbative summatjon
We can speculate and suppose that even in the case of strong

coupling there exists the crossovgg, above which the flow We are indebted to N. Dupuis and L. Guerrin for a num-

is of the BCS type. It is to be expected tHg} is not very  ber of helpful discussions. This work was supported by EC
different from thel ., that we have calculated. This means Contract No. ERBCHRXCT 940438.
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