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The specific heat of two twinned and one detwinned single-crystal samples of YBa2Cu3O72d have been
measured with magnetic fields up to 8 T applied parallel to thec axes of the crystals. The crystals have
zero-field transition widths of 0.3, 1.0, and 1.5 K. The zero-field data are analyzed in terms of the critical and
Gaussian fluctuation models and the in-field data are analyzed in terms of critical and lowest-Landau-level
~LLL ! scaling. The data scale using the three-dimensionalX-Y model in magnetic fields up to 8 T~the highest
field we used!. We also find LLL scaling to work, but only above 6 T. The implication is that there may be a
crossover from three-dimensionalXY to LLL scaling at some sample-dependent field of the order of 10 T. The
results agree with recent measurements of the penetration depth and provide strong evidence for the existence
of a critical regime within which there is scaling behavior characteristic of the three-dimensionalX-Y model
with critical exponents consistent with those observed in superfluid4He. We then perform the same analysis
on previously published specific-heat data on YBa2Cu3O72d and LuBa2Cu3O72d in order to demonstrate the
universality of the scaling functions.@S0163-1829~96!01738-9#

INTRODUCTION

A common characteristic of the high-Tc superconductors
is the observation of significant effects due to thermody-
namic fluctuations at temperatures near to the superconduct-
ing transition temperatureTc . In conventional superconduct-
ors fluctuation effects are generally small due to the large
coherence lengths in these materials~see Ref. 1 for a review
of fluctuation effects in conventional superconductors!. As a
result, mean-field theory provides an adequate description of
observed physical properties. In the presence of a magnetic
field, mean-field theory predicts that the transition tempera-
ture of a type-II superconductor is reduced and the phase
diagram in theH-T plane contains two regions~supercon-
ducting and normal! separated by the temperature-dependent
upper critical field [HC2(T)] line.

It is well known that the specific heat of a conventional
superconductor in zero magnetic field exhibits a discontinu-
ity at Tc and this behavior is well described by mean-field
theory without taking fluctuation effects into account.
Roughly speaking the effect of fluctuations on the specific
heat is to broaden the superconducting transition and smooth
the sharp discontinuity atTc although there is still a cusp at
T5Tc . Whilst mean-field theory provides an excellent ex-
planation of the specific heats of bulk samples~in zero-
magnetic field! the specific heat of dirty~i.e., short coherence
lengths!, two-dimensional samples exhibit measurable ef-
fects due to thermodynamic fluctuations. In this case, the

broadening of the transition in zero magnetic field can be
described by Gaussian corrections to mean-field theory.1 In
high-temperature superconductors, fluctuation effects are en-
hanced by the intrinsically very short coherence lengths and
high transition temperatures characteristic of these materials.
Close to Tc , fluctuations can then become so large that
mean-field theory with Gaussian corrections no longer de-
scribes the observed behavior.2 This provides an opportunity
of observing critical fluctuations at a superconducting phase
transition and determining the universality class to which
this transition belongs. The temperature range over which the
effect of critical fluctuations on the specific heat should be
observed is not well known. The Ginzburg criterion is often
used to estimate this temperature range, but this underesti-
mates the true size of the critical region.3 Recent estimates
suggest that the critical region of YBa2Cu3O72d in zero field
extends as much as 10 K above and belowTc .

3 In particular,
recent measurements of the penetration depth by Kamal
et al.4 have shown that the penetration depth,l(T), is pro-
portional to (T2Tc)

21/3 over a temperature range of 10 K
below Tc which is consistent with three-dimensional~3D!
XY critical behavior.

The universality class of the superconducting transition is
at present uncertain, but there is now growing evidence that
YBa2Cu3O72d exhibits critical fluctuations characteristic of
the three-dimensionalXY model.5 For an uncharged Bose
fluid, such as liquid4He, we expect to observe 3DXY criti-
cal behavior with the exponent for the correlation length6
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n;0.66. The evidence is mounting that this is also the uni-
versality class for high-Tc superconductors within the experi-
mentally accessible temperature range nearTc . Within a
temperature range that is probably too small to be accessible,
effects due to fluctuations in the vector potential, present
because Cooper pairs carry charge, are expected. These have
been predicted to lead to a first-order phase transition in 42«
dimensions7 but second order in 21« dimensions.8 A nu-
merical simulation in 3D suggests a second-order transition.9

But we emphasize that in an extreme type-II superconductor
this region of fluctuations in the vector potential is probably
experimentally inaccessible, and so we expect to observe
critical behavior in a region aroundTc governed by 3DXY
critical exponents similar to the liquid4He. In this region the
general theory of scaling suggests that the singular part of
the specific heat should be of the formCs5g B

2af f (gT/g B
f)

where the scaling fieldsgB andgT are the appropriate linear
combinations ofT2Tc andB, anda andf are the critical
exponents. The scaling functionf (x) should have limits
f (0)5 f 0 and f (x)' f ` x2a asx→`, where f 0 and f` are
finite, nonzero constants, implying the existence of two scal-
ing axes,gB50 andgT50, along whichCs has pure power-
law behaviorCs5 f `g T

2a or Cs5 f 0g B
2af. In principle, the

exponentsa andf and the scaling fieldsgB andgT can be
identified from the renormalization-group eigenvalues and
eigenvectors at the appropriate fixed point. However, the
renormalization-group structure for a superconductor in a
magnetic field is not known. From the symmetry of the phase
diagram under the reversal ofB, we can deduce that one
scaling axis isB50 and identify gB5B. Then atB50,
gT}T2Tc , whilea is the exponent associated with the zero-
field singularity. Assuming thatB enters principally through
a characteristic length scale'B21/2 ~the Larmor radius!, one
expectsf51/2n, wheren is the correlation length exponent.
Within the Hartree approximation,10 these expectations are
verified, and the scaling fieldgT can be identified as
gT5T2Tc(B), whereTc(B) corresponds to the upper criti-
cal field in mean-field theory. Theoretical estimates for the
three-dimensionalXY model6 give n50.66960.002, while
the measured value12 of n in liquid 4He is 0.67260.001.

The broadening of the superconducting transition in a
magnetic field has recently been discussed in terms of the
lowest Landau level~LLL ! approximation,13,14which applies
in a region of the phase diagram close to the renormalized
Bc2(T) line, when the magnetic field is large enough for the
paired quasiparticles to be confined to their lowest Landau
level. Within this approximation, physical properties exhibit
scaling, with the scaling variable18 [T2Tc2(B)]/(TB)

2/3, but
this scaling behavior is not specifically associated with a
phase transition. Instead, the magnetic field has the effect of
introducing a length scale in the plane perpendicular to the
field direction which restricts the divergence in the coherence
length15 and removes the singularity in the specific heat.

In principle, critical and LLL scaling cannot hold in the
same region of theB:T plane. Regions of the phase diagram
where each scaling form might be expected to hold are dis-
cussed in Ref. 10. While the quantitative extent of these
regions cannot be determined reliably, estimates within the
Hartree approximation10 suggest that the crossover from
critical to LLL scaling should occur at fields of the order of
10 T in a high-Tc material such as YBaCuO, but of the order

of 1024 T in conventional superconductors such as niobium.
Experimentally, however, the two types of scaling may be
quite hard to distinguish. Indeed, the scaling expressions for
the resistivity and magnetization are similar. Measurements
on YBa2Cu3O72d seem to be reasonably consistent with
both5,14,16and this has led to some controversy.

In this paper, we report measurements of the specific heat
of two twinned and one detwinned single-crystal samples of
YBa2Cu3O72d in magnetic fields up to 8 T, applied parallel
to thec axes of the crystals. Resistivity16 and specific heat11

measurements on one sample~Y8! were reported earlier, and
were shown to be consistent with single-parameter critical
scaling~for fields up to 4 T in thecase of resistivity and 8 T
in the case of specific heat! over a temperature range of 10 K
above and belowTc .

EXPERIMENTAL DETAILS

Sample Y8 was grown in Leeds using a self-flux tech-
nique in an yttria-stabilized zirconia crucible. It was an-
nealed in dry flowing oxygen~at 1 atm! for 14 days at 400,
450, and 500 °C. Measurements of the resistivity were per-
formed after each anneal and the specific heat was measured
after the final anneal. Sample A27a1 was grown in Oxford
using a self-flux technique in a yttria crucible. Sample A27a1
received no annealing before the specific-heat measurements.
Sample DT3c was grown~and detwinned! in Birmingham
using a self-flux technique in a zirconia crucible. After
growth the sample was annealed at 450 °C for 24 h at a
pressure of 145 bar~85 bar at room temperature!. The
sample was then detwinned by applying uniaxial stress of 50
MPa, the stress was applied at 100 °C, and the crystal was
then heated and was completely detwinned at a temperature
of 350 °C. Sample DT3c was then annealed for 37 days at
400 °C in flowing oxygen.

The specific heat was measured using an ac technique
similar to the method used by Salamonet al.2 The samples
were mounted on crossed thermocouple junctions made by
spot welding 25mm chromel and constantan wires into the
arrangement shown in Fig. 1. The samples were physically
and thermally attached to the thermocouple junctions using a
thin veneer of GE varnish. The heating of the sample was
achieved using an infrared LED attached to a fiber-optic

FIG. 1. Experimental arrangement of the single crystals during
measurements.
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cable. The LED remained outside the cryostat and the fiber-
optic cable was fed down the sample probe. The end of the
fiber was held approximately 5 mm behind the sample and
this distance was adjusted so that the diverging light beam
covered the whole crystal and provided homogeneous heat-
ing. The output power of the LED was varied sinusoidally in
time with a frequency of 17 Hz and the amplitude of the
power oscillations was chosen to produce temperature oscil-
lations of approximately 15 mK. At this frequency the mag-
nitude of the temperature oscillations is inversely propor-
tional to the specific heat of the sample. The sample space
contains4He gas at a pressure of 0.5 atm which provides the
thermal link between the sample and a platinum thermometer
embedded in a copper block. Because the sample is being
heated by the LED the sample temperature is slightly higher
than the thermometer temperature and this dc temperature
difference was measured on the second arm of the thermo-
couple. Although this technique is ideal for making very sen-
sitive measurements at a fine temperature resolution the mea-
sured signal is proportional to the specific heat within an
unknown normalization factor, therefore we normalize our
data using published values for the specific heat of
YBa2Cu3O72d at 100 K. This technique allows the specific
heat to be measured with a sensitivity of 1 part in 104 with a
temperature resolution of 15 mK.

THEORETICAL CONSIDERATIONS

In the critical scaling region, ifa,0, the fluctuation spe-
cific heat is predicted to have the form10

Cf5C02Buau/2n f ~ tB /B
1/2n!, ~1!

where

tB5
T2Tc~B!

Tc~B!
. ~2!

We note that for extreme type-II superconductorsB'm0H,
whereH is the applied field, soB andH are to a large extent
interchangeable. For the rest of this paper we will useB to
denote the magnetic field and the units ofB will be T.

In an applied magnetic field there is no feature with which
to associate withTc(B) so we takeTc(B) to be given by

Tc~B!5Tc~0!1
dTc
dB

B. ~3!

Some workers use the inflection point on the high-
temperature side of the transition to defineTc(B) but there is
no real theoretical justification for this. In conventional
superconductors18,21 we find BC2 is a point on the high-
temperature side of the inflection point; a point chosen to
give good LLL scaling. So as to be consistent with conven-
tional superconductors, for each sample, we estimate a fixed
value of dTc/dB so that the lineTc(B) lies just above the
inflection point. The specific heat therefore has a cusp of
heightC0 at tB50 andB50. The value of the critical expo-
nenta522dn ~for a system of spatial dimensionalityd! is
estimated theoretically6 for d53 as20.00760.006, while its
measured value12 for 4He is20.01360.003. The exact form
of the scaling functionf (x) is unknown, but its behavior for
special values ofx5tB/B

1/2n can be deduced. With the tem-

perature fixed at its critical value~T5Tc or tB50!, the only
singularity inCf is atB50, so we must have

Cf5C02 f 0B
uau/2n, ~4!

where f 05 f (0) is a constant. In the limit of zero field
(tB5t), on the other hand, the scaling function should be-
have asf (x)'A6(uxu) uau, where the upper~lower! sign re-
fers to t.0 (t,0), so that

Cf5HC02A1t uau ~ t.0!,

C02A2~2t ! uau ~ t,0!.
~5!

The amplitude ratioR5A1/A2 is a universal quantity,
whose value is estimated theoretically17 as 1.02960.013,
while its measured value12 in liquid 4He is 1.05860.004.

If the fluctuations are assumed to be Gaussian then, for a
d-dimensional system, the fluctuation contribution to the
specific heat is given by1

Cf5HC1t242d/2 ~ t.0!,

C2t242d/21DCGL ~ t,0!,
~6!

where DCGL is the Ginzburg-Landau mean-field specific
heat belowTc . This is given by18

DCGL5T
a82

b
, ~7!

wherea andb are the usual Ginzburg-Landau free-energy
expansion coefficients~a8 is the temperature derivative of
a!. To a first approximationa8 andb are constant but this is
only true close toTc(B). When considering temperatures
away fromTc(B) we must account for the temperature de-
pendence ofa8 andb. The detailed temperature dependence
of a8 andb is not known so we expandDCGL for small t
aboutt50, as

DCGL~T!'hT~11gt!. ~8!

This form of DCGL(T) is now the same as the BCS mean-
field specific heat19 DCBCS(T) where

DCBCS~T!'gT~11dt!. ~9!

It will be seen later that the determination of the mean-field
specific heat is important when we come to consider lowest
Landau level scaling.

The ratio of the fluctuation amplitudesC1/C2 contains
information about the symmetry of the superconducting or-
der parameter. For a BCS superconductor the pairing iss
wave and the order parameter is a single complex number.
The number of components of the order parameter in this
case is 2. In general, the number of components of the order
parameter is not a universal quantity.20 If an effective num-
ber of components,neff , of the order parameter is defined by

neff
23/2

5
C1

C2 ~10!

then the value ofneff is dependent on the nature of the su-
perconductivity. Values ofneff.2 imply unconventional
~i.e., non-s-wave! superconductivity. YBa2Cu3O72d has
orthorhombic symmetry therefore the order parameter is also
expected to have orthorhombic symmetry. In this case both
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s-wave andd-wave pairing haveneff52. The only order pa-
rameter with orthorhombic symmetry and a value ofneff.2
is for triplet p-wave pairing and in this caseneff has an upper
bound of 6. Strictly speaking YBa2Cu3O72d has orthorhom-
bic symmetry but in reality it only slightly distorted from
tetragonality. For tetragonal symmetry values ofneff.2 are
found for selectedd-wave symmetries and in this caseneff
has an upper bound of 5.65.

In the presence of a magnetic field the transition tempera-
ture of a conventional superconductor is reduced, the height
of the specific heat peak is suppressed and the width of the
transition is increased. The physical origin of the transition
broadening was first proposed by Lee and Shenoy.15 The
central idea is that the presence of a magnetic field intro-
duces a length scale perpendicular to the direction of the
magnetic field because the paired quasiparticles occupy Lan-
dau orbits. In a sufficiently strong magnetic field the paired
quasiparticles are confined to the lowest Landau level~LLL !
and the dimensionality of the superconductor is reduced by
2. Thus a three-dimensional superconductor becomes equiva-
lent to a collection of one-dimensional filaments and this
reduction in dimensionality increases the effect of thermody-
namic fluctuations. In this case it is possible that mean-field
theory with Gaussian corrections is an appropriate descrip-
tion for zero magnetic field but in the presence of a magnetic
field the fluctuations are so enhanced that we need to con-
sider higher-order terms in the Ginzburg-Landau free-energy
expansion. Theoretically the problem is difficult for an arbi-
trary magnetic field because of the need to perform summa-
tions over all occupied Landau levels. The problem is much
simplified by assuming that the applied magnetic field is
large enough to confine the paired quasiparticles to the low-
est Landau level. Using a Hartree approximation and assum-
ing that the electrons are confined to the lowest Landau level
the fluctuation contribution to the specific heat [Cf(B,T)] of
a superconductor is predicted to scale as18

Cf~B,T!

DCGL~B,T!
5LS T2Tc~B!

~TB!2/3 D , ~11!

whereL(x) is the LLL scaling function. It is now apparent
that in order to test LLL scaling we must have a reliable
estimate ofDCGL(B,T). Farrant and Gough

21 have analyzed
the specific heat of Niobium which clearly shows LLL scal-
ing. In their analysis they measure the specific heat well
belowTc(B), which should be a good estimate of the mean-
field specific heat, and then extrapolate this linearly into the
transition region. This method does, in principle, give a reli-
able estimate of the mean-field specific heat@see Refs. 22
and 23 for a discussion of the correct form ofDCGL(B,T)#.
Some workers have looked for LLL scaling.24–30 Welp
et al.14 and Janodet al.28 do not find clear evidence for LLL
scaling. Kobayashiet al.29 seemed to find evidence for LLL
scaling in BiSCCO but only over a very small range oftB
and only then after using an unusual variation ofTc(B).
Zhouet al.27 claimed to have found LLL scaling in the spe-
cific heat of LuBaCuO, but we believe that, while in the
highest field LLL seems to work, the data are better de-
scribed by the 3DX2Y model in the field range below about
8 T, as we show below. Recently Roulinet al.30 have tried to
look for scaling in the field and temperature derivative of the

specific heat in an attempt to remove the difficulties of the
background subtraction. They find that their data can be
scaled by both LLL and 3DXYmodels. Much of this is also
discussed in a recent review by Junod.31

In addition to the fluctuation contributionCf , the mea-
sured total specific heatCtot includes nonsingular phonon
and normal-electron contributionsCns. These contributions
exhibit no sharp features nearTc . Therefore in the following
analysis we take the total specific heat to beCtot5Cns1Cf ,
with a nonsingular contribution of the formCns5at21bt1c
wherea, b, andc are constants. Because we only consider
the specific heat over a 20 K temperature range aroundTc we
believe that this form ofCns can correctly account for the
nonsingular contributions. Some workers24 measure the spe-
cific heat over a large temperature range, exclude the region
aroundTc and then fit the remaining data to more complex
models of the phonon specific heat. This method therefore
assumes a particular form for the nonsingular contributions.
We assume only that nonsingular contributions vary
smoothly with temperature for the small temperature range
of interest aroundTc . A recent criticism of the critical fluc-
tuation model concerns the entropy associated with the su-
perconducting fluctuations. Schnelleet al.25 claim that there
is too much entropy associated with the fluctuations. The
entropySf associated with the fluctuations can be calculated
from the specific heat using the thermodynamic relation

Sf5E Cf

T
dT. ~12!

Therefore in order to calculate the entropySf we need to
know Cf . From an analysis of the data using the 3DX2Y
model the fluctuation contribution to the specific heat cannot
be separated from the nonsingular contribution because the
parameterc is not uniquely defined. Fits to the data give a
value only for (C01c). This is not a problem for an analysis
based on the Gaussian fluctuation model. But for the critical
region, becausea is small, the cusp is very close to a loga-
rithmic divergence and experimentally it is impossible to dis-
tinguish between the two. In the limit of smalla the fluctua-
tion contribution to the specific heat can thus be
approximated by25

Cf5A ln~ t !. ~13!

Schnelleet al.25 used this form forCf but strictly speaking
this is incorrect. Equation~13! gives the singular temperature
dependence ofCf not the total value ofCf . The total fluc-
tuation contribution to the specific heat is given by

Cf5A ln~ t !1B. ~14!

Therefore curve fits with this model, including a smooth
polynomial background (at21bt1c) will give a value (c
1B) and not a value ofc alone. The background specific
heat, and thereforeCf , will be unknown to within an addi-
tive constant. It is therefore apparent that the entropy asso-
ciated with the fluctuations cannot be reliably estimated from
the zero-field curve fits to the specific heat when using the
critical fluctuation model, unless some way of finding the
height of the cusp can be found.
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RESULTS AND DISCUSSION

Figures 2 and 3 show the specific heat of samples DT3c
and A27a1. The size of the jump is similar for all the
samples~;2% of the total specific heat! and all the transi-
tions are around 90 K. The approximate zero-field transition
widths are 0.3 K~Y8!, 1.0 K ~DT3c!, and 1.5 K~A27a1!, and
do not correlate with theTc’s.

We fit the zero-field data to the 2D and 3D Gaussian
models and the 3DX2Y model. In performing the fits we
excluded data close to the peak so as to minimize the effects
of intrinsic broadening. We therefore ignored data in a re-
gion of 2 K for DT3c and A27a1, and 0.6 K for Y8 centered
on the peak temperature. We then fixed the value ofTc ,
slightly above the inflection point on the high temperature
side of the transition, and performed a least-squares fit over a
reduced temperature range20.1<t<0.1. When performing
the Gaussian fits we initially used seven free fitting param-
eters,a, b, andc for the background specific heat;h andg
for the mean-field specific heat, andC1 and C2 for the
fluctuation specific heat. By adjusting all seven parameters,
we obtained good fits to the data but the values of the pa-
rameters were unphysical. In particular we always obtained
g;10, which is far too large. In fact a value ofg.10 causes
(11gt) to change sign fort,20.1. In addition to this, the

value ofneff calculated from Eq.~6! varied from 1.4 to 15.4
depending on the sample. In order to correct this problem we
fixed g53 which is a physically reasonable value. The BCS
theory predictsg51.83 in the weak-coupling limit, butg is
larger for strongly coupled conventional superconductors.
The following conclusions are not altered ifg is varied in the
range 1,g,4 but all the Gaussian curve fits presented here
have been calculated withg53. The results of the 2D and
3D Gaussian fits are shown in Table I. Figures 4 and 5 show
the results of the 2D and 3D Gaussian fits respectively to the
DT3c data. From these figures it is seen that both the 3D and
2D Gaussian models produce reasonable fits to the data al-
though the 3D fit is better than the 2D fit. This is also true for
the other samples. The value ofneff calculated from Eq.~10!
for each sample varied from 1.6 to 2.4 for the 2D fit and 1.8
to 3.1 for the 3D fit. This large spread inneff suggests that the
Gaussian fluctuation model does not provide a consistent ex-
planation of the fluctuation specific heat. It is important to
note that if we fixedneff52 we could no longer obtain rea-
sonable fits to the data on any sample.

We now consider the 3DX2Y fit to the zero-field data.
We usea, b, c, A1, andA2 as free-fitting parameters and
fixed a520.013. Fits of similar quality could be obtained
for a wide range of values ofa, so we chose to fix the value
of a to that obtained in liquid4He. We also obtained fits of
similar quality using a logarithmic divergence instead of the
cusp. Table II shows the parameters found for the best 3D
XY fit to each sample and the associated amplitude ratio for
each case, and Fig. 6 shows the 3DX2Y fit for sample
DT3c, similar to sample Y8 in Ref. 11. Fits to the data on the

FIG. 4. Specific heat of sample DT3c~points!. The solid line is
a fit to the data using the 2D Gaussian model with the parameters in
Table I. Not all points are shown for clarity.

FIG. 2. The specific heat of sample DT3c in magnetic fields of
0, 1, 2, 4, 6, and 8 T~from top to bottom! as indicated in the legend.

FIG. 3. The specific heat of sample A27a1 in magnetic fields of
0, 1, 2, 4, 6, and 8 T~from top to bottom, see Fig. 2 for the legend!.

TABLE I. Parameters derived from the 2D and 3D Gaussian fits
to the zero-field specific heat of the three samples. See text for
definition of symbols.

Sample

2D Gaussian

Tc ~K!

3D Gaussian

neff h ~mJ g21 K21! neff h ~mJ g21 K21!

Y8 2.59 38.5 92.0 2.41 38.7
DT3c 1.79 34.0 90.5 1.63 37.7
A27a 3.09 42.9 90.8 1.82 39.9
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other samples were of the same quality. The amplitude ratio
in all cases is found to be similar to that found in liquid
4He ~1.058!. In Fig. 7 we show the specific heat minus the
background determined from the 3DXY zero-field fit—in
this case the background necessarily includes the height of
the cusp, since it is impossible to separate the height of the
cusp and the constant in the polynomial background—as a
log10(utu) plot from which we can see that the fit is reason-
able close toTc from about 5 K above and belowTc , also
shown are the linesA6t uau from the zero-field fit. From all
this we conclude that the 3DX2Y model provides a consis-
tent description of the zero-field specific heat of
YBa2Cu3O72d. The 3DX2Y and 3D Gaussian fits are of
similar quality and from the zero-field data it is therefore
impossible to distinguish clearly between the critical and
Gaussian models although the data is better described by
assuming that the fluctuations are three-dimensional.

We now turn to the magnetic field dependence of the
specific heat. The specific heats of all our samples have been
measured as functions of temperature in constant magnetic
fields up to 8 T, applied parallel to thec axis of the crystals.
In all cases the transitions display the familiar broadening

and suppression of the peak with little change in the onset
temperature. In all cases the specific heat is field independent
~within experimental resolution! at temperatures well above
and well below the transition temperature from the field and
temperature range studied. Figures 2 and 3 show the transi-
tions of samples DT3c and A27a1, respectively, in magnetic
fields up to 8 T. The data for sample Y8 are shown in Ref.
11.

We first consider the LLL scaling of the fluctuation spe-
cific heat. For a LLL scaling plot the background must come
from a Gaussian fluctuation fit in order to be consistent. Be-
cause the 3D Gaussian fit is better than the 2D Gaussian fit
we use the background obtained from the 3D Gaussian fit.
We use a field-independent mean-field specific heat as the
normalization factor for the LLL scaling. The mean-field
specific heat is in general field dependent, but, as the mea-
sured specific heats in different magnetic fields lie close to a
common curve well below the transition, it is reasonable to
use a field-independent mean-field specific heat. In fact well
below Tc there is a small field dependence consistent with
entropy balancing. The fluctuation contribution to the spe-
cific heat~as defined by the 3D Gaussian fit! is significant at
temperatures well belowTc so we do not follow the proce-
dure of Farrant and Gough~i.e., extrapolating the measured
specific heat!. Instead, we use the mean-field specific heat
defined by the 3D Gaussian fit using the parameters in Table
I. We note that we arbitrarily setg53 in Eq. ~8! before the
fit. We reach the same conclusions if we use any other rea-

FIG. 5. Specific heat of sample DT3c~points!. The solid line is
a fit to the data using the 3D Gaussian model with the parameters in
Table I. Not all points are shown for clarity.

TABLE II. Parameters derived from the 3DX2Y fit to the
zero-field specific heat of the three samples. See text for definition
of symbols.

Sample Tc ~K! A1/A2

Y8 92.0 1.07
DT3c 90.5 1.06
A27a 90.8 1.08

FIG. 6. Specific heat of sample DT3c~points!. The solid line is
a fit to the data using the 3DX2Y model with the parameters in
Table II. Not all points are shown for clarity.

FIG. 7. The specific heat minus the background which includes
the height of the cuspC0 for DT3c plotted vs log10(utu). The solid
lines are the fitsA6t uau from the fit in the 3DXY fit. The upper line
is for data belowTc and the lower line for data aboveTc .
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sonable value forg (1,g,4) or by following the procedure
of Farrant and Gough.

The fluctuation specific heat of sample DT3c is shown in
Fig. 8, where the solid line is the mean-field specific heat
used in the LLL scaling. Figure 9 shows the LLL scaling of
the fluctuation specific heat of this sample, using
dTc/dB520.17 K/T. This value is chosen to be consistent
with the transition temperature being on the high-
temperature side of the inflection point, this was found to be
the case for the LLL scaling in niobium. The scaling is not
improved by using any other value ofdTc/dB. From this
plot it is apparent that the LLL scaling is not perfect. The
scaling improves at higher fields, as expected, and the 6 and
8 T data appear to scale but the lower field data do not seem
to scale. The LLL scaling shown in Fig. 9 is characteristic of
all the samples and the LLL scaling of the specific heat of
sample Y8 is shown in Ref. 23.

The 3D X2Y scaling of the specific heat is easier to
perform than the LLL scaling because of the absence of a
mean-field normalization factor. We simply use the param-
eters defined by the zero-field fit to subtract the background
and look for scaling of the form given in Eq.~1!. Figure 10
shows the 3DX2Y scaling of the specific heat of sample

DT3c and Fig. 11 shows the 3DX2Y scaling for sample
A27a1. From these scaling plots it is evident that some of the
lowest field data do not lie on the scaling curves. We believe
this is due to a finite-size effect cutting off the divergence of
the coherence length, which is analogous to the effect of a
magnetic field. In the presence of finite-size effects critical
scaling will only be observed when the characteristic cutoff
length due to the applied magnetic field is much shorter than
the cutoff length due to the finite-size effect. The failure of
the lowest-field data to scale is therefore a reflection on the
sample quality not the scaling. We stress here that in this
context a finite-size effect is not due to the finite size of the
samples. We show below that the cutoff length associated
with the finite-size effect is of the order of tens of nanom-
eters and we attribute the finite-size effect to some form of
disorder or domain structure on this scale. The finite-size
effect will be discussed in more detail below. With the ex-
ception of the lowest-field data~because of the finite-size
effects! we find that the scaling is excellent for all the
samples. The scaling in Figs. 10 and 11 is achieved usingtB
as the temperature variable with the values ofdTc/dB shown
in Table IV. In fact for udTc/dBu<0.17 K/T the scaling is
insensitive to the exact choice ofdTc/dB. In our original
work11 on sample Y8 in fact we implicitly useddTc/dB50

FIG. 9. LLL scaling of the specific heat of sample DT3c, see
Fig. 2 for the legend.

FIG. 10. 3DX2Y scaling of the specific heat of sample DT3c,
see Fig. 2 for the legend.

FIG. 8. The fluctuation specific heat of sample DT3c as defined
from the zero-field 3D Gaussian fit. The solid line is the mean-field
contribution to the specific heat, see Fig. 2 for the legend.

FIG. 11. 3DX2Y scaling of the specific heat of sample A27a1,
see Fig. 2 for the legend.
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but this makes little difference to the scaling. However, we
should note that for magnitudes ofdTc/dB bigger than 0.17
K/T the scaling becomes progressively worse. For all the
samples studied here we find that 3DX2Y scaling can col-
lapse the data onto a common curve.

We noted previously that the low-field data did not scale.
This is the result of a rounding of the transition which maybe
due to inhomogeneity but we found we could model it as
though it were a finite-size effect. We found that the larger
the zero-field transition width, the higher the field needed to
observe critical scaling, a fact that is consistent with a finite-
size effect. We can model the finite-size effect by following
a procedure similar to that of Inderheeset al.26 The applied
magnetic fieldBa introduces a length scaleLB such that

LB5A \

eBa
. ~15!

Therefore, in analogy, we define a magnetic fieldBFSequiva-
lent to a finite-size cutoff lengthLFS as

BFS5
\

eLFS
2 . ~16!

We then use an effective magnetic fieldBe in the scaling Eq.
~1! defined as

Be
25Ba

21BFS
2 . ~17!

This then incorporates the effect of the applied magnetic
field and the finite-size effect into the critical scaling. Figure
12 shows the effect of usingBFS on the critical scaling of
samples A27a1 and DT3c. The shape of the scaling curve is
virtually unaffected for the high-field data~as expected! but
the low-field data now follow the same curve as the high-
field data. The value ofBFSneeded to scale the low-field data
for each sample is shown in Table III~along with the length
scale associated with it! and these values correlate well with
the zero-field transition widths which implies that the shorter
the length scale associated with the finite-size effect the
larger the zero-field transition width. UsingBFS did not im-
prove the quality of the LLL scaling.

In order to quantify the LLL and 3DXY scaling we evalu-
ated the quantity

r5
1

NINJ
A(

i
(
j

S ȳi2yi j
ȳi

D 2,
where theyi j are the values of the scaling function evaluated
at all magnetic fields indexed byj and all values of the
scaling variable.ȳi are the values ofyi j averaged over all
magnetic fields~e.g., magnetic fields of 1,2,4,6,8 T!. NI are
the number of data points recorded as the temperature is
varied at fixed field andNJ is the number of fixed fields used.
The smaller the value ofr the better the scaling. For 3DXY
scaling using all the data for DT3cr50.0016 while for LLL
scaling r50.23—in both cases we used the best scaling
achieved which included the ‘‘finite-size scaling’’ parameter.
If we restrict the LLL scaling to field runs of 1, 2, and 4 T
then r50.18 and if we restrict the scaling to 6 and 8 T
r50.048. These results suggested that 3DXY scaling works
well over the whole field range up to 8 T while LLL scaling
works best above 6 T.

There has been much debate recently in the literature re-
cently concerning LLL versus critical scaling. Magnetization
and resistivity data cannot distinguish between the two scal-
ing regimes. Even with the specific heat there is great diffi-
culty because of the background subtraction problem. The
data we have presented suggest that LLL approximation may
be valid in magnetic fields greater than about 6 T. Below 6 T
the specific heat does not exhibit LLL scaling. The data are
also seen to exhibit critical scaling in magnetic fields up to 8
T which suggests that the critical and LLL regimes overlap.
Strictly speaking the two regimes cannot overlap because the
scaling is of a different kind but the observed overlap is
probably due to experimental resolution. If the specific heat
was measured in higher magnetic fields then one would ex-
pect critical scaling to fail at some large magnetic field al-
though this would be difficult to observe in practice because
the specific heat in magnetic fields above 6 T isonly weakly
field dependent.

The scaling functionf (x) has now been determined for
three different samples of different quality. In order to com-
pare the scaling functions from different samples we use the
general form of the scaling function10

Cf5C02C1B
uau/2n f u~x!, ~18!

wheref u(x) is the universal scaling function andC0 andC1
are constants which are expected to be sample dependent.
The general scaling variablex is defined as

FIG. 12. 3DX2Y scaling of the specific heat of sample A27a1
using the effective magnetic fieldBe . Inset: the same plot for
sample DT3c, see Fig. 2 for the legend.

TABLE III. Parameters used in the 3DX2Y scaling. See text
for definition of symbols.

Sample

3D X2Y scaling parameters

2dTc/dB ~K/T! BFS ~T! DTc ~K! LFS ~nm!

Y8 0.17 0.1 0.3 81
DT3c 0.14 0.6 1.0 33
A27a 0.17 1.0 1.5 26
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x5l
tB
B1/2n , ~19!

wherel is a material-dependent constant.l is expected to
have the same value for different samples of YBa2Cu3O72d
but different values in other materials. The universal scaling
function f u(x) is the same for any superconductor which
belongs to the three-dimensionalX2Y universality class of
the phase transition. We have performed the same analysis
on the previously published specific-heat data of Inderhees
et al.2 ~a single-crystal sample of YBa2Cu3O72d! and Zhou
et al.27 ~a single-crystal sample of LuBa2Cu3O72d!. In order
to compare the scaling functions from the different samples
we take one curve from each scaling plot that is representa-
tive of the scaling function and plot these curves in Fig. 13
with the values shown in Table IV. The scaling function is
found to be the same, within experimental resolution, for all
the samples. In each case the zero-field data are well de-
scribed by a cusp@Eq. ~5!# with an amplitude ratio similar to
that found in superfluid4He. In each case the specific-heat
data in several magnetic fields exhibit single-parameter criti-
cal scaling@as described by Eq.~1!# and the scaling functions
obtained from the different samples are found to be the same.
WhereasC0 andC1 are found to be, in general, sample de-
pendent~in some cases they are similar but this may be co-
incidence! l is found to be only material dependent~Table
IV !. To some extent different samples of YBa2Cu3O72d are

different materials~i.e., differentTc’s, k’s, etc.! but the prop-
erties are expected to be similar. Therefore the fact that the
scaling function is the same for different YBa2Cu3O72d
samples is only a weak test of universality but the fact that
the same scaling function is found for the specific heat of
LuBa2Cu3O72d is a much stronger test of universality. The
observed universality of the scaling function is extremely
strong evidence that YBa2Cu3O72d and LuBa2Cu3O72d be-
long to the three-dimensionalX2Y universality class of
phase transition.

In summary, we have demonstrated that the specific heat
of YBCO single crystals in magnetic fields up to 8 T iswell
described by the three-dimensionalX2Y model. The zero-
field specific heat is found to be well described by a cusplike
behavior. The specific heat in magnetic fields up to 8 T is
found to exhibit critical scaling with the same critical expo-
nents as found in liquid4He. Also, we have demonstrated
the universality of the critical scaling by comparing the scal-
ing functions obtained in different samples of YBa2Cu3O72d
and LuBa2Cu3O72d, the scaling functions are found to be
identical within experimental uncertainty. It is still difficult
to distinguish between 3DXY and LLL scaling but the dem-
onstration that the scaling curve for different samples in Fig.
13 adds an additional contribution to the debate. We believe
our data suggest 3DXY scaling is appropriate at low fields
and there maybe a crossover to LLL scaling at higher fields.
The crossover field for the samples studied here is about 6 T.
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