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The specific heat of two twinned and one detwinned single-crystal samples oiCUfg®_ s have been
measured with magnetic fields up 8 T applied parallel to the axes of the crystals. The crystals have
zero-field transition widths of 0.3, 1.0, and 1.5 K. The zero-field data are analyzed in terms of the critical and
Gaussian fluctuation models and the in-field data are analyzed in terms of critical and lowest-Landau-level
(LLL) scaling. The data scale using the three-dimensi¥r®l model in magnetic fields up to 8 (the highest
field we usegl We also find LLL scaling to work, but only above 6 T. The implication is that there may be a
crossover from three-dimensiondl to LLL scaling at some sample-dependent field of the order of 10 T. The
results agree with recent measurements of the penetration depth and provide strong evidence for the existence
of a critical regime within which there is scaling behavior characteristic of the three-dimenXioriahodel
with critical exponents consistent with those observed in superfidiel We then perform the same analysis
on previously published specific-heat data on ¥Ba&0O,_ s and LuBgCu;O,_ s in order to demonstrate the
universality of the scaling function§S0163-182896)01738-9

INTRODUCTION broadening of the transition in zero magnetic field can be
described by Gaussian corrections to mean-field theémy.

A common characteristic of the highs superconductors high-temperature superconductors, fluctuation effects are en-
is the observation of significant effects due to thermody-hanced by the intrinsically very short coherence lengths and
namic fluctuations at temperatures near to the supercondudtigh transition temperatures characteristic of these materials.
ing transition temperatur&; . In conventional superconduct- Close to T, fluctuations can then become so large that
ors fluctuation effects are generally small due to the largenean-field theory with Gaussian corrections no longer de-
coherence lengths in these materi@se Ref. 1 for a review scribes the observed behavfoFhis provides an opportunity
of fluctuation effects in conventional superconductofs a  of observing critical fluctuations at a superconducting phase
result, mean-field theory provides an adequate description dfansition and determining the universality class to which
observed physical properties. In the presence of a magnettbis transition belongs. The temperature range over which the
field, mean-field theory predicts that the transition temperaeffect of critical fluctuations on the specific heat should be
ture of a type-ll superconductor is reduced and the phasebserved is not well known. The Ginzburg criterion is often
diagram in theH-T plane contains two regionsupercon- used to estimate this temperature range, but this underesti-
ducting and normalseparated by the temperature-dependentates the true size of the critical regidiRecent estimates
upper critical field Hco(T)] line. suggest that the critical region of YBau;0;_sin zero field

It is well known that the specific heat of a conventional extends as much as 10 K above and belw’ In particular,
superconductor in zero magnetic field exhibits a discontinurecent measurements of the penetration depth by Kamal
ity at T, and this behavior is well described by mean-fieldet al* have shown that the penetration deptiT), is pro-
theory without taking fluctuation effects into account. portional to (T—T.) ' over a temperature range of 10 K
Roughly speaking the effect of fluctuations on the specifidelow T, which is consistent with three-dimension@D)
heat is to broaden the superconducting transition and smoo#Y critical behavior.
the sharp discontinuity &k although there is still a cusp at The universality class of the superconducting transition is
T=T.. Whilst mean-field theory provides an excellent ex-at present uncertain, but there is now growing evidence that
planation of the specific heats of bulk sampl@s zero- YBa,CusO,_4 exhibits critical fluctuations characteristic of
magnetic field the specific heat of dirtgi.e., short coherence the three-dimensionakY model®> For an uncharged Bose
lengths, two-dimensional samples exhibit measurable ef-fluid, such as liquid*He, we expect to observe 3RY criti-
fects due to thermodynamic fluctuations. In this case, theal behavior with the exponent for the correlation lefigth
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v~0.66. The evidence is mounting that this is also the uni- Thermocouple wires
versality class for high-, superconductors within the experi-
mentally accessible temperature range n€ar Within a
temperature range that is probably too small to be accessible,
effects due to fluctuations in the vector potential, present
because Cooper pairs carry charge, are expected. These hav
been predicted to lead to a first-order phase transition-ia 4
dimension$ but second order in 2¢ dimensiong A nu-
merical simulation in 3D suggests a second-order transition.
But we emphasize that in an extreme type-1l superconductor Contact block
this region of fluctuations in the vector potential is probably

experimentally inaccessible, and so we expect to observe Fib“eOP‘iCC“b'e\
critical behavior in a region arount, governed by 3DXY
critical exponents similar to the liquitHe. In this region the
general theory of scaling suggests that the singular part of
the specific heat should be of the fo=g 5 **f(g/g3)
where the scaling fieldgg andgy are the appropriate linear

combinations ofT —T. and B, and « and ¢ are the critical . . Lo
exponents. The scaling functiof(x) should have limits of 107" T in conventional superconductors such as niobium.

£(0)="f, and f(x)=f.. x  asx—, wheref, andf.. are Experimentally, however, the two types of scaling may be
finite, nonzero constants, implying the existence of two scalduite hard to distinguish. Indeed, the scaling expressions for
ing axes gz =0 andg,=0, along whichC, has pure power- the resistivity and magnetization are similar. Measurements
' S . .
law behaviorC,=f..g7® or C.=fogz**. In principle, the ~©N YE%EUSOH_; seem to be reasonably consistent with
exponentsy and ¢ and the scaling fieldgg and g can be botf™'**and this has led to some controversy. B
identified from the renormalization-group eigenvalues and M this paper, we report measurements of the specific heat
eigenvectors at the appropriate fixed point. However, th@f two twinned and one detwinned single-crystal samples of
renormalization-group structure for a superconductor in a B&CUsOr—; in magnetic fields up to 8 T, applied paﬁllel
magnetic field is not known. From the symmetry of the phasd® thec axes of the crystals. Resistivifyand specific he
diagram under the reversal &, we can deduce that one Measurements on one samp¥8) were reported earlier, and
scaling axis isB=0 and identifygg=B. Then atB=0 were shown to be consistent with single-parameter critical
gy T—T,, while ais the exponent associated with the Zer0_§callng(for fields up_o 4 T in thecase of resistivity and 8 T
field singularity. Assuming tha enters principally through [ the case of specific heaiver a temperature range of 10 K

a characteristic length scateB~ Y2 (the Larmor radius one ~ 2P0ve and below.
expects¢p=1/2v, wherewv is the correlation length exponent.
Within the Hartree approximatiolf, these expectations are
verified, and the scaling fieldyr can be identified as
g7=T—T.(B), whereT.(B) corresponds to the upper criti- Sample Y8 was grown in Leeds using a self-flux tech-
cal field in mean-field theory. Theoretical estimates for thenique in an yttria-stabilized zirconia crucible. It was an-
three-dimensionaKY modef give »=0.669+0.002, while  nealed in dry flowing oxygefiat 1 atn for 14 days at 400,

the measured valdeof » in liquid “He is 0.672:0.001. 450, and 500 °C. Measurements of the resistivity were per-

The broadening of the superconducting transition in aormed after each anneal and the specific heat was measured
magnetic field has recently been discussed in terms of thefter the final anneal. Sample A27al was grown in Oxford
lowest Landau levelLLL ) approximationt>**which applies  using a self-flux technique in a yttria crucible. Sample A27al
in a region of the phase diagram close to the renormalizedeceived no annealing before the specific-heat measurements.
B.(T) line, when the magnetic field is large enough for theSample DT3c was growifand detwinneflin Birmingham
paired quasiparticles to be confined to their lowest Landawsing a self-flux technique in a zirconia crucible. After
level. Within this approximation, physical properties exhibit growth the sample was annealed at 450 °C for 24 h at a
scaling, with the scaling variaHifé[T—Tcz(B)]/(TB)2’3, but  pressure of 145 baf85 bar at room temperatyreThe
this scaling behavior is not specifically associated with asample was then detwinned by applying uniaxial stress of 50
phase transition. Instead, the magnetic field has the effect dPa, the stress was applied at 100 °C, and the crystal was
introducing a length scale in the plane perpendicular to thé¢hen heated and was completely detwinned at a temperature
field direction which restricts the divergence in the coherencef 350 °C. Sample DT3c was then annealed for 37 days at
length® and removes the singularity in the specific heat. 400 °C in flowing oxygen.

In principle, critical and LLL scaling cannot hold in the  The specific heat was measured using an ac technique
same region of th&: T plane. Regions of the phase diagram similar to the method used by Salamenal? The samples
where each scaling form might be expected to hold are diswere mounted on crossed thermocouple junctions made by
cussed in Ref. 10. While the guantitative extent of thesespot welding 25um chromel and constantan wires into the
regions cannot be determined reliably, estimates within tharrangement shown in Fig. 1. The samples were physically
Hartree approximatiofi suggest that the crossover from and thermally attached to the thermocouple junctions using a
critical to LLL scaling should occur at fields of the order of thin veneer of GE varnish. The heating of the sample was
10 T in a highT, material such as YBaCuO, but of the order achieved using an infrared LED attached to a fiber-optic

Infrared light

FIG. 1. Experimental arrangement of the single crystals during
measurements.

EXPERIMENTAL DETAILS
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cable. The LED remained outside the cryostat and the fibemperature fixed at its critical valud =T, or tz=0), the only
optic cable was fed down the sample probe. The end of theingularity inC; is atB=0, so we must have

fiber was held approximately 5 mm behind the sample and a2

this distance was adjusted so that the diverging light beam Ci=Co— B, 4
covered the whole crystal and provided homogeneous heajhere f,=f(0) is a constant. In the limit of zero field
ing. The output power of the LED was varied sinusoidally in (t_=t), on the other hand, the scaling function should be-

time with a frequency of 17 Hz and the amplitude of thehaye asf(x)~A*(|x|)!*!, where the uppeflower) sign re-
power oscillations was chosen to produce temperature 0sCifgrs tot>0 (t<0), so that

lations of approximately 15 mK. At this frequency the mag-
nitude of the temperature oscillations is inversely propor- CO—A+t|“| (t>0),
tional to the specific heat of the sample. The sample space Ci= Co— A~ (=)l
. 4 . . 0 (t<0)
contains“He gas at a pressure of 0.5 atm which provides the
thermal link between the sample and a platinum thermometeFhe amplitude ratoR=A"/A~ is a universal quantity,
embedded in a copper block. Because the sample is beinghose value is estimated theoreticaflyas 1.0290.013,
heated by the LED the sample temperature is slightly highewhile its measured vald&in liquid “He is 1.058-0.004.
than the thermometer temperature and this dc temperature If the fluctuations are assumed to be Gaussian then, for a
difference was measured on the second arm of the thermeol-dimensional system, the fluctuation contribution to the
couple. Although this technique is ideal for making very sen-specific heat is given By
sitive measurements at a fine temperature resolution the mea-
sured signal is proportional to the specific heat within an
unknown normalization factor, therefore we normalize our
data using published values for the specific heat of . . . -
YBa,Cu;0;_5 at 100 K. This technigue allows the specific where ACg is the_ Glnzburg-é_andau mean-field specific
heat to be measured with a sensitivity of 1 partif a@th a  "€at belowT.. This is given by
temperature resolution of 15 mK. o'?
ACGL: T -,
THEORETICAL CONSIDERATIONS B
where a and B8 are the usual Ginzburg-Landau free-energy
expansion coefficient$a’ is the temperature derivative of
a). To a first approximatiom’ and 8 are constant but this is

©)

C+t—4—d/2 (t>0),

Ci=lct4d21acy, (t1<0),

(6)

@)

In the critical scaling region, itv<<0, the fluctuation spe-
cific heat is predicted to have the foftn

— . _Rlalf2y 12y only true close toT.(B). When considering temperatures
Ci=Co~—B f(ts/B7), @) away fromT (B) we must account for the temperature de-
where pendence ofr' and 8. The detailed temperature dependence
of &' and B is not known so we expandCg, for smallt
t _T-T«(B) 2 aboutt=0, as
B= T (B) 2
¢ ACq (T)~hT(1+gt). ®

We note that for extreme type-ll superconductBrs ugH, , )
whereH is the applied field, s& andH are to a large extent 1S formpfAC;PL(T) is now the same as the BCS mean-
interchangeable. For the rest of this paper we will Bseo  1€ld specific heat ACgc(T) where
denote the magnetic field and the unitsBoivill be T. _
In an applied magnetic field there is no feature with which ACeed T)=7T(1+d1). ©
to associate witlT ;(B) so we takeT(B) to be given by It will be seen later that the determination of the mean-field
specific heat is important when we come to consider lowest
Landau level scaling.
The ratio of the fluctuation amplituded*/C~ contains
information about the symmetry of the superconducting or-
der parameter. For a BCS superconductor the pairing is

~ dT,
To(B)=Te(0) + 55 B. ®

Some workers use the inflection point on the high-

temperature side of the transition to defigB) but there is a6 and the order parameter is a single complex number.

no real theoretical justification for this. In conventional The number of components of the order parameter in this
21 ; ; ; ;

superconductq?g we f"?d BCZ, IS a 'po.lnt on the high- a5 is 2. In general, the number of components of the order

temperature side of the inflection point; a point chosen toparameter is not a universal quanfi§if an effective num-

give good LLL scaling. So as to be consistent w_|th conveny o of components);, of the order parameter is defined by
tional superconductors, for each sample, we estimate a fixed

value ofdT./dB so that the lineT.(B) lies just above the Net CT
inflection point. The specific heat therefore has a cusp of M= (10

heightC, attg=0 andB=0. The value of the critical expo-

nenta=2-—dv (for a system of spatial dimensionalit}) is  then the value oh. is dependent on the nature of the su-
estimated theoreticaffyfor d=3 as—0.007+0.006, while its  perconductivity. Values ofng>2 imply unconventional
measured valdé for “He is —0.013+0.003. The exact form (i.e., nons-wave) superconductivity. YBgCw,0, s has

of the scaling functiorf (x) is unknown, but its behavior for orthorhombic symmetry therefore the order parameter is also
special values ok=tB/Bl’2” can be deduced. With the tem- expected to have orthorhombic symmetry. In this case both
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s-wave andd-wave pairing haven=2. The only order pa- specific heat in an attempt to remove the difficulties of the
rameter with orthorhombic symmetry and a valueng§>2  background subtraction. They find that their data can be
is for triplet p-wave pairing and in this case has an upper scaled by both LLL and 3IXY models. Much of this is also
bound of 6. Strictly speaking YBE&u;O,_; has orthorhom-  discussed in a recent review by Juridd.
bic symmetry but in reality it only slightly distorted from In addition to the fluctuation contributio@;, the mea-
tetragonality. For tetragonal symmetry valuesngf>2 are  sured total specific hedt,, includes nonsingular phonon
found for selectedl-wave symmetries and in this casgy =~ and normal-electron contributiorS,;. These contributions
has an upper bound of 5.65. exhibit no sharp features ne@g. Therefore in the following

In the presence of a magnetic field the transition temperaanalysis we take the total specific heat toyg=C,+C;,
ture of a conventional superconductor is reduced, the heighwith a nonsingular contribution of the for@,=at’>+bt+c
of the specific heat peak is suppressed and the width of theherea, b, andc are constants. Because we only consider
transition is increased. The physical origin of the transitionthe specific heat over a 20 K temperature range ardiirvde
broadening was first proposed by Lee and Shéndjhe believe that this form ofC, can correctly account for the
central idea is that the presence of a magnetic field intrononsingular contributions. Some work&rsneasure the spe-
duces a length scale perpendicular to the direction of theific heat over a large temperature range, exclude the region
magnetic field because the paired quasiparticles occupy LamroundT, and then fit the remaining data to more complex
dau orbits. In a sufficiently strong magnetic field the pairedmodels of the phonon specific heat. This method therefore
guasiparticles are confined to the lowest Landau |€viel ) assumes a particular form for the nonsingular contributions.
and the dimensionality of the superconductor is reduced bywe assume only that nonsingular contributions vary
2. Thus a three-dimensional superconductor becomes equivamoothly with temperature for the small temperature range
lent to a collection of one-dimensional filaments and thisof interest around’.. A recent criticism of the critical fluc-
reduction in dimensionality increases the effect of thermodytuation model concerns the entropy associated with the su-
namic fluctuations. In this case it is possible that mean-fielgerconducting fluctuations. Schnebéal? claim that there
theory with Gaussian corrections is an appropriate descripis too much entropy associated with the fluctuations. The
tion for zero magnetic field but in the presence of a magnetientropyS; associated with the fluctuations can be calculated
field the fluctuations are so enhanced that we need to corfrom the specific heat using the thermodynamic relation
sider higher-order terms in the Ginzburg-Landau free-energy
expansion. Theoretically the problem is difficult for an arbi- (of
trary magnetic field because of the need to perform summa- Sf:J T dT.
tions over all occupied Landau levels. The problem is much

simplified by assumi_ng that the applieql magnetic field isTherefore in order to calculate the entrofy we need to
large enough to Conf_lne the paired quaspartu_:les to the lowgnow C; . From an analysis of the data using the 3B Y

est Landau level. Using a Hartree approximation and assumgdel the fluctuation contribution to the specific heat cannot
ing that the electrons are confined to the lowest Landau levgle separated from the nonsingular contribution because the
the fluctuation contribution o the specific he@(B,T)] of  parameterc is not uniquely defined. Fits to the data give a
a superconductor is predicted to scaléas value only for C,+c). This is not a problem for an analysis
based on the Gaussian fluctuation model. But for the critical
region, because is small, the cusp is very close to a loga-
rithmic divergence and experimentally it is impossible to dis-
tinguish between the two. In the limit of smallthe fluctua-
whereL(x) is the LLL scaling function. It is now apparent tion contribution to the specific heat can thus be
that in order to test LLL scaling we must have a reliableapproximated by

estimate ofACg, (B, T). Farrant and Gough have analyzed

the specific heat of Niobium which clearly shows LLL scal- Ci=AIn(1). (13

ing. In their analysis they measure the specific heat well

below T,(B), which should be a good estimate of the mean-Schnelleet al=> used this form forC; but strictly speaking
field specific heat, and then extrapolate this linearly into thehis is incorrect. Equatio(iL3) gives the singular temperature
transition region. This method does, in principle, give a reli-dependence o€; not the total value ofC;. The total fluc-
able estimate of the mean-field specific hisge Refs. 22 tuation contribution to the specific heat is given by

and 23 for a discussion of the correct form&€g (B,T)].

Some workers have looked for LLL scalifg:*° Welp Ci=A In(t)+B. (14)

et al}* and Janoct al?® do not find clear evidence for LLL

scaling. Kobayashet al?® seemed to find evidence for LLL Therefore curve fits with this model, including a smooth
scaling in BiSCCO but only over a very small rangetgf  polynomial background qt>+bt+c) will give a value €
and only then after using an unusual variation T{B). +B) and not a value ot alone. The background specific
Zhouet al?’ claimed to have found LLL scaling in the spe- heat, and therefor€;, will be unknown to within an addi-
cific heat of LuBaCuO, but we believe that, while in the tive constant. It is therefore apparent that the entropy asso-
highest field LLL seems to work, the data are better de<iated with the fluctuations cannot be reliably estimated from
scribed by the 3DX—Y model in the field range below about the zero-field curve fits to the specific heat when using the
8 T, as we show below. Recently Roukhal’ have tried to  critical fluctuation model, unless some way of finding the
look for scaling in the field and temperature derivative of theheight of the cusp can be found.

(12

C«(B,T) (T—TC(B) , 1)

ACqo(B,T) |\ (TB)Z®

|25



54 COMPARISON OF CRITICAL AND LOWEST-LANDAU . .. 9503

TABLE |. Parameters derived from the 2D and 3D Gaussian fits
to the zero-field specific heat of the three samples. See text for
definition of symbols.

185

_lsor 2D Gaussian 3D Gaussian

< i Sample ng h(MIGIK™ T, (K) ngg hmMIgiK™h

g

e F Y8 259 38.5 92.0 241 38.7
DT3c 1.79 34.0 90.5 1.63 37.7
A27a 3.09 42.9 90.8 1.82 39.9

170

value ofng calculated from Eq(6) varied from 1.4 to 15.4
depending on the sample. In order to correct this problem we
fixed g=3 which is a physically reasonable value. The BCS

FIG. 2. The specific heat of sample DT3c in magnetic fields Oftheory predictgy=1.83 in the weak-coupling limit, bug is

0,1, 2, 4,6, and 8 Tfrom top to bottom as indicated in the legend. larger for _strongly cqupled conventiona! supgrcopductors.
The following conclusions are not alteredyifis varied in the

RESULTS AND DISCUSSION range k. g<4 but all the Gaussian curve fits presented here
have been calculated withh=3. The results of the 2D and

Figures 2 and 3 show the specific heat of samples DT3@D Gaussian fits are shown in Table I. Figures 4 and 5 show
and A27al. The size of the jump is similar for all the the results of the 2D and 3D Gaussian fits respectively to the
samples(~2% of the total specific hepand all the transi- DT3c data. From these figures it is seen that both the 3D and
tions are around 90 K. The approximate zero-field transitioreD Gaussian models produce reasonable fits to the data al-
widths are 0.3 KY8), 1.0 K(DT3c), and 1.5 K(A27al), and  though the 3D fit is better than the 2D fit. This is also true for
do not correlate with th&@’s. the other samples. The value mf; calculated from Eq(10)

We fit the zero-field data to the 2D and 3D Gaussianfor each sample varied from 1.6 to 2.4 for the 2D fit and 1.8
models and the 3IX—Y model. In performing the fits we to 3.1 for the 3D fit. This large spreadm suggests that the
excluded data close to the peak so as to minimize the effectSaussian fluctuation model does not provide a consistent ex-
of intrinsic broadening. We therefore ignored data in a replanation of the fluctuation specific heat. It is important to
gion d 2 K for DT3c and A27al, and 0.6 K for Y8 centered note that if we fixedn.4=2 we could no longer obtain rea-
on the peak temperature. We then fixed the valueTof  sonable fits to the data on any sample.
slightly above the inflection point on the high temperature We now consider the 3IX—Y fit to the zero-field data.
side of the transition, and performed a least-squares fit overwe usea, b, ¢, A", and A~ as free-fitting parameters and
reduced temperature range0.1<t<0.1. When performing fixed «=—0.013. Fits of similar quality could be obtained
the Gaussian fits we initially used seven free fitting paramfor a wide range of values af, so we chose to fix the value
eters,a, b, andc for the background specific hedt;andg  of « to that obtained in liquid*He. We also obtained fits of
for the mean-field specific heat, ar@" and C~ for the  similar quality using a logarithmic divergence instead of the
fluctuation specific heat. By adjusting all seven parameterssusp. Table |l shows the parameters found for the best 3D
we obtained good fits to the data but the values of the paxY fit to each sample and the associated amplitude ratio for
rameters were unphysical. In particular we always obtaine@ach case, and Fig. 6 shows the 3B-Y fit for sample
g~ 10, which is far too large. In fact a value gf>10 causes DT3c, similar to sample Y8 in Ref. 11. Fits to the data on the
(1+gt) to change sign fot<—0.1. In addition to this, the

T(K)

c, (mJgK)

170-_, B A T IS S S O NN SO S S
A S ST 80 85 90 95 100

85 90

T(K)
FIG. 4. Specific heat of sample DT3points. The solid line is
FIG. 3. The specific heat of sample A27al in magnetic fields ofa fit to the data using the 2D Gaussian model with the parameters in
0,1, 2, 4,6, and 8 Tfrom top to bottom, see Fig. 2 for the legend Table I. Not all points are shown for clarity.



9504 NEIL OVEREND et al. 54

& ®
v ¥
E E
£ =1
S =
Q Q
2
8
2
o
80 85 90 .95 100
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FIG. 5. Specific heat of sample DT8gointg. The solid line is Log(lt])
a fit to the data using the 3D Gaussian model with the parameters in
Table I. Not all points are shown for clarity. FIG. 7. The specific heat minus the background which includes

the height of the cusg, for DT3c plotted vs logy(|t|). The solid

other samples were of the same quality. The amplitude ratiB”eS are the fitéA“t/*! from the fit in_ the 3DXY fit. The upper line
in all cases is found to be similar to that found in liquid 'S for data belowT. and the lower line for data abov. .
“He (1.058. In Fig. 7 we show the specific heat minus the
background determined from the 3RY zero-field fit—in  and suppression of the peak with little change in the onset
this case the background necessarily includes the height eémperature. In all cases the specific heat is field independent
the cusp, since it is impossible to separate the height of thewithin experimental resolutionat temperatures well above
cusp and the constant in the polynomial background—as and well below the transition temperature from the field and
log,o(|t]) plot from which we can see that the fit is reason-temperature range studied. Figures 2 and 3 show the transi-
able close tor, from abou 5 K above and belowl., also tions of samples DT3c and A27al, respectively, in magnetic
shown are the line&™t!* from the zero-field fit. From all  fields up to 8 T. The data for sample Y8 are shown in Ref.
this we conclude that the 3R—Y model provides a consis- 11.
tent description of the zero-field specific heat of We first consider the LLL scaling of the fluctuation spe-
YBa,Cu0,_s The 3D X—Y and 3D Gaussian fits are of cific heat. For a LLL scaling plot the background must come
similar quality and from the zero-field data it is therefore from a Gaussian fluctuation fit in order to be consistent. Be-
impossible to distinguish clearly between the critical andcause the 3D Gaussian fit is better than the 2D Gaussian fit
Gaussian models although the data is better described lwe use the background obtained from the 3D Gaussian fit.
assuming that the fluctuations are three-dimensional. We use a field-independent mean-field specific heat as the
We now turn to the magnetic field dependence of thenormalization factor for the LLL scaling. The mean-field

specific heat. The specific heats of all our samples have beepecific heat is in general field dependent, but, as the mea-
measured as functions of temperature in constant magnetsured specific heats in different magnetic fields lie close to a
fields up to 8 T, applied parallel to theaxis of the crystals. common curve well below the transition, it is reasonable to
In all cases the transitions display the familiar broadeninguse a field-independent mean-field specific heat. In fact well
below T, there is a small field dependence consistent with
_ entropy balancing. The fluctuation contribution to the spe-

. cific heat(as defined by the 3D Gaussian fit significant at

1 temperatures well below. so we do not follow the proce-
dure of Farrant and Gouglie., extrapolating the measured
specific heat Instead, we use the mean-field specific heat
defined by the 3D Gaussian fit using the parameters in Table
I. We note that we arbitrarily seg=3 in Eq. (8) before the
fit. We reach the same conclusions if we use any other rea-

Cy/T (mdg K3

TABLE II. Parameters derived from the 3Bi—Y fit to the
zero-field specific heat of the three samples. See text for definition

of symbols.
190, e T
80 85 90 95 100
Sample T. (K) ATIA
TK)

Y8 92.0 1.07
FIG. 6. Specific heat of sample DT3pointy. The solid lineis DT3c 90.5 1.06
a fit to the data using the 3®—Y model with the parameters in A27a 90.8 1.08

Table Il. Not all points are shown for clarity.
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(C'_CO)Bﬂlz\’ (mJg'1 K-1T0.0097)

1/2: -0.747;
(T-Tc) /Tc BYV<V (T )

FIG. 8. The fluctuation specific heat of sample DT3c as defined  FIG. 10. 3DX—Y scaling of the specific heat of sample DT3c,
from the zero-field 3D Gaussian fit. The solid line is the mean-fieldsee Fig. 2 for the legend.
contribution to the specific heat, see Fig. 2 for the legend.

DT3c and Fig. 11 shows the 3®—Y scaling for sample
sonable value fog (1<g<(4) or by following the procedure A27al. From these scaling plots it is evident that some of the
of Farrant and Gough. lowest field data do not lie on the scaling curves. We believe

The fluctuation specific heat of sample DT3c is shown inthis is due to a finite-size effect cutting off the divergence of
Fig. 8, where the solid line is the mean-field specific heathe coherence length, which is analogous to the effect of a
used in the LLL scaling. Figure 9 shows the LLL scaling of magnetic field. In the presence of finite-size effects critical
the fluctuation specific heat of this sample, usingscaling will only be observed when the characteristic cutoff
dT./dB=—0.17 K/T. This value is chosen to be consistentlength due to the applied magnetic field is much shorter than
with the transition temperature being on the high-the cutoff length due to the finite-size effect. The failure of
temperature side of the inflection point, this was found to behe lowest-field data to scale is therefore a reflection on the
the case for the LLL scaling in niobium. The scaling is notsample quality not the scaling. We stress here that in this
improved by using any other value ofT./dB. From this context a finite-size effect is not due to the finite size of the
plot it is apparent that the LLL scaling is not perfect. The samples. We show below that the cutoff length associated
scaling improves at higher fields, as expected, and the 6 andith the finite-size effect is of the order of tens of nanom-
8 T data appear to scale but the lower field data do not seemters and we attribute the finite-size effect to some form of
to scale. The LLL scaling shown in Fig. 9 is characteristic ofdisorder or domain structure on this scale. The finite-size
all the samples and the LLL scaling of the specific heat ofeffect will be discussed in more detail below. With the ex-
sample Y8 is shown in Ref. 23. ception of the lowest-field datébecause of the finite-size

The 3D X—Y scaling of the specific heat is easier to effecty we find that the scaling is excellent for all the
perform than the LLL scaling because of the absence of aamples. The scaling in Figs. 10 and 11 is achieved using
mean-field normalization factor. We simply use the param-as the temperature variable with the valued 6f/dB shown
eters defined by the zero-field fit to subtract the backgrounih Table 1V. In fact for|dT,/dB|<0.17 K/T the scaling is
and look for scaling of the form given in EL). Figure 10  insensitive to the exact choice dfT./dB. In our original
shows the 3DX—Y scaling of the specific heat of sample work!! on sample Y8 in fact we implicitly usedT./dB=0

[ A R
1.5 b RHREE,

C{B.TVAC,
5
T

(GO, B2 (mJg 1K 1TO0097)

(T-TBYTBYS (25K yBYRY (10747,

FIG. 9. LLL scaling of the specific heat of sample DT3c, see  FIG. 11. 3DX—Y scaling of the specific heat of sample A27al,
Fig. 2 for the legend. see Fig. 2 for the legend.
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TABLE lll. Parameters used in the 3R—Y scaling. See text
for definition of symbols.

g 3D X—Y scaling parameters

3

kv Sample  —dT./dB (K/IT) Bgg(T) AT, (K) Lgg(nm)
g Y8 0.17 0.1 0.3 81
g;,,, DT3c 0.14 0.6 1.0 33
3 A27a 0.17 1.0 1.5 26
g

In order to quantify the LLL and 3IXY scaling we evalu-
ated the quantity

o Ve 3 (5

where they;; are the values of the scaling function evaluated

but this makes little difference to the scaling. However, weat all magnetic fields indexed by and all values of the
should note that for magnitudes dT,/dB bigger than 0.17 scaling variabley; are the values of;; averaged over all
K/T the scaling becomes progressively worse. For all thenagnetic fieldge.g., magnetic fields of 1,2,4,6,8. N, are
samples studied here we find that 3D- Y scaling can col- the number of data points recorded as the temperature is
lapse the data onto a common curve. varied at fixed field andl; is the number of fixed fields used.

We noted previously that the low-field data did not scale.The smaller the value of the better the scaling. For 3RY
This is the result of a rounding of the transition which maybeScaling using all the data for DT3c¢=0.0016 while for LLL
due to inhomogeneity but we found we could model it asScaling r=0.23—in both cases we used the best scaling
though it were a finite-size effect. We found that the larger@chieved which included the “finite-size scaling” parameter.
the zero-field transition width, the higher the field needed tdf We restrict the LLL scaling to field runs of 1, 2, and 4 T
observe critical scaling, a fact that is consistent with a finitethen r=0.18 and if we restrict the scaling to 6 and 8 T
size effect. We can model the finite-size effect by following" = 0-048. These results suggested that@Dscaling works
a procedure similar to that of Inderheesal?® The applied well over the whole field range up 8 T while LLL scaling

UB;/2V (T'0‘747)

FIG. 12. 3DX—Y scaling of the specific heat of sample A27al r=
using the effective magnetic fiel&.. Inset: the same plot for
sample DT3c, see Fig. 2 for the legend.

magnetic fieldB, introduces a length scalg; such that works best above 6 T. . _
There has been much debate recently in the literature re-
7 cently concerning LLL versus critical scaling. Magnetization
Lg= \/——=. (15  and resistivity data cannot distinguish between the two scal-
eB, ing regimes. Even with the specific heat there is great diffi-
Therefore, in analogy, we define a magnetic fBjd equiva- culty because of the background subtraction pr_oble.m. The
lent to a finite-size cutoff length - as data we _have pres.ent_ed suggest that LLL approximation may
be valid in magnetic fields greater than about 6 T. Below 6 T
A the specific heat does not exhibit LLL scaling. The data are
BFS:eL . (16) also seen to exhibit critical scaling in magnetic fields up to 8
FS

T which suggests that the critical and LLL regimes overlap.
. e . Strictly speaking the two regimes cannot overlap because the

\(/ll)eézfe"qel:fz:n effective magnetic fiédin the scaling Eq. scaling is of a different kind but the observed overlap is
probably due to experimental resolution. If the specific heat
was measured in higher magnetic fields then one would ex-

pect critical scaling to fail at some large magnetic field al-

This then incorporates the effect of the applied magnetiéhough thi.s WOUIQ be difficqlt to observe in.practice because
field and the finite-size effect into the critical scaling. Figuret.he specific heat in magnetic fields alod T isonly weakly

12 shows the effect of usinBgg on the critical scaling of field depenc_ient. . .

samples A27al and DT3c. The shape of the scaling curve i The _scalmg functiorf (x) _has now be_en determined for
virtually unaffected for the high-field dai@s expectedbut three dlfferenlt sample_s of d'ﬁefef‘t quality. In order to com-
the low-field data now follow the same curve as the high_pare the scaling funcnons from d_|fferent samples we use the
field data. The value d8ggneeded to scale the low-field data general form of the scaling functith

for each sample is shown in Table [Along with the length

scale associated with) iand these values correlate well with Cf=Co—ClB|“|’2Vfu(x), (18

the zero-field transition widths which implies that the shorter

the length scale associated with the finite-size effect thevheref (x) is the universal scaling function ar@}, andC;
larger the zero-field transition width. Usiiggg did not im-  are constants which are expected to be sample dependent.
prove the quality of the LLL scaling. The general scaling variableis defined as

B2=B2+BZg (17)
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FIG. 13. Experimentally determined scaling functions for Y8,

DT3c, A27a, Inderhees’ sample, and Zhou's sample plotted to

gether.

(19

where\ is a material-dependent constaitis expected to
have the same value for different samples of ¥YB&0O,_;
but different values in other materials. The universal scalin

function f,(x) is the same for any superconductor which

belongs to the three-dimensionél-Y universality class of

the phase transition. We have performed the same analysj
on the previously published specific-heat data of Inderhee

et al? (a single-crystal sample of YB&u,0O,_, and Zhou
et al?’ (a single-crystal sample of LuB@w0;_,). In order

to compare the scaling functions from the different sample

we take one curve from each scaling plot that is represent

tive of the scaling function and plot these curves in Fig. 13
with the values shown in Table IV. The scaling function is
found to be the same, within experimental resolution, for all
the samples. In each case the zero-field data are well d

scribed by a cuspEg. (5)] with an amplitude ratio similar to

that found in superfluidHe. In each case the specific-heat

data in several magnetic fields exhibit single-parameter crit
cal scalind as described by Eq1)] and the scaling functions
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TABLE IV. The parameters used in Fig. 13. See text for defi-
nition of symbols.

Sample —dT/dB., C, N

Y8 0.17 1.000 1.00
DT3c 0.17 1.000 1.00
A27a 0.17 1.000 1.00
Inderhees 0.53 0.886 1.00
Zhou 0.33 0.649 0.50

different materialdi.e., differentT's, 's, etc) but the prop-
erties are expected to be similar. Therefore the fact that the
scaling function is the same for different YEU,0,_5
samples is only a weak test of universality but the fact that
the same scaling function is found for the specific heat of
LuBa,Cw0;_5 is a much stronger test of universality. The
observed universality of the scaling function is extremely
strong evidence that YB&u;O,_5 and LuBgCu;0;_ 5 be-
long to the three-dimensionaX—Y universality class of
phase transition.

In summary, we have demonstrated that the specific heat
of YBCO single crystals in magnetic fields up 8 T iswell
described by the three-dimension&Y model. The zero-
g{)ield specific heat is found to be well described by a cusplike

ehavior. The specific heat in magnetic fields op8tT is
found to exhibit critical scaling with the same critical expo-
nts as found in liquidHe. Also, we have demonstrated
e universality of the critical scaling by comparing the scal-
Ing functions obtained in different samples of YBarO,_;
and LuBaCu;0,_; the scaling functions are found to be
gdentical within experimental uncertainty. It is still difficult
4o distinguish between 3Y and LLL scaling but the dem-
onstration that the scaling curve for different samples in Fig.
13 adds an additional contribution to the debate. We believe
our data suggest 3BY scaling is appropriate at low fields
ind there maybe a crossover to LLL scaling at higher fields.

he crossover field for the samples studied here is about 6 T.
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