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For moderately clean superconductors with the mean free path approaching the coherence length from the
clean side, the transverse force on a moving vortex starts to be dominated by variations in the pairing inter-
action produced by vortex motion. We calculate the force and the Hall conductivity using the microscopic
theory of nonstationary superconductivity and find that they are modified, as compared to the effective-action
result, by an electric potential induced due to charge neutrality.@S0163-1829~96!02634-3#

I. INTRODUCTION

The flux-flow Hall effect is studied theoretically both for
dirty superconductors1–3 with the mean free pathl much
shorter than the coherence lengthj(T) and for clean super-
conductors withl@j(T).4–6 The Hall effect is small in the
dirty case but it is expected to be quite substantial in clean
superconductors.7 The Ohmic and Hall conductivities of a
clean superconductor in the low-field regionH!Hc2 were
obtained in Ref. 6. For temperatures not very close toTc ,
they are, by the order of magnitude,

sO;
Nec

B

v0t

11~v0t!2
, sH;

Nec

B

~v0t!2

11~v0t!2
, ~1!

whereN is the density of carriers,v0;D2/EF is the charac-
teristic distance between the energy levels with different an-
gular momenta of the localized states within the vortex core,
and t is the mean free time,l5vFt. ~See Ref. 6 for more
details.!

A rough estimate for dirty superconductors can be ob-
tained from Eq. ~1! with t21;D: it gives sH /sO
;D/EF!1 with the Hall angle tanQH;1022, which is of
the correct order of magnitude compared to the experimental
data. Many mechanisms contribute to this general order-of-
magnitude estimate. Microscopic theory3 and the TDGL
calculations1,2 show that one of the most important effects is
the feedback of vortex motion to the pairing interaction. Be-
ing proportional to 1/l, wherel is the BCS coupling con-
stant, it can dominate for dirty superconductors in a weak-
coupling limit l!1: the Hall conductivity is then
sH;sO(D/EF)(1/l).

The flux-flow conductivities are coupled to the compo-
nents of force from the heat bath,F5Fi1F' , experienced
by a vortex moving with the velocityu:

Fi52
f0BsO

c2
u,

F'52
f0BsH

c2
@u3 ẑ#sgn~e!. ~2!

Hereẑ is the unit vector along the vortex axis in the positive
direction of its circulation andf05pc/ueu is the magnetic

flux quantum. Note that the unit vector along the magnetic
field b̂5 ẑsgn(e) coincides withẑ for positive charge of car-
riers. For further use, we write the total force as
F5F01F8 where the forceF0 contains the conductivities as
calculated in Ref. 6 while the additional forceF8 accounts
for the effect of vortex motion on pairing interaction. The
additional friction forceFi results in a negligible correction
to the dissipative Ohmic conductivity. The transverse com-
ponentF' is larger and affects a small Hall conductivity,
thus its role is much more important.

In clean superconductors withl@j(T), the change in
pairing interaction gives only a small correction to the Hall
conductivity of Eq.~1! and to the transverse force; it may
become substantial, however, for a weak-coupling limit
l!1 in a moderately clean case whenl approaches
j(T).8,9 In the present paper we consider this mechanism for
clean superconductors and calculate the flux-flow Hall con-
ductivity using the nonstationary microscopic theory. We as-
sume that pinning is absent and concentrate on intrinsic
mechanisms of vortex motion.

We restrict ourselves to ans-wave superconductor and
assume a uniaxial symmetry of the crystal. The magnetic
field is applied along the symmetry axis. We work in a low-
field limit, B!Hc2 assuming an extreme type-II supercon-
ductor with k@1. We find that the additional transverse
force is

F'8 52pdND~`!@u3 ẑ#b~T!, ~3!

wheredND is the difference between the total particle den-
sity of the system in the superconducting and in the normal
state without Coulomb interaction;dND(`) denotes this dif-
ference at large distances from the vortex. The difference in
densities is caused by a change in the electronic spectrum
after transition into the superfluid state:

dND5S 1l dn

dzp
D uDu2. ~4!

The functionb(T) in Eq. ~3! varies fromb51 atT→Tc to
b@1 for T!Tc . The change in density is small,
dND /N;(D/EF)

2, however, the corresponding 1/l contri-
bution to the Hall conductivity
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sH8 5b~T!dND~`!ec/B

becomes comparable to the Hall conductivity of Eq.~1!
when the superconductor is still in a moderately clean regime
with l /j(T);1/Al and dominates ifl is further decreased.
Relative magnitude of the correction increases both for low
temperatures and forT→Tc . Our calculations thus fill the
gap between very dirtyl!j(T) and very cleanl@j(T) su-
perconductors.

Our result differs from Ref. 9 which predictsb51 for
any temperature. This very general prediction was obtained
in Ref. 9 using an effective hydrodynamic action in the pres-
ence of vortices. A similar approach was used in Ref. 10 to
derive the Magnus force on a moving vortex, which is only a
part of the total transverse force of Eq.~2! ~see Refs. 11 and
12!. The predictionb51, however, does not comply with
the microscopic calculations for dirty superconductors3 and
with the TDGL theory which give expressions of the type of
Eq. ~3! with a factorbÞ1 depending on the specific relax-
ation processes in the superconductor. The present calcula-
tions identify the source of disagreement between the TDGL
theory and the hydrodynamic approach: It consists in an ad-
ditional contribution to Eq.~3! from the electric potential
induced by moving vortices due to charge neutrality in su-
perconductors. We show that the result of Ref. 9 is valid only
in the limit of T→Tc ; it can be reproduced by the TDGL
theory provided the pair-breaking rate is small.

II. FORCES ON A MOVING VORTEX

In the microscopic theory, the transport current in an array
of moving vortices is determined by a balance of the Lorentz
force from the transport current,FL5f0@ j tr3 ẑ#/c, and the
force from the heat bath:3,13

FL2E d2r E de

4p i

d3p

~2p!3
Tr@G~nst!~ ¹̂H1e¹w0!#50.

~5!

The spatial integration is taken over the unit cell of the vor-
tex lattice. The Green function

Ge1 ,e2
~p,r !5S G F

2F† ḠD
and the ‘‘effective force’’

¹̂H5S ~e/c!@H3vF# 2¹̂D

¹̂D* 2~e/c!@H3vF#D
are matrices in the Nambu space;¹̂5@¹7(2ie/c)A# for
D and D* , respectively, andw0 is a small static potential
which appears due to charge neutrality~see Sec. III!. Gnst is
the nonstationary part of the total Green function14

Ge1 ,e2

~nst! 5Ge1 ,e2

~ tot! 2~Ge
R2Ge

A! f ~0!~e !2pd~v!.

Here GR(A) are the regular Green functions, and
e65e6v/2. The equilibrium distribution function is
f (0)(e)5tanh(e/2T).

The nonstationary Green function contains the part which
can be calculated quasiclassically by integrating over the en-
ergy variablezp5e(p)2EF plus small corrections propor-
tional toD/EF . Among all numerous corrections of this or-
der of magnitude, there is one which gives 1/l after
integration over frequencies. In a weak-coupling limit,
l!1, this is the largest contribution; it can be calculated
separately neglecting all other nonquasiclassical corrections.

The 1/l correction to the conductivity comes from the
regular Green functionsGe1 ,e2

R(A) due to the logarithmic diver-

gence of thee integration in Eq.~5! which is cut off at the
limiting BCS frequency. Since the characteristic frequencies
are large, one can expand the Green function in powers of
the small ratioD/e up to the leading term. For example, the
correction toFR(A) proportional tov is

Fcorr
R~A!52

v̂Dv

2

]

]zp
@Ge

R~A!Ḡe
R~A!#, ~6!

Fcorr
†R(A) is obtained by substitutingv̂Dv with 2v̂Dv* . We use

the gauge invariant version ofG introduced in Ref. 15. Here
v̂5v72ew with the upper sign forD andF, and the lower
sign for D* and F†. The potentialw does not include the
static partw0 ~see Sec. IVA!. For the diagonal elementsG
andḠ, the operator isv̂5v.

The quasiclassical part ofG (nst! is13

ĝ~nst!5@~ ĝe1 ,e2

R 2ĝe1 ,e2

A !2~ ĝe
R2ĝe

A!2pd~v!# f ~0!

2
v̂

2
~ ĝe1 ,e2

R 1ĝe1 ,e2

A !
] f ~0!

]e
1~ ĝR2ĝA! f 1

1~ ĝRŝz2ŝzĝ
A! f 2 . ~7!

Here the matrixĝ5*Gdzp /p i is constructed out of the func-
tionsg, f , etc., according to the same rule as the matrixG is
made ofG, F, etc., andf 1, f 2 are the nonequilibrium cor-
rections to the distribution function.

The force balance of Eq.~5! becomesFL1F50 where
the total force can be separated into quasiclassical and non-
quasiclassical parts:F5F~qc!1F~nqc!. The quasiclassical force

F~qc!52E d2r E de

4

dSF
~2p!3vF

Tr@ ĝ~nst!~ ¹̂H1e¹w0!#

~8!

is calculated in Sec. IVA. We demonstrate that
F~qc!5F(0)1F8~qc! with the additional term

F8~qc!52pdND~`!@u3 ẑ#b1 . ~9!

The nonquasiclassical force comes from Eq.~6!:

F~nqc!5
i

2 S 1
l

dn

dz
D E d2r F ¹̂D

]̂D*

]t
2¹̂D*

]̂D

]t G . ~10!

Here ]̂/]t5]/]t62iew with the upper sign forD and the
lower sign forD* . The density of states as a function of
energy isn(z)5*dSz /(2p)3vz , wherevz5u]e(p)/]pu, and
the integration is over the surface corresponding to the en-
ergy ep2EF5z. Equation ~10! is independent of impurity
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scattering. It is only the potentialw which depends on the
real kinetics of a superconductor. We calculate it in Sec.
IVB.

The forceF~nqc! is perpendicular to the vortex velocity
u. Indeed, the scalar potential is proportional tou; we shall
see thatw}uf , where (r,f,z) are the coordinates in the
cylindrical frame. We putew5ufc and]/]t52u•¹ for a
moving vortex and calculate the integral in Eq.~10!. Ne-
glecting the vector potential we obtain with help of Eq.~4!

F~nqc!52pdND~`!@u3 ẑ#b2 , ~11!

where

b2512uD`u22E
0

`

c
duDu2

dr
rdr. ~12!

Thus, the full additional transverse forceF'8 5F8~qc!1F~nqc!

in Eq. ~3! hasb5b11b2.

III. EFFECTS OF CHARGE NEUTRALITY

Equation ~10! shows that the nonquasiclassical transverse
force is caused by the time derivative of the order-parameter
phase coupled to the electric potential. Since these quantities
are conjugated with density the force is related to the density
variations. One can interpret the transverse force defined by
Eqs.~9–12! in the following way. For a system without Cou-
lomb interaction wherew5w050, the additional forceF'8
comes fromF~nqc! only and is equal to the difference between
two forces acting on a moving vortex: one is the sum of the
Magnus forces from superfluid and normal components and
is proportional to the total particle density of the system in
the superfluid stateN, while the other is the spectral-flow
force proportional to the number of statesN0(m) within the
Fermi surface defined by the chemical potentialm.11,12 The
difference in densitiesdND is caused by a change in the
electronic spectrum after transition into the superfluid state
and is given by Eq.~4!. The net force thus has the form of
Eq. ~3! with b51 in agreement with predictions of Ref. 9.
For a Galilean invariant system such as superfluid3He,
dND corresponds to the difference betweenN and
C05pF

3/3p2.
For metals, the Debye screening results in a charge neu-

trality N5N0(EF)5Nion whereEF is the chemical potential
of the normal state. The electron density is

N2N05dND22new01dN~nst!, ~13!

where

dN~nst!52E dSF
~2p!3vF

de

4
Trĝ~nst!. ~14!

The constraintN5N0 gives rise to a small static potential
w0 which compensates the variationdND

ew05dND/2n. ~15!

However, the difference between the Magnus and spectral-
flow forces remains the same. Indeed, the resulting change in
chemical potential shifts the Fermi level and changes the
functionN0(EF) toN0(EF2ew0). As a result, the difference

N2N0(EF2ew0) remains to bedND ,
16 though the real den-

sity of the system is unchanged:N5N0(EF).
This consideration shows that the static shift in the chemi-

cal potential itself does not modify the additional force.
However, the force is modified by kinetic effects associated
with the charge neutrality. First, the quasiclassical force
F8~qc! appears because of an extra current induced by the
time dependent potentialw0(r2ut) for a moving vortex to
fulfill the incompressibility constraint divj50. Second, the
density could change due to nonequilibrium variations in the
distribution function f 2 in Eq. ~14!. ~A similar effect of a
moving vortex on density was discussed in Ref. 17.! To
compensate for these variations, a potentialw}u is induced
through the conditiondN~nst!50. This potential changes the
nonquasiclassical forceF~nqc!.

IV. MICROSCOPIC CALCULATION OF FORCES

A. Quasiclassical force

The induced time dependence of the potentialw0 for a
moving vortex modifies the distribution functionf 1. In addi-
tion, it contributes to the regular quasiclassical Green func-
tions. If there were no static potentialw0, the first line of Eq.
~7! would give a contribution to Eq.~5! which is even inv
as it can be checked by inspecting the Eilenberger equations.
Its expansion inv would start withv2, thus it could be
omitted in the linear-in-v approximation for which the two
last lines in Eq.~7! are only important. This fact has always
been used in quasiclassical calculations of the flux-flow con-
ductivity. However, the correction to the regular functions
due tow0 is linear inv and has to be included in Eq.~5!.

To describe the kinetic effect ofw0 we need to account
for a time dependence of the chemical potential in the kinetic
equations. The distribution functionf (0)5tanh(e/2T) refers
to an equilibrium where the order parameter and the vector
potential are constant in time, and the chemical potential is
EF2ew0(r ). There is a small electric field2¹w0, which
prevents electrons from moving to places with higher mag-
nitudes of the order parameter, thus there is no normal cur-
rent in equilibrium. We disturb our system by putting vorti-
ces into motion with a small velocityu. The deviation from
equilibrium is described by nonequilibrium correctionsf 1
and f 2 to the distribution function, in addition there appears
a nonequilibrium electric field

E52
1

c

]A

]t
2¹w,

where the potentialw is proportional to the vortex velocity,
so that the electric fieldE is proportional tou.

Using parity of the static quasiclassical Green functions

f e
R~x,A!52 f2e

R* ~2x,2A!, ge
R~x,A!5g2e

R* ~2x,2A!,

etc., wherex is the phase of the order parameter, we can
easily check that the contributions from the distribution func-
tions to the quasiclassical force have the following parity
with respect to the inversion of the vortex circulation
ẑ→2 ẑ, equivalent to the inversion of the magnetic field plus
complex conjugation of the order parameter.
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~1! The distribution functions such that

f 1~e,ẑ!52 f 1~2e,2 ẑ!, f 2~e,ẑ!52 f 2~2e,2 ẑ!
~16!

give an even inẑ→2 ẑ contribution to the force, thus they
give rise to a friction force or Ohmic conductivity.

~2! The distribution functions such that

f 1~e,ẑ!5 f 1~2e,2 ẑ!, f 2~e,ẑ!5 f 2~2e,2 ẑ! ~17!

give an odd inẑ→2 ẑ contribution to the force, thus they
give rise to a reactive transverse force or Hall conductivity.
With these parity considerations, one can easily identify the
necessary corrections to distribution functions.

The kinetic equations for clean superconductors were de-
rived in Ref. 15. They can be easily generalized to the case
when the equilibrium chemical potential has a time depen-
dence:

S evFEg21
1

2 F f2

]̂D*

]t
1 f2

† ]̂D

]t G D ] f ~0!

]e
2S 12 @~“̂D! f2

† 1~¹̂D* ! f2#2
e

c
@vF3H#g2D ] f 1

]p
1g2

] f 1
]t

1vF¹~ f 2g2!5J~1!,

~18!

and

1

2 F f1

]̂D*

]t
2 f1

† ]̂D

]t G] f ~0!

]e
1 i @D* f11D f1

† # f 22
1

2
@~¹̂D* ! f12~¹̂D! f1

† #
] f 1
]p

2S 12 @D* ¹̂f21D¹̂f2
† #2

e

c
@vF3H#g2D ] f 2

]p

1g2vF¹ f 11g2

]~ew0!

]t

] f ~0!

]e
5J~2!. ~19!

Here J(1) and J(2) are the collision integrals,15 and ĝ6

5(ĝR6ĝA)/2. We stress that the operator
]̂/]t5]/]t62iew does not contain the static potentialw0.

For clean superconductors, the static Green function of an
electron with the momentum projection on the vortex axis
pz and the impact parameterb can be written as the spectral
sum

ĝ25(
n

ĝnd@e2En~pz ,b!#,

whereEn(pz ,b) are the energy levels of the localized elec-
trons in the vortex core characterized by the radial quantum
numbern, the impact parameterb, and momentumpz .

We restrict ourselves to a moderately clean case where
l@j(T) but v0t!1. The main terms in Eq.~19! give

g2vF¹ f 11g2

]~ew0!

]t

] f ~0!

]e
50. ~20!

From Eq.~20! we havef 15 f 181 f 19 where f 18 is constant
along the trajectory and

f 195
1

v'

] f ~0!

]e F ~uv̂'!@ew0~r!2ew0~`!#

2~@u3 v̂'# ẑ!bE
0

s 1

r8

]~ew0!

]r8
ds8G . ~21!

We denote the distance along the trajectory bys5( v̂'r )
wherev̂' is the unit vector along the projection ofvF on the
(x,y) plane perpendicular to the vortex axis, and introduce
the impact parameterb. We see thatf 19 has the parity of Eq.
~17! and contributes to the transverse reactive force.

For ueu.D` , the boundary conditions6 f 156g2 f 2 for
s→6` together with Eq.~18! define the constants

g2 f 2852
~@u3 v̂'# ẑ!b

v'

] f ~0!

]e E
0

`1

r

]~ew0!

]r
ds ~22!

and f 1850. For ueu,D` , the integration constant in Eq.~21!
is included in f 18 ; it can be found by integrating Eq.~18!
along the trajectory.

With the identity

E
2`

`

Tr@~¹̂H!ĝ2#ds52p@ ẑ3v'#(
n

]En~b!

]b
d@e2En~b!#

derived in Ref. 6, we obtain forueu,D`

p~@v'3u# ẑ!
] f ~0!

]e

]En

]b
1pS Fv'3

] f 18

]pa
G ẑD ]En

]b

1E
2`

`

Jn$ f 18%ds1E
2`

`

Jn$ f 19%ds50, ~23!

where

J~1!5(
n

Jnd~e2En!.

As in Ref. 6, we adopt thet approximation for the collision
integral

E
0

`

Jn$ f 18%ds52
pv'

2tn
f 18 . ~24!

For v0t!1, the distribution function is
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f 1852
] f ~0!

]e
p'„~@u3 v̂'# ẑ!tnvn6~uv̂'!~tnvn!

2
…

1
tn

pv'
E

2`

`

Jn$ f 19%ds. ~25!

Herevn5p'
21(]En /]b) is the distance between the local-

ized levelsEn(b) with different angular momentam5p'b
of an electron in the vortex core; the6 signs refer to elec-

trons and holes, respectively.
From Eqs.~21! and~25! we see that the correction to the

distribution function produced byw0 is small compared to
the dissipative component of f 1 @the term with
(@u3 v̂'# ẑ)#, but can be of the same order of magnitude as
the reactive part with (uv̂') whenDt;1/Al.

Using charge neutralitydN~nst!50 with Eq.~14!, the qua-
siclassical force from Eqs. ~7! and ~8! becomes
F~qc!5F01F8~qc! where the additional quasiclassical force is

F8~qc!52(
n
E dbE dSF

~2p!3vF
@ ẑ3 v̂'#

]En

]b
tnE

2`

`

Jn$ f 19%ds2E d2r E de

4

dSF
~2p!3vF

Tr@~¹̂H!~ ĝ~nst!22ĝ2 f 18!#. ~26!

The quasiclassical forceF0 is calculated with the distribution
function f 1 without thew0 correction and contains only the
first line of Eq.~25!. Through Eq.~2!, it is expressed in terms
of conductivitiessO

(0) andsH
(0) obtained in Ref. 6.

B. Nonquasiclassical force

To calculateF~nqc! we need the dynamic potentialw. It
appears due to the distribution functionf 2 in zero approxi-
mation with respect tow0. To the leading approximation in
v0t!1, the kinetic equation~18! becomes

S evFEg21
1

2 F f2

]̂D*

]t
1 f2

† ]̂D

]t G D ] f ~0!

]e

1vF¹~ f 2g2!5J~1!. ~27!

The charge neutrality readsdN~nst!50 where

dN~nst!522nS ew1
1

2

]x

]t D2E g2 f̃ 2
dSF

~2p!3vF
de. ~28!

Here we put

f 25 f̃ 21@ew1 1
2 ~]x/]t !#~] f ~0!/]e!

and took into account corrections tog21ḡ2 proportional to
ew1(1/2)(]x/]t). Equations~27! and ~28! determine the
potentialew;uD/vF which appears in Eqs.~10!–~12!.

To find f 2 we take f 1 from Eq. ~25! in the leading ap-
proximation inv0t. For ueu,D` it is

f 152
] f ~0!

]e
p'vntn~@u3 v̂'# ẑ! ~29!

and f 150 for ueu.D` .
The full expressions for the forces can be found analyti-

cally at least for three limiting cases:~1! low temperature
limit, T!Tc ; ~2! high temperature limit,T→Tc ; and ~3!
arbitrary temperatures for a model vortex with the core size
larger thanj0.

V. RESULTS: LOW TEMPERATURES

At low temperatures, the low-energy Caroli–de Gennes-
Matricon levels18 on the chiral branch of the bound-state
spectrum are only important. Remember that, at low energies
e!D, and for b!j and r@b, the regular functions are19

g25g0d@e2E0(pz ,b)#, f25 f 0d@e2E0(pz ,b)#, f2
† 5 f2*

where

g05~pv'e
2K/2C!, f 05g0e

if~b1 is!/r ~30!

with the phasex5f. Hereb5r sin(f2a) is the impact pa-
rameter,s5r sin(f2a), f is the azimuthal angle, anda is
the angle betweenv' and thex axis:

K~s!5
2

v'
E
0

r

uDudr8, C5E
0

`

exp~2K !dr.

The bound-state energy is18

E0~pz ,b!5C21E
0

`buDu
r

exp~2K !dr. ~31!

The energyE0(b) forms the anomalous branch which
crosses zero of energy as a function of the quasicontinuous
impact parameter.

The density of states ate50 averaged over the Fermi
surface diverges at small distances from the vortex axis:

^g2&5 K v'e
2K

2Cru]E0 /]bu L . ~32!

~Angular brackets denote averaging over the Fermi surface.!
It gives rise to the Kramer-Pesch effect,19 i.e., to an increase
in the order-parameter derivative for r→0:
duDu/dr→D` /j1 where

j1;~T/D`!j0 . ~33!

To incorporate this effect into the order-parameter coor-
dinate dependence, one can use an approximate expression

uD~r!u5H D`r/j1 for r,j1 ,

D` for r.j1 .
~34!
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For such an order parameter, the bound-state energy is

E0~pz ,b!5
2bD`

2

v'

lnS j0
b D . ~35!

It is actually independent of the real structure ofuD(r)u
within the logarithmic accuracy. ForE0;T!D` , the char-
acteristic value of the impact parameter is

b;j1 /ln~D` /T!.

The 1/r divergence of the density of states is cut off by
impurity scattering. Indeed, the impurity self-energy in the
Eilenberger equations which define the quasiclassical Green
functionsgR(A) and f R(A) becomes important whene is of
the order (1/t)^gR(A)&. Sincee;T we find from Eq.~32!
that the Kramer and Pesch result is valid for

r@
j0

tT ln~Tc /T!
. ~36!

We shall see that the growth of the zero-energy density of
states at small distances gives rise to a large increase in the
additional transverse force at low temperatures.

A. Quasiclassical force

For ueu!D` the distribution functionf 2 is small. The first
term in the second line in Eq.~7! gives only a small correc-
tion to the dissipative component of the force. Therefore,

ĝ~nst!22ĝ2 f 1852ĝ2 f 1912ĝ28 f
~0!, ~37!

whereĝ28 is the correction toĝ2 due to]w0 /]t. It is deter-
mined by the Eilenberger equations

2 iv¹ f 822e f 812Dg82
2e

c
vA f 82 ie

]w0

]t

] f

]e
50,

iv¹ f †822e f †812D* g82
2e

c
vA f †81 ie

]w0

]t

] f †

]e
50,

and the normalization condition 2gg82 f †f 82 f f †850. We
put f 8e2 if5 f̃ 8, f †8eif5 f †8. Using Eq. ~30!, for small b
ande we get f̃ 852 f̃ †85 ig8, and

v'

] f̃ 8

]s
12uDu f̃ 81 ie

]w0

]t

]g

]e
50.

The solution is

f̃ 85 i
~uv̂'!

v'

„ew0~r!2ew0~`!…
]g

]e
.

Being inserted into Eq.~26!, this term gives

2 Tr@¹̂Hĝ28 # f ~0!52
@ v̂'3 ẑ#~uv'!

v'

4uDu
r

]g2

]e
f ~0!

3„ew0~r!2ew0~`!…

which cancels the contribution from the first term on the
RHS of Eq. ~37!. Therefore, the additional quasiclassical
force becomes

F8~qc!52E dbE dSF
~2p!3vF

@ ẑ3 v̂'#
]E0

]b
t0E

2`

`

J0$ f 19%ds.

~38!

It was shown in Ref. 6 that the main contribution to the
collision integral within the logarithmic accuracy comes
from distancess;b!j1. Therefore, one can write

E
2`

`

J0$ f 19%52
pv'

t0
f 19~r;b!

52
p

t0

] f ~0!

]e
@~uv̂'!@ew0~r;b!2ew0~`!#.

Sincew0(r;b)/w0(`);b2/j1
2!1 we obtainb1521/2

for the additional transverse force in Eq.~9!.

B. Nonquasiclassical force

Equation~27! gives

g2 f̃ 25E
2`

s ds

2v'
H 2J~1!2Fv'g2S ]2f

]s]t
2
2e

c

]As

]t D
1~ f̃21 f̃ 2

† !
]uDu
]t G] f ~0!

]e J , ~39!

where f25 f̃2e
if, f2

† 5 f̃2
†e2 if. Note that, for localized

electrons withueu,D` , Eq. ~39! determines the function
f 1 in the limit s→` wheng2→0 .
For low energies, we get

g2 f̃ 252
1

2

]f

]t

] f ~0!

]e
g2

1E
0

s

J~1!
ds

v'

2
~@z3 v̂'#u!

v'

] f ~0!

]e E
0

suDug2

r
ds. ~40!

Due to the Kramer-Pesch effect, Eq.~33!, we can simplify
this expression. We shall see that the distances of the order
of r;j15(T/D`)j0 give the main contribution to the qua-
siclassical force. For such distances, the last line in Eq.~40!
is of the order ofg2 /j0 while the first is of the order of
g2 /j1, therefore

f̃ 252
1

2

]f

]t

] f ~0!

]e
.

From Eqs.~28! and ~35! the dynamic potential becomes

ew5
uf

2r
~12^g2&!5

uf

2r S 12
^v'&

2rD`ln~D` /T! D .
Here we assumed the order parameter in the form of Eq.
~34!. The potential grows for a decreasingr which is a con-
sequence of the peak in the density of states at zero energy.
However, one cannot extrapolate the increase inw down to
r50 because Eq.~30! used for the Green functions is valid
only for r@b with the characteristic impact parameter such
thatE0(b);T. One expects that the divergence of the poten-
tial is cut off either at distancesr!b or by the impurity
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scattering. We discuss this again in the next section in con-
nection with the model vortex.

We get for the nonquasiclassical force of Eq.~11!

b25
1

2
1

^v'&
4D`

3 ln~D` /T!
E
0

`duDu2

dr

dr

r
.

Finally, the total additional transverse forceF'8 in Eq. ~3! has
b5b11b2 where

b5
^v'&

4D`
3 ln~D` /T!

E
0

`duDu2

dr

dr

r
. ~41!

Here the distancesr;j1 give the main contribution so that
b increases with lowering the temperature. With Eq.~34! we
obtain

b5
^v'&

2D`j1ln~D` /T!
;

D`

T ln~D` /T!
. ~42!

The increase inb is cut off by impurity scattering. The low-
est temperature for which Eq.~42! is still valid is found by
putting r;j1 in Eq. ~36! which gives T/Tc
;1/A(Tct)ln(Tct). Therefore, the maximum value ofb is

bmax;A Tct

ln~Tct!
.

VI. RESULTS: MODEL VORTEX
AND HIGH TEMPERATURES

It is instructive to consider also a continuous model in
which the vortex has a core size much larger than the coher-
ence lengthj0. We assume that the order parameter is
D5uD(r)ueif; its magnitude varies smoothly from
uDu5D` at large distances from the core with the radius
R@j0 to uDu50 atr50. It is the opposite extreme as com-
pared to a low-temperature vortex with a small core dis-
cussed in the previous section. This simple model offers a
possibility to get an analytical solution for the whole tem-
perature range and to demonstrate that the additional force
depends crucially on the vortex core structure.

A. Quasiclassical force

Within the continuous vortex model, the Green functions
can be found by expanding the Eilenberger equations in
small gradients. Neglecting the vector potential, we have

Tr~¹̂Hĝ2!52¹uDu f1@v'3 ẑ#
1

r

]g

]r
, ~43!

Tr~¹̂Hĝ28 !5~¹f!~u¹ew0!
]g

]e
, ~44!

where ĝ2 is the static part andĝ28 is the correction due to
]w0 /]t. Here g5(e/Ae22uDu2)Q(e22uDu2) and
f5(uDu/Ae22uDu2)Q(e22uDu2).
The combinationĝ150 for ueu.uDu, therefore, the func-

tion f 28 drops out ofĝ
~nst!, and we again arrive at Eq.~37!. To

calculate the quasiclassical force we use Eq.~26! with f 19
from Eq. ~21!. The component off 19 with (@u3v'# ẑ) is odd
in boths andb, and vanishes after integration overds in the
collision integralJn and after averaging overv' in the last
term in Eq.~26!. Since the component with (uv') in f 19 is an
even function of the impact parameterb, all the terms with
nÞ0 in the sum in Eq.~26! vanish. This is because
]En /]b is even inb for n50 and odd for all othernÞ0
~see, for example, Ref. 6!.

Using the parity with respect tos andb, with help of Eqs.
~21!, ~43!, and ~44! we find that the last term in Eq.~26!
vanishes and we again obtain Eq.~38!. The collision integral
now can be transformed using the fact that the Green func-
tions of the zero levelE0 for the model vortex are localized
near the pointr5b at distancess;ARj much shorter than
the core size.6 Therefore, we can write

E
2`

`

J0$ f 19%ds52
pv'

t0
f 19~r5b!.

Theb factor for the additional quasiclassical force becomes

b152
1

2D`
2 E

0

` K tanhSE0~r!

2T D L ]uDu2

]r
dr. ~45!

Here we used Eq.~15! for w0.
Note that Eq.~45! givesb1521/2 for T→0, in agree-

ment with the result of the previous section. We see that the
factorb1 is not very sensitive to the core structure.

B. Nonquasiclassical force

For our model of a large-core vortex, Eq.~27! gives

gS f̃ 21 1

2

]f

]t

] f ~0!

]e D 5
] f ~0!

]e F2
~uv̂'!

v'

he~r!1~@u3 v̂'# ẑ!E
0

sds8

v'
S v'

2r8

]g

]r8
2 f

]uDu
]r8

b

r8D G1E
0

s

J~1!
ds8

v'

, ~46!

wherehe(r)5Ae22uDu2Q(e22uDu2). Note that the RHS of Eq.~46! vanishes fors→` if ueu,D` ; this condition deter-
mines f 1 for localized electrons. Forueu.D` the functionhe(`) determines, through the boundary conditions, a small
correction tof 1. From the symmetry of the functionf 2 of the type of Eq.~16! we observe that it only would give a small
correction to the quasiclassical friction force.

To calculate w we average Eq. ~46! over the Fermi surface. Using (@u3 v̂'# ẑ)52(urb1ufs)/r and
(uv̂')5(urs2ufb)r, we find that the term withh on the RHS of Eq.~46! vanishes after integration overa. In the second
term of Eq.~46!, a nonvanishing contribution comes from the first term under the integral which is even both ins andb. In
the collision integral, the Green functions of the zero branch are localized nearr5b, therefore, for the leveln50 we can
extend the integration overds to infinity if s@ARj, and write
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E
0

s

J~1!ds85sgn~s!E
0

`

J0dsd@e2E0~b!#1terms odd inb

since]En /]b in Eq. ~29! are odd functions ofb for nÞ0. Therefore, after averaging we obtain from charge neutrality Eq.~28!

ew52
1

2

]x

]t F12E g
] f ~0!

]e

de

2 G2K E de

2

] f ~0!

]e
~@u3 v̂'# ẑ!F E

0

s

ds8
1

2r8

]g

]r8G L 2K E de

2
d@e2E0~b!#

sgn~s!

v'
E
0

`

J0dsL .

Because of parity, the component withuf only remains
here after averaging, and we obtain, with help of Eqs.~24!
and ~29!,

ew5
uf

2r K E ] f ~0!

]e
deE

2r

1rdb

2

]E0~b!

]b
d@e2E0~b!#L

5
uf

2r K tanhS E0~r!

2T D L . ~47!

The potential remains finite asr→0 sinceE0(b)→0 for
small b!R. This is in contrast to the result of the previous
section for a low-temperature small-core vortex where an
increase in the potential was found at small distances from
the vortex axis.

Collecting the results of Eqs.~11!, ~45!, and~47! we ob-
tain the full additional transverse forceF'8 with
b5b11b2:

b512uD`u22E
0

` K tanhSE0~r!

2T D L duDu2

dr
dr.

The energy of the the anomalous branch for the model
vortex with a large core is6 E0(b)5sgn(b)uD(b)u. There-
fore, we have

b~x!512tanhx1
1

x2E0
x x82dx8

~coshx8!2
~48!

with x5D`/2T. The factorb vanishes forT→0, and it is
b51 for T→Tc .

We see that, in the continuous vortex model, the static,
w0, and dynamic,w, potentials contribute equally to modifi-
cation of the additional transverse force: one-half comes
from a relaxation process involved in the formation of the
dynamic potentialw, and the other from relaxation associ-
ated with the time dependence ofw0(r2ut).

Note that, for the continuous vortex model,b vanishes at
low temperatures according to Eq.~48!. This differs drasti-
cally from its behavior for a real vortex whereb diverges at
T→0, Eqs.~41! and~42!. The reason is that the zero-energy
density of states in a real vortex,^g2&, diverges forr→0
according to Eq.~32!, while that in a model vortex remains
finite and transforms into the normal-state value,g2→1.

C. High temperatures

The conclusion thatb→1 for T→Tc does not depend on
the model of a vortex and holds in a general case: Indeed, for
D!Tc , the gradient expansion for the Green functions
works in general for high energiese;T@D, while low en-

ergiese;D give a small contribution of the relative order of
D/T. This can be easily checked for the quasiclassical force
by inspection of Eq. ~26!. At the same time, for
D!T, Eq. ~27! results in the distribution function

f̃ 252(1/2)(]f/]t)(] f (0)/]e) and the dynamic potentialw
vanishes sinceg251 in the leading approximation inD/T.
Therefore, we arrive atb51 for T→Tc .

For these temperatures our result agrees both with Ref. 9
and with the microscopic3 and TDGL calculations2 in the
limit of a small pair-breaking rate. Within the TDGL theory,
a weak pair breaking is modeled by a small coefficient in
front of the time derivative of the order parameter in the
TDGL equation.

VII. DISCUSSION

The additional transverse force Eq.~3! is thus essentially
modified as compared to the effective-action result by kinetic
effects caused by charge neutrality. The modification is more
pronounced at low temperatures where the additional trans-
verse force increases asT21 according to Eqs.~41! and~42!.
The charge neutrality effects are to ensure the incompress-
ibility of the electron liquid divj50 and are closely related
with the charge imbalance relaxation in superconductors. In
clean superconductors, delocalized excitations are almost in
a full equilibrium with the heat bath while those localized in
vortex cores are highly involved in the vortex motion and
thus in the relaxation.6 This is why the force is mainly af-
fected by localized excitations. In a moderately clean case,
when the relaxation is very effective, the additional force is
strongly modified with respect to the effective-action result
for T→0 when all excitations are localized, and restores its
relaxation-free form forT→Tc when the number of localized
electrons is small.

Our results for the force exerted on a moving vortex can
be used to deduce the Hall conductivity from Eq.~2!:

sH5sH
~0!1

ec

B S 1l ]n

]z DD`
2b~T!. ~49!

It is interesting to note that Eq.~49! for the Hall conductivity
as a function of temperature allows for multiple sign rever-
sals. The possibility of a double sign reversal was predicted
in Ref. 9 and agrees with our calculations. Indeed, the Hall
conductivity sH

(0) for a moderately clean case with
l /j(T)@1/Al is determined6 by the integral over the Fermi
surface which contains the bound-sate spectrum of electrons
and the relaxation time. The sign of the Hall effect in this
regime may differ from that in the normal state. However,
the parameterv0t;D2t/EF is small nearTc due to a small
D. According to Ref. 6 the Hall conductivity
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sH
~0!;

Nec

B S Tc2tEF
D 2S D`

Tc
D 5

for T→Tc . Therefore, when the sample is cooled down from
the normal into the superconducting state, the superconduct-
ing Hall effect is first determined by the correction term until
l /j0 becomes of the order of (1/Al)(12T/Tc)

23/4. The sign
of the Hall angle in this high-temperature regime is deter-
mined by another characteristic of the Fermi surface, viz., the
energy derivative of the density of states, and may be differ-
ent from either the sign in the normal state or the sign in the
low-temperature regime. This may result in a double sign
reversal if the latter signs are the same. A double sign rever-
sal was observed experimentally.20 Here we point out the
possibility of a third sign reversal at still lower temperatures.
Indeed, the correction term increases forT→0 and can again
exceedsH

(0) if l /j0,1/@l2/3ln1/3(Tct)# which can result in
another change of sign of the Hall effect.

In the present paper we assumed that pinning is absent.
There are generally no doubts that pinning can bring about
more interesting features to the Hall behavior of supercon-
ductors. Our results for conductivities can be used as the
input parameters when constructing a more general theory
which would take into account possible effects of pinning
and fluctuations. A theory of such kind was suggested in Ref.
21. It was shown that a double sign reversal in presence of
pinning can appear already within a simple Bardeen-
Stephen-type model of vortex dynamics. However, we em-
phasize here that there may exist another reason for multiple
sign reversals based on entirely intrinsic mechanisms of vor-
tex motion.

Here we consider only ans-wave superconductor. An in-
creasing amount of evidence appears now in favor of a
d-wave symmetry of the order parameter. The specifics of
vortex dynamics in ad-wave superconductor is associated
with the gap nodes at the Fermi surface. An example how the
gap nodes influence the vortex motion can be found for a
p-wave superfluid system, namely, for a phase of superfluid
3He. It was demonstrated22 that the mechanism of vortex
motion in ap-wave system remains qualitatively the same
and is governed by the localized states in the vortex core. We
thus believe that the general physical picture and results of
the present paper can be applied qualitatively to ad-wave
superconductor since the most important effect considered
here is due to the charge neutrality of metals.

In conclusion, we have calculated the Hall conductivity in
moderately clean superconductors and found an additional
transverse force on a moving vortex. We show that the
effective-action result of Ref. 9 is strongly modified by an
electric potential generated by moving vortices due to charge
neutrality in superconductors. The effective-action result is
recovered nearTc where the microscopic theory agrees both
with the effective action formalism and with the TDGL
theory in the limit of a small pair-breaking rate.
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