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Hall effect in moderately clean superconductors and the transverse force on a moving vortex
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For moderately clean superconductors with the mean free path approaching the coherence length from the
clean side, the transverse force on a moving vortex starts to be dominated by variations in the pairing inter-
action produced by vortex motion. We calculate the force and the Hall conductivity using the microscopic
theory of nonstationary superconductivity and find that they are modified, as compared to the effective-action
result, by an electric potential induced due to charge neutrffy163-18206)02634-3

I. INTRODUCTION flux quantum. Note that the unit vector along the magnetic
field b=Zsgn() coincides withz for positive charge of car-
The flux-flow Hall effect is studied theoretically both for riers. For further use, we write the total force as
dirty superconductofs® with the mean free path much  F=F,+F’ where the forcd=, contains the conductivities as
shorter than the coherence lendi{T) and for clean super- calculated in Ref. 6 while the additional foré€ accounts
conductors with> &(T).*® The Hall effect is small in the for the effect of vortex motion on pairing interaction. The
dirty case but it is expected to be quite substantial in cleamdditional friction forceF; results in a negligible correction
superconductor§.The Ohmic and Hall conductivities of a to the dissipative Ohmic conductivity. The transverse com-
clean superconductor in the low-field regibh<H., were  ponentF, is larger and affects a small Hall conductivity,
obtained in Ref. 6. For temperatures not very clos@ {0  thus its role is much more important.

they are, by the order of magnitude, In clean superconductors with>£(T), the change in
5 pairing interaction gives only a small correction to the Hall
- Nec  wor Nec (wqo7) conductivity of Eq.(1) and to the transverse force; it may
o~

B 1+(wen?’ THT B 1+(wyn)?’ (D pecome substantial, however, for a weak-coupling limit
. ) . . A<<1 in a moderately clean case whdn approaches
whereN is the density of carriersy,~A%/Eg is the charac- £(T).2%1n the present paper we consider this mechanism for
teristic distance between the energy levels with different angjean superconductors and calculate the flux-flow Hall con-
gular r_nomenta of the Ioc_alized states within the vortex COregyctivity using the nonstationary microscopic theory. We as-
and 7 is the mean free timd,=ve7. (See Ref. 6 for more  gyme that pinning is absent and concentrate on intrinsic
details) , _ mechanisms of vortex motion.

A rough estimate for dirty superconductors can be ob- e restrict ourselves to as-wave superconductor and
tained from Eg. (1) with T i~Ar it 7%'V65_UH_/‘70 assume a uniaxial symmetry of the crystal. The magnetic
~A/Eg<1 with the Hall angle ta@,~10"7, which is of  fie|q is applied along the symmetry axis. We work in a low-
the correct order of magnitude compared to the experimentgfg|q limit, B<H,, assuming an extreme type-Il supercon-

data. Many mechanisms contribute to this general order-ofg,ctor with x>1. We find that the additional transverse
magnitude estimate. Microscopic thedrgnd the TDGL force is

calculation$? show that one of the most important effects is
the feedback of vortex motion to the pairing interaction. Be-
ing proportional to I, where\ is the BCS coupling con-

stant, it can dominate for dirty superconductors in a weak- here SN, is the diff b h | icle d
coupling limit A<1: the Hall conductivity is then WNEreoNs Is the difference between the total particle den-

N sity of the system in the superconducting and in the normal
717 To(A/EF)(IN). state without Coulomb interactio@N (=) denotes this dif-
ference at large distances from the vortex. The difference in
densities is caused by a change in the electronic spectrum
after transition into the superfluid state:

Fi=—moN,(=)[ux2]B(T), &)

The flux-flow conductivities are coupled to the compo-
nents of force from the heat bath=F +F, , experienced
by a vortex moving with the velocity:

$oBoo

F=-—zu N _(1 dv) ,
»=Ndg, |AJ%. 4

__$Bon . . . .
FL=——gluxz]sgre). (2)  The functionB(T) in Eq. (3) varies fromg=1 atT—T, to

B>1 for T<T.. The change in density is small,
HereZ is the unit vector along the vortex axis in the positive SN, /N~ (A/Eg)?, however, the corresponding\ltontri-
direction of its circulation andp,= mc/|e| is the magnetic bution to the Hall conductivity
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o, =B(T)N,(»)edB The nonstationary Green function contains the part which
can be calculated quasiclassically by integrating over the en-
becomes comparable to the Hall conductivity of Efj)  ergy variablel,=e(p)—Eg plus small corrections propor-
when the superconductor is still in a moderately clean regimgonal to A/Ex. Among all numerous corrections of this or-
with 1/¢(T)~1/Jx and dominates if is further decreased. der of magnitude, there is one which gives\ 1lafter
Relative magnitude of the correction increases both for lowintegration over frequencies. In a weak-coupling limit,
temperatures and fof—T.. Our calculations thus fill the \<1, this is the largest contribution; it can be calculated
gap between very dirty<<£(T) and very clean>£(T) su-  separately neglecting all other nonquasiclassical corrections.
perconductors. The 1A correction to the conductivity comes from the
Our result differs from Ref. 9 which predicf8=1 for  regular Green function§X®). due to the logarithmic diver-
any temperature. This very general prediction was Obtaineaence of thee integration+i’niEq.(5) which is cut off at the

in Ref. 9 using an efft_act_we hydrodynamic action in the pres'Iimiting BCS frequency. Since the characteristic frequencies
ence of vortices. A similar approach was used in Ref. 10 t re large, one can expand the Green function in powers of

derive the Magnus force on a moving vortex, which is only &he small ratioA/ e up to the leading term. For example, the
part of the total transverse force of E@) (see Refs. 11 and correction toFR® proportional tow is '

12). The predictionB=1, however, does not comply with

the microscopic calculations for dirty superconductasd OA 9 L
with the TDGL theory which give expressions of the type of FRA=— 2 _[GRAGRA, (6)
Eq. (3) with a factor 8+ 1 depending on the specific relax- 2 by

ation processes in the superconductor. The present calcul,e_t-TR(A) is obtained by substitutingA , with — @A* . We use

tions identify the source of disagreement between the TDG hcé)rrgauge invariant version Gﬁintrou:juced in Rgf' 15. Here
Ejhteory Iand tth% ht)_/dro;jynéng eflppro?r(]:h: Itl ccir!5|stst|n ?nla o= o+ 2ee with the upper sign foA andF, and the lower
ditional contribution 1o Eq. rom the electric potentia sign for A* and F'. The potentiale does not include the
induced by moving vortices due to charge neutrality in SU-ctatic part (see Sec. IVA For the diagonal element
perconductors. We show that the result of Ref. 9 is valid only d_p h o . g
in the limit of T—T,; it can be reproduced by the TDGL andG, the operator iS»= .

. _ ; \ lacei (nsh ;13
theory provided the pair-breaking rate is small. The quasiclassical part ¢'™ is
Il. FORCES ON A MOVING VORTEX 6=, « ~8E, )~ (60 G0 2male) )
of @

In the microscopic theory, the transport current in an arra @ ~R ~A AR A
s dotern b J —5 (@7 HE )@

of moving vortices is determined by a balance of the Lorentz
force from the transport curren = ¢o[j,x z]/c, and the

QRS _ o aA

force from the heat bath*® (97— 0,9 . @
3 Here the matrixj=fgd§p/wi is constructed out of the func-

FL_f dzrf E d p3Tr[g(”S°(@H+EV<Po)]=0- tionsg, f, etc., according to the same rule as _the _ma@’rix
4mi (2m) made ofG, F, etc., andf,, f, are the nonequilibrium cor-

(5  rections to the distribution function.

The force balance of Eq5) becomesF +F=0 where
the total force can be separated into quasiclassical and non-
quasiclassical part§=F99+ FM%_The quasiclassical force

The spatial integration is taken over the unit cell of the vor-
tex lattice. The Green function

G F
| de d . ~
Qe+,e(p,r)=( -t & F<q0>=—f dzrf Zﬁvr':Tr[g("sﬁ(VH-}—eVgoo)]
(8)
and the “effective force” . .
is calculated in Sec. IVA. We demonstrate that
(e/c)[HXVe] _ A F@9=F©+ F’ @ with the additional term
VH= VA* —(e/c)[Hva]) F@=— 76N, () [uxz]B;. (9)
are matrices in the Nambu space=[V ¥ (2ie/c)A] for The nonquasiclassical force comes from E):
A and A*, respectively, andp, is a small static potential . q ~ n
which appears due to charge neutraligge Sec. Il G"is (ngo_ (1 dV oo OAT o 0A
the nonstationary part of the total Green functibn F=21x d¢ dr| VA== VAT 5| (10
g, =gl —(GR-gHtV(e)2md(w). Here a/dt=dl gt = 2ieq with the upper sign fon and the

lower sign for A*. The density of states as a function of
Here GR® are the regular Green functions, and energy isv({)=[dS,/(2m)%,, wherev,=|de(p)/dp|, and
e.=e*wl/2. The equilibrium distribution function is the integration is over the surface corresponding to the en-
f(O(e) =tanh2T). ergy e,— Er=¢. Equation (10) is independent of impurity
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scattering. It is only the potentiab which depends on the N—Ng(Er—egg) remains to beSN,, , though the real den-
real kinetics of a superconductor. We calculate it in Secsity of the system is unchanged:=Ng(Eg).
IVB. This consideration shows that the static shift in the chemi-
The force F"®© s perpendicular to the vortex velocity cal potential itself does not modify the additional force.

u. Indeed, the scalar potential is proportionalutowe shall  However, the force is modified by kinetic effects associated
see thate>u,, where p,¢,z) are the coordinates in the with the charge neutrality. First, the quasiclassical force
cylindrical frame. We puee=uyy andd/dt=—u-V for a F’(@ appears because of an extra current induced by the
moving vortex and calculate the integral in E40). Ne- time dependent potentialy(r —ut) for a moving vortex to
glecting the vector potential we obtain with help of E4) fulfill the incompressibility constraint djv=0. Second, the

R density could change due to nonequilibrium variations in the
FN99= — 77 5N (%) [UX 2] B, (11)  distribution functionf, in Eq. (14). (A similar effect of a

moving vortex on density was discussed in Ref.)1To

where L TR
compensate for these variations, a potengialu is induced
= d|A|? through the conditio’N™?=0. This potential changes the
,82:1—|Aw|’2f 7 b pdp. (12 nonquasiclassical force°.
0
Thus, the full additional transverse fOf&L:F’(qC)-i- F(nqo IV. MICROSCOPIC CALCULATION OF FORCES

in Eq. (3) hasB= B+ B>. A. Quasiclassical force
IIl. EEFECTS OF CHARGE NEUTRALITY The induced time dependence of the poteniiglfor a
] ] . moving vortex modifies the distribution functidn. In addi-
Equation (10) shows that the nonquasiclassical transversgjon, it contributes to the regular quasiclassical Green func-
force is caused by the time derivative of the order-parameteyons. If there were no static potentiap, the first line of Eq.
phase coupled to the electric potential. Since these quantitig$) \ould give a contribution to Eq(5) which is even inw

are conjugated with density the force is related to the densityg jt can be checked by inspecting the Eilenberger equations.
variations. One can interpret the transverse force defined byg expansion inw would start withw?, thus it could be

Egs.(9-12 in the following way. For a system without Cou- omitted in the linear-inw approximation for which the two
lomb interaction wherep=¢,=0, the additional forcé~; |5st lines in Eq(7) are only important. This fact has always
comes fromF " only and is equal to the difference between peen used in quasiclassical calculations of the flux-flow con-
two forces acting on a moving vortex: one is the sum of thegyctivity. However, the correction to the regular functions
Magnus forces from superfluid and normal components angde tog, is linear inw and has to be included in E¢p).
is proportional to the total particle density of the system in T4 describe the kinetic effect af, we need to account
the superfluid statdN, while the other is the spectral-flow for 3 time dependence of the chemical potential in the kinetic
force proportional to the number of statig() within the - equations. The distribution functioH®=tanh(/2T) refers
Fermi surface defined by the chemical poteniat™**The {6 an equilibrium where the order parameter and the vector
difference in densitie®N, is caused by a change in the potential are constant in time, and the chemical potential is
electronic spectrum after transition into the superfluid statge_ —ep(r). There is a small electric field-V ¢q, which
and is given by Eq(4). The net force thus has the form of prevents electrons from moving to places with higher mag-
Eg. (3) with =1 in agreement with predictions of Ref. 9. pitydes of the order parameter, thus there is no normal cur-
For a Galilean invariant system such as superfldide,  rent in equilibrium. We disturb our system by putting vorti-
0N, corresponds to the difference betweed and  ces into motion with a small velocity. The deviation from
Co=p§/3772- equilibrium is described by nonequilibrium correctiohg

For metals, the Debye screening results in a charge negndf, to the distribution function, in addition there appears
trality N=No(Eg) = Njo, WhereEg is the chemical potential a nonequilibrium electric field
of the normal state. The electron density is

N—No= 6N, — 2vegy+ SN, (13) -1 ¢,
c dt '

where
where the potentiap is proportional to the vortex velocity,
dS  de_ . so that the electric fielé& is proportional tou.

(nsh— _
oN (14) Using parity of the static quasiclassical Green functions

The constraintN=N, gives rise to a small static potential

R _ _ fRx/_ _ R —qR*_ _
¢ Which compensates the variatidiN , FOOA) == 12X, =A) GcnA)=8Z(=x = A),

_ etc., wherey is the phase of the order parameter, we can

&po=ONa/2v. (9 easily check that the contributions from the distribution func-

However, the difference between the Magnus and spectrations to the quasiclassical force have the following parity

flow forces remains the same. Indeed, the resulting change imith respect to the inversion of the vortex circulation

chemical potential shifts the Fermi level and changes th&— —Zz, equivalent to the inversion of the magnetic field plus
functionNg(Eg) to No(Ex—e¢g). As a result, the difference complex conjugation of the order parameter.
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(1) The distribution functions such that f(e,2)=F1(—€,—2), fie2)=Ff(—€,—2) (17)

give an odd inz— —Zz contribution to the force, thus they
fl(e2)=—f(—€,—2), fo€2)=—F,(—€—2) gi\_/e rise to a rgactive transverse force or HaII_ co_nduc_tivity.
(16) With these parity considerations, one can easily identify the
necessary corrections to distribution functions.
The kinetic equations for clean superconductors were de-
give an even irz— — 2 contribution to the force, thus they rived in Ref. 15. They can be easily generalized to the case

give rise to a friction force or Ohmic conductivity. when the equilibrium chemical potential has a time depen-
(2) The distribution functions such that dence:
Eg_+ 2| f iy f! Al 701 TANT (AT ShvexHIg. | T g Tty v(r,g ) =2
eveEg_+ S| fo — =+ —| | —— — | SL(VA L+ (VAT = [vexH]g- Tp 9 TV (fog-)=3",
(18)
and
L oy ! oA At AT = SrEan) . — Gy 120 [ ar o+ a9 Spvoxcig. |22
2| ot + ot | ge if + +1f2 2[( M= ( )+]<9p 2[ - -] C[VF 1g- ap
d(epq) of®
-3
+g_veVii+g_ p e J\9. (19
|
Here J® and J@ are the collision integrafS, and §. For |e|>A.., the boundary conditiofisf;=+g_f, for
f(@Rt@A)/Z. We  stress that the  operator s— *oo together with Eq(18) define the constants
dlot=al dt+2iep does not contain the static potentig]. o ©
For clean superconductors, the static Green function of an , ([uxv ]2)b af™ (=1 d(eeo)
. > ; g_fo=— - ds (22
electron with the momentum projection on the vortex axis v, de Jop dp
p, and the impact parametbrcan be written as the spectral
sum andf;=0. For|e|<A.., the integration constant in E(R1)

is included infy; it can be found by integrating Eq18)

A N _ along the trajectory.
g_—; Gnol e~ En(pz,D)], With the identity
whereE, (p,,b) are the energy levels of the localized elec- [« A~ . JEL(b)
trons in the vortex core characterized by the radial quantumf_wTr[(VH)g—]dF27T[Z>< VL]; b OLeEn(b)]

numbern, the impact parametdy, and momentunp, .
We restrict ourselves to a moderately clean case whergerived in Ref. 6, we obtain fdre|<A.,
[>£(T) but wgr<1. The main terms in Eq19) give

d(epg) of @ ([v, X ]A)af(O) o ( ><mti ‘)aE”
e w([V, XUu]2)— ——+ | |v, Xx—|2
g v Vi+g — 7 g 20) + de b L7 9p, %) ab
ot Jde
From Eq.(20) we havef,=f;+f] wheref; is constant + fﬁan{fi}der f,an{f,ll}dszo' (23
along the trajectory and
where
£0)
1=— ——| (uv,)[ego(p) —epo(*)]
17y, de + JV=>J3.8(e—E,).
n
A a s1 d(egq) |
_([UXVL]Z)be? p’ ds’|. (21)  Asin Ref. 6, we adopt the approximation for the collision

integral

We denote the distance along the trajectory €y (v, r)

wherev, is the unit vector along the projection @f on the fc”\] (fllds=— vaif, (24)
(x,y) plane perpendicular to the vortex axis, and introduce o Mt 27, 1

the impact parametdr. We see thaf] has the parity of Eq.

(17) and contributes to the transverse reactive force. For wo7<<1, the distribution function is
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9f© o . trons and holes, respectively.
fi=-— ?pL(([UXVL]Z) Tnwn= (UV,)(7h05)?) From Egs.(21) and (25) we see that the correction to the
distribution function produced by, is small compared to
N Tn J“‘ 3. {fds. (25) the Adis§ipative component off; [the term with
— (luXv,]2)], but can be of the same order of magnitude as

the reactive part withuv,) whenA 7~ 1/yX\.
Here w,= p; }(9E,/db) is the distance between the local-  USing charge neutralitgN "= 0 with Eq.(14), the qua-

ized levelsE,(b) with different angular momentem=p, b~ Siclassical force from Egs.(7) and (8) becomes
of an electron in the vortex core; the signs refer to elec- F99=Fy+F' @ where the additional quasiclassical force is

ds: . . JE, (* de ds . .
(@0~ _ _n " _ _ (nsy _ 4
Fr (@0 = §n; fdbf P A Tnf_x\]n{fl}ds derJ 4 2o V@™ =25 1)]. (20

The quasiclassical fordg, is calculated with the distribution V. RESULTS: LOW TEMPERATURES
function f, without the ¢, correction and contains only the
first line of Eq.(25). Through Eq(2), it is expressed in terms
of conductivitiessd) and (%) obtained in Ref. 6.

At low temperatures, the low-energy Caroli—de Gennes-
Matricon levelg® on the chiral branch of the bound-state
spectrum are only important. Remember that, at low energies
e<A, and forb<¢ and p>b, the regular functions at®
B. Nonquasiclassical force 0_=0ode—Eq(p,,b)], f_=foo[e—Eq(p,,b)], fl=F*

To calculateF™© we need the dynamic potential, It ~ Where

appears due to the distribution functiép in zero approxi-

_ K —ae (bt
mation with respect ta,. To the leading approximation in Go=(mv,€ 7/2C), fo=goe(bHis)lp (30

woT<1, the kinetic equationil8) becomes with the phasey= ¢. Hereb=p sin(¢—«a) is the impact pa-
rameter,s=p sin(¢p—a), ¢ is the azimuthal angle, and is
1 IA* : A\ of @ the angle betweem, and thex axis:
eveBg-F o T TS| e 2 (p .
K(s)=—] |A|dp’ = —-K .
+VeV(fog_)=3W. (27 (s) v, Jo' ldp", € Jo exp—K)dp
The charge neutrality readiN™'=0 where The bound-state energy'fs
1 dx [ofS3 Eo(p b)—leoc—bIAI exp(—K)dp (31
(nsh_ __ - oA s oMz, M) — - .
6N 2v e(p~l—2 at fgfzmdé (28) o p
The energy Eg(b) forms the anomalous branch which
Here we put crosses zero of energy as a function of the quasicontinuous
_ impact parameter.
fo=f,+[ep+3(ax/at)](9f O/ de) The density of states a=0 averaged over the Fermi

surface diverges at small distances from the vortex axis:
and took into account corrections ¢o +g_ proportional to K
ep+(1/2)(dx/dt). Equations(27) and (28) determine the (g >:< v, € >
potentialee~uA/v which appears in Eq$10)—(12). - 2Cp|dEq/ab| |-
To find f, we takef; from Eg. (25) in the leading ap-
proximation inwg7. For |e|<A., it is

(32

(Angular brackets denote averaging over the Fermi sufface.
It gives rise to the Kramer-Pesch effédi,e., to an increase
©) in the order-parameter derivative  for p—0:

af (09 dlAl/dp—A.lg; where

fi=- IprnTn([UX\,}L]z)
&1~ (TIAL)€o- (33
andf,;=0 for [e|>A...

The full expressions for the forces can be found analyti- 10 incorporate this effect into the order-parameter coor-
cally at least for three limiting case$l) low temperature dinate dependence, one can use an approximate expression
limit, T<T,.; (2) high temperature limitT—T;; and (3)
arbitrary temperatures for a model vortex with the core size 1A(p)|= Axpléy for p<é&y, (34)
larger thang,. A, forp>¢;.
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For such an order parameter, the bound-state energy is

€o

Eolpz,0)= - ( : 35)

It is actually independent of the real structure |af(p)|
within the logarithmic accuracy. FdE,~T<A,,, the char-
acteristic value of the impact parameter is

b~ & /IN(A./T).

N. B. KOPNIN 54

@)= fdeW[Z Vil bTOJ Jolfi}ds.
(38)

It was shown in Ref. 6 that the main contribution to the
collision integral within the logarithmic accuracy comes
from distances~b<¢;. Therefore, one can write

oo

n 7TUL n
 Jolfat=- fi(p~b)
The 1p divergence of the density of states is cut off by
impurity scattering. Indeed, the impurity self-energy in the o omaf@
Eilenberger equations which define the quasiclassical Green T 7 de [(uvi)[ego(p~b)—ego()].

functionsgR® and R becomes important whea is of
the order (1#)(gR"®™). Since e~T we find from Eq.(32)
that the Kramer and Pesch result is valid for

€o

P (T (36)

Since @o(p~b)/ o(*) ~b%/ £2<1 we obtaing,;=—1/2
for the additional transverse force in E®).

B. Nonquasiclassical force

Equation(27) gives

We shall see that the growth of the zero-energy density of

states at small distances gives rise to a large increase in the ~ s ds PP 2e dAs
additional transverse force at low temperatures. g-fo= fwa 2JM—v,9- ISt © ot
A. Quasiclassical force ~ =y d|Al]af @
T o , +(fo+f ) —— : (39
For|e|<A.. the distribution functiorf, is small. The first dt | de

term in the second line in Eq7) gives only a small correc-
tion to the dissipative component of the force. Therefore,

(37

whereg’ is the correction t@_ due todgy/dt. It is deter-
mined by the Eilenberger equations

g"st—2g_f;=29_f{+29" @,

VT = 2ef + 280 — ouar—ie 20 X _g
iv € 9'— -V ie—=--=0,
2e 9o afT
ivvit — ZefT’+2A*g’——vAfT’+| ,
gt de
and the normalization conditiong)’ —f'f'—ff"’=0. we

put f'e 1¢=T' fT"e¢=f1". Using Eq.(30), for small b

and e we getf'=—f!" =ig’, and
(?'1:’ . deg dg
+2|A|f e Wa_
The solution is
-, (uv)) 99
fr=i oL (eﬁDo(P)_eﬁoo(w))%-

Being inserted into Eq26), this term gives

[V, XZ](uv,) 4|A| 9g_
U, p Je

X (e@o(p) —e@o())

2 T{VHG' 1fO=— ==

where f_=f_e'¢, ' =F'e 4. Note that, for localized
electrons with|e|<A.., Eq. (39) determines the function
f4 in the limit s—o» wheng_—0 .

For low energies, we get

7 _ 19¢ of®
9-T2= 2 gt e 9-
s ds ([zxVv ]u) of® [s|Alg_
0 V1 LS de p

Due to the Kramer-Pesch effect, E§3), we can simplify
this expression. We shall see that the distances of the order
of p~¢&,=(T/A.) &y give the main contribution to the qua-
siclassical force. For such distances, the last line in(EQ).
is of the order ofg_ /&, while the first is of the order of
g_/&,, therefore

7 _ 1 9¢ of @
272 gt ge -

From Egs.(28) and (35) the dynamic potential becomes

(vy)

=—<1 (9-0=2,\ 1" 258 )

2P
Here we assumed the order parameter in the form of Eq.
(34). The potential grows for a decreasipgvhich is a con-
sequence of the peak in the density of states at zero energy.
However, one cannot extrapolate the increase idown to

p=0 because Eq30) used for the Green functions is valid

which cancels the contribution from the first term on theonly for p>b with the characteristic impact parameter such
RHS of Eq. (37). Therefore, the additional quasiclassical thatEy(b)~T. One expects that the divergence of the poten-
force becomes tial is cut off either at distancep<b or by the impurity
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scattering. We discuss this again in the next section in con- - 1dg
nection with the model vortex. Tr(VHG-)=2V|A|f+[v, XZ]- o (43
We get for the nonquasiclassical force of Efjl) pop
B SR Uy ~daf* dp THVHE )= (V) (uTewq) 44
Finally, the total additional transverse forgg in Eq. (3) has where§_ is the static part ang’ is the correction due to
B=B1+ B2 where dgeldt. Here g=(elNE—[AD)O(2—|Al?)  and
(v,) =d|A|2 dp f=(|Al/Ve=TA[)O(*~]A]%).
B — (41 The combinatiorg, =0 for |e|>|A|, therefore, the func-

= 3 .

482In(A./T)Jo dp p tion 5 drops out 0™, and we again arrive at E(37). To
Here the distances~ ¢£; give the main contribution so that calculate the quasiclassical force we use Ef) with f]
B increases with lowering the temperature. With Bf) we  from Eq.(21). The component of with ([uxv, ]Z) is odd

obtain in boths andb, and vanishes after integration ows in the
collision integralJ,, and after averaging over, in the last

B= (vi) _ A (42) term in Eq.(26). Since the component withu¢, ) in f7 is an

20,6 In(AL/T) T In(A,/T)" even function of the impact parameter all the terms with

n#0 in the sum in EQ.(26) vanish. This is because
JE,/db is even inb for n=0 and odd for all othen#0
(see, for example, Ref)6

The increase iB is cut off by impurity scattering. The low-
est temperature for which E¢42) is still valid is found by

putting_p~¢&,_in  Eg. (36 which gives T/T, Using the parity with respect ®andb, with help of Egs
~1/\(T¢7)In(T.7). Therefore, the maximum value ¢ is (21), (43), and (44) we find that the last term in Eq26)

Tor vanishes and we again obtain E§8). The collision integral
Bmax™ o)’ now can be transformed using the fact that the Green func-
e tions of the zero levek, for the model vortex are localized

near the poinp=b at distances~ R& much shorter than

VI. RESULTS: MODEL VORTEX the core siz&.Therefore, we can write
AND HIGH TEMPERATURES

It is instructive to consider also a continuous model in
which the vortex has a core size much larger than the coher-
ence lengthé,. We assume that the order parameter is
A=|A(p)|e'?; its magnitude varies smoothly from The g factor for the additional quasiclassical force becomes
|A|=A., at large distances from the core with the radius

R> &, to|A|=0 atp=0. It is the opposite extreme as com- 1 fx< r(EO(p)) > 3|A|2

* n WUL n
| settiras=- " ip-b).
© ’7'0

pared to a low-temperature vortex with a small core dis- Bi=— ==

cussed in the previous section. This simple model offers a 24, 2T
possibility to get an analytical solution for the whole tem-
perature range and to demonstrate that the additional fordd®re we used E15) for ¢o.

depends crucially on the vortex core structure. Note that Eq.(45) gives y=—1/2 for T-0, in agree-
ment with the result of the previous section. We see that the

factor B8, is not very sensitive to the core structure.

dp. (45)

0 ap

A. Quasiclassical force

Within the continuous vortex model, the Green functions
can be found by expanding the Eilenberger equations in
small gradients. Neglecting the vector potential, we have For our model of a large-core vortex, EQ7) gives

B. Nonquasiclassical force

_ (uv,)

€L

+__
f2 2 gt Jde de

where 7.(p) = Je*—|A[?0 (€~ |A|?). Note that the RHS of Eq46) vanishes fors—x if |e|<A.; this condition deter-
mines f, for localized electrons. Fofe|>A.. the function () determines, through the boundary conditions, a small
correction tof,. From the symmetry of the functiofy of the type of Eq.(16) we observe that it only would give a small
correction to the quasiclassical friction force.

To calculate ¢ we average Eq.(46) over the Fermi surface. Using [UXV, ]2)= —(u,b+uys)/p and
(uv,)=(u,s—uyb)p, we find that the term with; on the RHS of Eq(46) vanishes after integration over. In the second
term of Eq.(46), a nonvanishing contribution comes from the first term under the integral which is even ®otndb. In
the collision integral, the Green functions of the zero branch are localizedprehlr therefore, for the leveh=0 we can
extend the integration ovets to infinity if s> JRE, and write

~ 1a¢ af @) 5f©@ s ds'
g( ¢ )= +f J<1>v—, (46)

0 L

v, dg d|A| b)
2p" dp" dp' p’

. (sds’
m(p)+<[uxvl]z)foz(
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S ®
f J(l)ds’=sgr(s)J Jodsd] e—Eq(b)]+terms odd inb
0 0

sincedE,/db in Eq. (29) are odd functions db for n# 0. Therefore, after averaging we obtain from charge neutrality(ZRy.

L J af©@ de de of©@ Jsd, 1 49 fdeﬁ E b sgn(s) ® 1 d
95 2 2 oe 95 5,7 o7 7 e Bo(b)] == " Jods).

_ 1 dx
CPTT

([uxv,]2)

Because of parity, the component wity only remains  ergiese~ A give a small contribution of the relative order of
here after averaging, and we obtain, with help of EQ¥) A/T. This can be easily checked for the quasiclassical force

and (29), by inspection of Eq.(26). At the same time, for
© A<T, Eq. (27) results in the distribution function
ep= 22 j N e f Frdb 7o) o k(b T,=—(1/2)(9¢/ 1) (91 d€) and the dynamic potentia}
2p de -p 2 db 0 vanishes sincg_=1 in the leading approximation iA/T.

Therefore, we arrive g8=1 for T—T,.
_Ys tan Eo(p) 47 For these temperatures our result agrees both with Ref. 9
2p 2T |/ and with the microscopicand TDGL calculatiorfsin the
. . . ) limit of a small pair-breaking rate. Within the TDGL theory,
The potential remains finite 86—0 sinceEq(b)—0 for 5 \weak pair breaking is modeled by a small coefficient in

smallb<R. This is in contrast to the result of the previous ont of the time derivative of the order parameter in the
section for a low-temperature small-core vortex where anrrpgL equation.

increase in the potential was found at small distances from

the vortex axis. VII. DISCUSSION

Collecting the results of Eq$11), (45), and(47) we ob-
tain the full additional transverse forceF| with The additional transverse force E§) is thus essentially
B=pB1t Ba: modified as compared to the effective-action result by kinetic

. £ dlAl2 effects caused by charge neutrality. The modification is more
,3:1—|Aoo|_2f <tan)—( o(P))> Al o pronounced at low temperatures where the additional trans-
0 2T dp verse force increases @s ! according to Eqs41) and(42).
The charge neutrality effects are to ensure the incompress-
The energy of the the anomalous branch for the modeibility of the electron liquid diy=0 and are closely related
vortex with a large core fsEq(b)=sgn()|A(b)|. There-  with the charge imbalance relaxation in superconductors. In

fore, we have clean superconductors, delocalized excitations are almost in
) a full equilibrium with the heat bath while those localized in
B(x)=1—tanhx+ 1 JX x'“dx! (49  Vortex cores are highly involved in the vortex motion and
x2 0 (cosh<’)z thus in the relaxatiofi.This is why the force is mainly af-

) ) o fected by localized excitations. In a moderately clean case,
with x=A./2T. The factorg vanishes forT—0, and itis  \yhen the relaxation is very effective, the additional force is
B=1forT-T.. i i _ strongly modified with respect to the effective-action result

We see that, in the continuous vortex model, the staticior T_.0 when all excitations are localized, and restores its
¢o, and dynamicg, potentials contribute equally to modifi- e|axation-free form folf — T, when the number of localized
cation of the additional transverse force: one-half comegyiectrons is small.
from a relaxation process involved in the formation of the o results for the force exerted on a moving vortex can
dynamic potentiakp, and the other from relaxation associ- pe ysed to deduce the Hall conductivity from E2):
ated with the time dependence @§(r — ut). L

Note that, for the continuous vortex modgl.,vanishes at o €c(lav) ,
low temperatures according to E@t8). This differs drasti- UH:"L)“LE(X a_g)Axﬁ(T)' (49)
cally from its behavior for a real vortex whegdiverges at

T_.0, Eqs.(41) and(42). The reason is that the zero-energy Itis interesting to note that E¢49) for the Hall _condl_Jctlwty
. . . as a function of temperature allows for multiple sign rever-
density of states in a real vorteg_), diverges forp—0

according to Eq(32), while that in a model vortex remains _sals. The possibility of a double sign rgversal was predicted
- . in Ref. 9 and agrees with our calculations. Indeed, the Hall
finite and transforms into the normal-state valge—1.

conductivity o(® for a moderately clean case with
1/£(T)>1/\\ is determinefiby the integral over the Fermi
surface which contains the bound-sate spectrum of electrons

The conclusion thgB— 1 for T— T does not depend on and the relaxation time. The sign of the Hall effect in this
the model of a vortex and holds in a general case: Indeed, faegime may differ from that in the normal state. However,
A<T,, the gradient expansion for the Green functionsthe parametew,r~A27/Er is small neaiT, due to a small
works in general for high energies~T>A, while low en-  A. According to Ref. 6 the Hall conductivity

C. High temperatures
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creasing amount of evidence appears now in favor of a
d-wave symmetry of the order parameter. The specifics of
for T—T.. Therefore, when the sample is cooled down fromvortex dynamics in al-wave superconductor is associated
the normal into the superconducting state, the superconduatvith the gap nodes at the Fermi surface. An example how the
ing Hall effect is first determined by the correction term until gap nodes influence the vortex motion can be found for a
|/£, becomes of the order of (JX)(1—T/T.) %4 The sign  p-wave superfluid system, namely, for a phase of superfluid
of the Hall angle in this high-temperature regime is deter-He. It was demonstratédthat the mechanism of vortex
mined by another characteristic of the Fermi surface, viz., thenotion in ap-wave system remains qualitatively the same
energy derivative of the density of states, and may be differand is governed by the localized states in the vortex core. We
ent from either the sign in the normal state or the sign in thehus believe that the general physical picture and results of
low-temperature regime. This may result in a double sigrthe present paper can be applied qualitatively td-@ave
reversal if the latter signs are the same. A double sign reversuperconductor since the most important effect considered
sal was observed experimentaif/Here we point out the here is due to the charge neutrality of metals.
possibility of a third sign reversal at still lower temperatures. In conclusion, we have calculated the Hall conductivity in
Indeed, the correction term increasesTer0 and can again moderately clean superconductors and found an additional
exceedoY if 1/&,<1IA?3nY¥(T,7)] which can result in transverse force on a moving vortex. We show that the
another change of sign of the Hall effect. effective-action result of Ref. 9 is strongly modified by an
In the present paper we assumed that pinning is abserglectric potential generated by moving vortices due to charge
There are generally no doubts that pinning can bring abouteutrality in superconductors. The effective-action result is
more interesting features to the Hall behavior of superconrecovered neaf . where the microscopic theory agrees both
ductors. Our results for conductivities can be used as thwith the effective action formalism and with the TDGL
input parameters when constructing a more general theoripeory in the limit of a small pair-breaking rate.
which would take into account possible effects of pinning
and fluctuations. A theory of such kind was suggested in Ref.
21. It was shown that a double sign reversal in presence of
pinning can appear already within a simple Bardeen- | am grateful to G. Blatter, M. Feigel'man, V. Geshken-
Stephen-type model of vortex dynamics. However, we embein, A. Larkin, A. van Otterlo, and G. Volovik for many
phasize here that there may exist another reason for multipleseful discussions. This work was supported by the Russian
sign reversals based on entirely intrinsic mechanisms of vorFoundation for Fundamental Research through Grant No. 96-

© Nec( Tgr) 2( Am) 5 Here we consider only asrwave superconductor. An in-
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