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A superconductor in contact with a normal metal not only induces superconducting correlations, known as
the proximity effect, but also modifies the density of states at some distance from the interface. These modi-
fications can be resolved experimentally in microstructured systems. We therefore study the local density of
statesN(E,x) of a superconductor–normal-metal heterostructure. We find a suppression ofN(E,x) at small
energies, which persists to large distances. If the normal metal forms a thin layer of thicknessLn , a minigap
in the density of states appears which is of the order of the Thouless energy;\D/Ln

2 . A magnetic field
suppresses the features. We find good agreement with recent experiments of Gue´ron et al.
@S0163-1829~96!01338-0#

I. INTRODUCTION

A normal metal in contact with a superconductor acquires
partial superconducting properties. Superconducting correla-
tions, described by a finite value of the pair amplitudes
^c↓(x)c↑(x)&, penetrate some distance into the normal
metal. Thisproximity effecthas been studied since the advent
of BCS theory~see Ref. 1 and references therein!. Recently,
progress in low-temperature and microfabrication technology
has rekindled interest in these properties.2–6 Interference ef-
fects in dirty normal metals increase the Andreev
conductance.7,8 The effect of the superconductor on the level
statistics of a small normal grain has been investigated.9

Whereas the order parameter penetrates into the normal
metal, the pair potentialD(x) vanishes in the ideal metal
without an attractive interaction. SinceD yields the gap in
the single-particle spectrum of a bulk superconductor, the
question arises as to how the spectrum of the normal metal is
modified by the proximity to the superconductor. Recently,
this question has been investigated experimentally by
Guéron et al.6 In their experiment, the local density of states
of a dirty normal metal in contact with a superconductor was
measured at different positions and as a function of an ap-
plied magnetic field.

In this paper, we evaluate the local density of states
N(E,x) of a superconductor–normal-metal (S-N) hetero-
structure with impurity scattering in a variety of situations.
We generalize earlier theoretical work10–13 by applying the
quasiclassical Green’s function formalism and by including
the effect of a magnetic field. We compare with the experi-
ment of Gue´ron et al.6 and find good qualitative agreement
with the experimental data both in the cases with and without
a magnetic field.

II. MODEL

In the following we will consider geometries as shown in
Fig. 1. The superconductor is characterized by a finite pair-

ing interactionl and transition temperatureTc.0. In the
normal metal we takel5Tc50. Here we restrict ourselves
to the dirty ~diffusive! limit, j@ l el , wherej5(D/2D)1/2 is
the superconducting coherence length atT50 and l el is the
elastic mean free path. The latter is related to the diffusion
constant viaD5 1

3vFl el .
The density of states~DOS! of this inhomogeneous sys-

tem can be derived systematically within the quasiclassical
real-time Green’s functions formalism.14 In the dirty limit
the equation of motion for the retarded Green’s functions
GE andFE reads

15

D

2
@GE~¹W 22ieAW !2FE2FE¹W 2GE#

5~2 iE1G in!FE2DGE12GsfGEFE . ~1!

The diagonal and off-diagonal parts of the matrix Green’s
function,GE andFE , obey the normalization condition

GE
21FE

251 , ~2!

FIG. 1. Geometries considered in this article.~a! A strictly one-
dimensional geometry.~b! A more realistic geometry similar to
experimental setup.
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which suggests to parametrize them by a functionu(E,x) via
FE5sin(u) and GE5cos(u). Inelastic scattering processes
are accounted for by the rateG in51/2t in , while scattering
processes from paramagnetic impurities are described by the
spin-flip rateGsf51/2tsf . At low temperatures the former is
very small (G in;1023D), and will be neglected in the fol-
lowing.

For the geometry shown in Fig. 1 the order parameter can
be taken to be real. On the other hand, in the vicinity of a
N-S boundary the absolute value of the order parameter is
space dependent, and has to be determined self-consistently.
The self-consistency condition is conveniently expressed in
the imaginary-time formulation, where

D~x!lnS T

Tc~x! D52pT (
vm.0

Fivm
~x!2

D~x!

vm
. ~3!

Here, vm5pT(2m11) are Matsubara frequencies. The
summation is cut off at energies of the order of the Debye
energy. The coupling constant inS has been eliminated in
favor of Tc , while the coupling constant inN is taken to be
zero.

In the case where the interface betweenN andS has no
additional potential, the boundary conditions are16

FE~02!5FE~01!, ~4!

ss

GE~02!

d

dx
FE~02!5

sn

GE~01!

d

dx
FE~01!.

Here,sn(s) are the conductivities of the normal metal and the
superconductor, respectively. The complete self-consistent
problem requires a numerical solution. Starting from a step-
like model for the order parameter, self-consistency was
typically reached within 10 steps. Finally the DOS is ob-
tained fromN(E)5N0ReGE(x), whereN0 is the Fermi level
DOS in the normal state.

We will present now results for three different cases:~A!
the DOS near the boundary of a semi-infinite normal metal
and superconductor,~B! the DOS in a thin normal film in
contact with a bulk superconductor, and~C! the effect of a
magnetic field on the DOS in an experimentally realized
N-S heterostructure. In the following sections energies and
scattering rates will be measured in units of the bulk energy
gap D and distances in units of the coherence length
j5(D/2D)1/2.

III. RESULTS AND DISCUSSION

A. DOS in an infinite system

We assume that the normal metal and the superconductor
are much thicker than the coherence lengthLs ,Ln@j and
investigate how the DOS changes continuously from the
BCS formNBCS(E)/N05uEu/(E22D2)1/2 deep inside the su-
perconductor to the constant valueNN(E)/N051 in the nor-
mal metal.

In a first approximation, neglecting self-consistency and
paramagnetic impurities, we can solve Eq.~1! analytically,
with the result

u~E,x!5H 4arctan@ tan~u0/4!exp~2A2v/Dnx!#, x.0,

us14 arctan$tan@~u02us!/4#exp~A2Av21D2/Dsx!% x,0 .
~5!

Here

v52 iE1G in ,

us5arctanS D

2 iE1G in
D ,

sin
u02us
2

5g
~2 iE1G in!

1/2

@~2 iE1G in!
21D2#1/4

sin
u0
2
.

Several material parameters combine into the parameter

g5~snjs /ssjn!, ~6!

measuring the mismatch in the conductivities and the coher-
ence lengths of the two materials. Furthermore,js(n) is de-
fined by (Ds(n)/2D)1/2, whereDs(n) is the diffusion constant
of the superconductor~normal metal!.

The resulting DOSN(E) in the normal metal at a distance
x51.5jn from the interface is shown in Fig. 2 for different
values of the parameterg. It shows a subgap structure with a
peak below the superconducting gap energyE,D and a
strong suppression at zero energy. The modification of the
DOS is most pronounced at small values ofg and at small

distances. The smaller the energy, the larger is the distance
where the modifications are still visible. In particular at
E50 the DOS vanishes for all values ofx. Pair-breaking
effects lead to a finite zero-energy DOS, as will be shown
later.

Next we solve the problem self-consistently and present
some numerical results for the caseg51. We first concen-
trate on the superconducting side of the boundary. As shown
in Fig. 3 the peak in the DOS is strongly suppressed, chang-
ing from a singularity to a cusp, but it remains at the same
position D as one approaches the boundary. On the other
hand, the density of states increases for energies belowD.
The states with energies well belowD decay over a charac-
teristic length scaleADs /(2AD22E2); see Eq.~5!.

The DOS on the normal side at different distances from
theN-S boundary is shown in Fig. 4. The pronounced sub-
gap structure found in the approximate solution is still
present in the self-consistent treatment. The figure shows
how the peak height and position change with the distance.
In the absence of pair-breaking effects the DOS vanishes at
the Fermi level for all distances~dotted curves!. Inclusion of
a pair-breaking mechanism~solid curves! regularizes the
DOS at the Fermi level, and also the peak height is sup-
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pressed. The curves are in qualitative agreement with the
experimental data shown in Ref. 6. The self-consistent cal-
culation presented here leads to a slightly better fit than the
theoretical curves shown in Ref. 6 where a constant pair
potential was used in the solution of the Usadel equation. In
particular, the low-energy behavior of the experimental
curves is reproduced correctly.

At finite temperatures~but T!Tc) we expect no qualita-
tive changes in the behavior described above except that the
structures in the DOS will be smeared out by inelastic scat-
tering processes. Hence for an experimental verification tem-
peratures as low as possible would be most favorable.

B. DOS in thin N layers

Next we consider a thin normal layer in contact with a
bulk superconductor,Ls@Ln.j. The boundary condition at
x5Ln is chosen to bedu(E,x)/dx50; i.e., the normal metal
is bounded by an insulator. In this case the DOS on theN
side develops a minigap at the Fermi energy, which is
smaller than the superconducting gap. If the thickness of the
normal layer is increased, the size of this minigap decreases.
Results obtained from the self-consistent treatment are
shown in Fig. 5. Details of the shape of the DOS depend on
the location in theN layer.17 However, the magnitude of the
minigap is space independent, as shown in the inset of Fig. 5.
The magnitude of the gap is expected to be related to the
Thouless energyD/Ln

2 which is the only relevant quantity
which has the correct dimension. Of course the relation has
to be modified in the limitLn→0. Indeed as shown in Fig. 5

FIG. 2. DOS in the normal metal atx51.5jn .

FIG. 3. Density of states on the superconducting side of the
N-S boundary. The inset shows the self-consistent pair amplitude.

FIG. 4. Density of states on the normal side of aN-S boundary
for two spin-flip scattering rates:Gsf50 ~dotted lines! and
Gsf50.015D ~solid lines!.
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a relation of the formEg;(const3j1Ln)
22 fits quite well.

The sum of the lengths may be interpreted as an effective
thickness of theN layer since the quasiparticle states pen-
etrate into the superconductor to distances of the order of
j. The effect of spin-flip scattering in the normal metal on
the minigap structure is also shown in the inset of Fig. 5. The
minigap is suppressed asGsf is increased until a gapless situ-
ation is reached atGsf'0.4D.

We would like to mention that a similar feature had been
found before by McMillan10 within a tunneling model ignor-
ing the spatial dependence of the pair amplitude. We have
considered here the opposite limit, assuming perfect trans-
parency of the interface but accounting for the spatial depen-
dence of the Green’s functions. ForGsf50 our results for the
structure of the DOS agree further with previous findings of
Golubov and Kupriyanov11 and Golubovet al.12 Recently, a
minigap in a two-dimensional electron gas in contact to a
superconductor has also been studied.18

C. Density of states in a magnetic field

An applied magnetic field suppresses the superconductiv-
ity in both superconductor and normal metal. To study the
effect of the magnetic field on our system we consider the
geometry shown in Fig. 1~b!. Because in the experimental
setup the thickness of the films is much smaller than the
London penetration depth, we can neglect the magnetic field
produced by screening currents. Therefore it is reasonable to
assume a constant magnetic field, which is present in both
S andN. The vector potential is then chosen to be

AW 5A~y!eW x , A~y!5Hy. ~7!

Equation~1! can be considerably simplified in the case that
the size of the system in they direction is smaller or of the
order ofj. The system is limited to2W/2,y,W/2, where
W.j. Therefore the Green’s functions do not depend ony
and the equation can be averaged over the widthW. The
equation reduces to the effective one-dimensional equation

D

2
~GE]x

2FE2FE]x
2GE!5~2 iE1G in!FE2DGE

12GeffGEFE . ~8!

Here, Geff5Gsf1De2H2W2/12 acts as an effective pair-
breaking rate, which depends on the transverse dimension
and the applied magnetic field.

If we approximate the Green’s functions in the supercon-
ductor by their bulk values, the DOS in the normal metal at
zero energy can be calculated analytically:

N~0!

N0
5H tanh~2AGeff /Dx!, 2Geff,D

~12a2!/~11a2!, 2Geff.D,
~9!

where

a5
Dexp~22AGeff /Dx!

2Geff1A4Geff
2 2D2

. ~10!

In Fig. 6 the dependence of the DOS on the magnetic field at
x51.5j is shown for two different spin-flip scattering rates

FIG. 5. MinigapEg as a function of the normal-layer thickness.
Inset: local DOS of aN layer of thicknessLn51.1j in proximity
with an bulk superconductor.

FIG. 6. Zero-energy DOS in the normal metal atx51.5j as a
function of the magnetic field. The spin-flip scattering rate is
Gsf50 ~dashed curve! andGsf50.06D ~solid curve!.
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~equal rates for normal metal and superconductor!. In the
absence of paramagnetic impurities the DOS increases lin-
early with the field, whereas it starts quadratically if para-
magnetic impurities are present. At the field defined by the
relationGeff50.5D the field dependence of the DOS shows a
kink. This kink arises because above this value ofGeff the
zero-energy DOS in the superconductor is nonzero~gapless
behavior!, which leads to an even stronger suppression of the
proximity effect.

Figure 7 shows a quantitative comparison of our results
with experimental data taken by the Saclay group.19 In this
experiment,6 the differential conductance of three tunnel
junctions attached to the normal metal part of the system was
used to probe the DOS at different distances from the super-
conductor. Accordingly, we have calculated the self-
consistent DOS in the presence of a magnetic field for all
energies and determined the differential conductance.20 We
usedx51.8j, consistent with an estimate from a scanning
electron microscope~SEM! photograph, and used a spin-flip

scattering rate ofGsf50.015D in the normal metal as a fit
parameter. This is necessary in the framework of our ap-
proach to explain the finite zero-bias conductance at zero
field. We furthermore assumed ideal boundary conditions at
theN-S interface, i.e.,g51, the motivation being that great
care was used in the experiment to produce a good metallic
junction, and significant Fermi velocity mismatches are not
to be expected.

At low and high voltages the agreement with the experi-
mental data is good for all three field values. On the other
hand, the maximum in the DOS is not reproduced well by
our calculation. Including the effect of a nonideal boundary,
i.e.,g,1, leads to an increase of the peak in the DOS but to
a less satisfactory fit at low voltages. We cannot resolve this
discrepancy, but we would like to point out that our theory is
comparatively simple and does not include all the geometric
details of the experiment~e.g., the geometry of the overlap
junction is not really one dimensional and would be difficult
to treat realistically!. Our intention is to show that the theo-
retical treatment described here contains the physical ingre-
dients to explain the basic features of the experimental data.
The overall agreement between theory and experiment dem-
onstrated in Fig. 7 shows this to be the case.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have given a theoretical answer to the
question asked in the Introduction; viz., what is—beyond the
proximity effect—the effect of a superconductor on the spec-
trum of a normal metal coupled to it? Using the~real-time!
Usadel equations, we have calculated the local density of
states in the vicinity of aN-S boundary in both finite and
infinite geometries. It shows an interesting subgap structure:
If the normal metal is infinite, the density of states is sup-
pressed close to the Fermi energy, but there is no gap in the
spectrum. This is the behavior found in a recent experiment.6

In thin normal metals we find a minigap in the density of
states which is of the order of the Thouless energy. We have
also investigated the suppression of these effects by an ap-
plied magnetic field and find good agreement with experi-
ment.
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