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Local density of states in a dirty normal metal connected to a superconductor
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A superconductor in contact with a normal metal not only induces superconducting correlations, known as
the proximity effect, but also modifies the density of states at some distance from the interface. These modi-
fications can be resolved experimentally in microstructured systems. We therefore study the local density of
statesN(E,x) of a superconductor—normal-metal heterostructure. We find a suppressN(Epf) at small
energies, which persists to large distances. If the normal metal forms a thin layer of thitknessninigap
in the density of states appears which is of the order of the Thouless eﬁer/Lﬁ. A magnetic field
suppresses the features. We find good agreement with recent experiments “ofn Gefeal.
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[. INTRODUCTION ing interaction\ and transition temperaturé€.>0. In the
normal metal we takéd =T.=0. Here we restrict ourselves
A normal metal in contact with a superconductor acquirego the dirty (diffusive) limit, £&>1,,, whereé=(D/2A)Y? is
partial superconducting properties. Superconducting correlahe superconducting coherence lengtiTat0 andl is the
tions, described by a finite value of the pair amplitudeselastic mean free path. The latter is related to the diffusion
(4, (X)¢1(x)), penetrate some distance into the normalconstant vieD = 3velg.
metal. Thisproximity effechas been studied since the advent The density of state@DOS) of this inhomogeneous sys-
of BCS theory(see Ref. 1 and references thejelRecently, tem can be derived systematically within the quasiclassical
progress in low-temperature and microfabrication technologyeal-time Green’s functions formalisti.In the dirty limit
has rekindled interest in these properfieinterference ef- the equation of motion for the retarded Green’s functions
fects in dirty normal metals increase the AndreevGg andFg reads®
conductancé® The effect of the superconductor on the level
statistics of a small normal grain has been investigated.

Whereas the order parameter penetrates into the normal §[GE(€—2ieA)2FE—FE§ZGE]
metal, the pair potentiad(x) vanishes in the ideal metal
without an attractive interaction. Sinde yields the gap in =(—iE+T;)Fe—AGg+2I (GeFe. (1

the single-particle spectrum of a bulk superconductor, the

question arises as to how the spectrum of the normal metal ishe diagonal and off-diagonal parts of the matrix Green’s

modified by the proximity to the superconductor. Recently.fynction, Gz andFg, obey the normalization condition
this question has been investigated experimentally by

Gueaon et al® In their experiment, the local density of states

of a dirty normal metal in contact with a superconductor was

measured at different positions and as a function of an ap-

plied magnetic field. @
In this paper, we evaluate the local density of states

N(E,x) of a superconductor—normal-metab-N) hetero-

structure with impurity scattering in a variety of situations.

We generalize earlier theoretical wotk!® by applying the L o L | i

guasiclassical Green’s function formalism and by including .

the effect of a magnetic field. We compare with the experi- AW , TH

ment of Gueon et al® and find good qualitative agreement v

with the experimental data both in the cases with and without K N /

a magnetic field.

GZ+F2=1, 2

Il. MODEL
FIG. 1. Geometries considered in this artidla. A strictly one-

In the following we will consider geometries as shown in dimensional geometry(b) A more realistic geometry similar to
Fig. 1. The superconductor is characterized by a finite pairexperimental setup.
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which suggests to parametrize them by a functi¢g,x) via  Here,o ) are the conductivities of the normal metal and the
Fe=sin(®) and Gg=cos(). Inelastic scattering processes superconductor, respectively. The complete self-consistent
are accounted for by the rafg,,=1/2r,,, while scattering problem requires a numerical solution. Starting from a step-
processes from paramagnetic impurities are described by t&e model for the order parameter, self-consistency was
spin-flip ratel’ = 1/27. At low temperatures the former is typically reached within 10 steps. Finally the DOS is ob-
very small [';,~1073A), and will be neglected in the fol- tained fromN(E)=N,ReGg(x), whereN, is the Fermi level
lowing. DOS in the normal state.

For the geometry shown in Fig. 1 the order parameter can We will present now results for three different cases!
be taken to be real. On the other hand, in the V|C|n|ty of athe DOS near the bOUndary of a semi-infinite normal metal
N-S boundary the absolute value of the order parameter i§nd superconductofB) the DOS in a thin normal film in
space dependent, and has to be determined self-consistentigntact with a bulk superconductor, af@) the effect of a
The self-consistency condition is conveniently expressed ifhagnetic field on the DOS in an experimentally realized

the imaginary-time formulation, where N-S heterostructure. In the following sections energies and
scattering rates will be measured in units of the bulk energy
AG| T o1 E . A(X) 3 gap A and distances in units of the coherence length
(x)In T~ ™ o iwﬂ(x) w0, ©) gz(D/zA)l/Z_
Here, w,=7nT(2u+1) are Matsubara frequencies. The . RESULTS AND DISCUSSION

summation is cut off at energies of the order of the Debye

energy. The coupling constant B has been eliminated in A. DOS in an infinite system

favor of T, while the coupling constant iN is taken to be We assume that the normal metal and the superconductor
zero. are much thicker than the coherence lengthL,>¢ and
In the case where the interface betwéérand S has no investigate how the DOS changes continuously from the
additional potential, the boundary conditions*4re BCS formNgco(E)/No=|E|/(E?— A?)Y2 deep inside the su-
perconductor to the constant valdig(E)/Ng=1 in the nor-
Fe(0-)=Fg(04), (4 mal metal.
In a first approximation, neglecting self-consistency and
Os EF (0 )= On iF 0.). pgramagnetic impurities, we can solve Ef) analytically,
Gg(0_) dx E Gg(0,) dx E'VF with the result

4arctafitan 6p/4)exp — V2w/Dx)], x>0,
05+ 4 arctaritar{ (6, — 05)/41exp(V2 w2+ AZ/DSX)} x<0.

B(E,X)=[ ®

Here distances. The smaller the energy, the larger is the distance
where the modifications are still visible. In particular at

w=—IiE+T,, E=0 the DOS vanishes for all values &f Pair-breaking
A effects lead to a finite zero-energy DOS, as will be shown
0= arctarE E— later. _
—IE+T, Next we solve the problem self-consistently and present
_ " some numerical results fqr thg cage- 1. We first concen-
sir‘ao_ Os _ , (—IE+T) sinﬁ trate on the superconducting side of the boundary. As shown
b2 [(—iE+T;,)%+A%Y* > 2 in Fig. 3 the peak in the DOS is strongly suppressed, chang-

ing from a singularity to a cusp, but it remains at the same
position A as one approaches the boundary. On the other
y=(oné o), 6) hand, the de_nsity of s_,tates increases for energies balow
The states with energies well belatvdecay over a charac-
measuring the mismatch in the conductivities and the cohetteristic length scale/D/(2/A2—E?); see Eq.(5).

Several material parameters combine into the parameter

ence lengths of the two materials. Furthermajg,, is de- The DOS on the normal side at different distances from
fined by Dg(n)/24)"2 whereDg, is the diffusion constant the N-S boundary is shown in Fig. 4. The pronounced sub-
of the superconductdnormal metal gap structure found in the approximate solution is still

The resulting DON(E) in the normal metal at a distance present in the self-consistent treatment. The figure shows
x=1.5¢, from the interface is shown in Fig. 2 for different how the peak height and position change with the distance.
values of the parameter. It shows a subgap structure with a In the absence of pair-breaking effects the DOS vanishes at
peak below the superconducting gap enekyy A and a the Fermi level for all distancgslotted curvel Inclusion of
strong suppression at zero energy. The modification of tha pair-breaking mechanisrtsolid curve$ regularizes the
DOS is most pronounced at small valuesyofind at small DOS at the Fermi level, and also the peak height is sup-
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FIG. 4. Density of states on the normal side dfl&5 boundary
for two spin-flip scattering ratesI'=0 (dotted line$ and
I'=0.01%A (solid lines.

pressed. The curves are in qualitative agreement with the
experimental data shown in Ref. 6. The self-consistent cal-
culation presented here leads to a slightly better fit than the
theoretical curves shown in Ref. 6 where a constant pair
potential was used in the solution of the Usadel equation. In
particular, the low-energy behavior of the experimental
curves is reproduced correctly.

At finite temperaturegbut T<T.) we expect no qualita-
tive changes in the behavior described above except that the
structures in the DOS will be smeared out by inelastic scat-
tering processes. Hence for an experimental verification tem-
peratures as low as possible would be most favorable.

B. DOS in thin N layers

Next we consider a thin normal layer in contact with a
bulk superconductol, s>L,=¢. The boundary condition at
x=L, is chosen to be #(E,x)/dx=0; i.e., the normal metal
is bounded by an insulator. In this case the DOS onNhe
side develops a minigap at the Fermi energy, which is
smaller than the superconducting gap. If the thickness of the
normal layer is increased, the size of this minigap decreases.
Results obtained from the self-consistent treatment are
shown in Fig. 5. Details of the shape of the DOS depend on
the location in theN layer’ However, the magnitude of the
minigap is space independent, as shown in the inset of Fig. 5.
The magnitude of the gap is expected to be related to the
Thouless enerng/Lﬁ which is the only relevant quantity

FIG. 3. Density of states on the superconducting side of thevhich has the correct dimension. Of course the relation has
N-S boundary. The inset shows the self-consistent pair amplitudeto be modified in the limit ,— 0. Indeed as shown in Fig. 5
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FIG. 5. MinigapE, as a function of the normal-layer thickness. ~ FIG. 6. Zero-energy DOS in the normal metalxat 1.5 as a
Inset: local DOS of a\ layer of thicknesd_,,=1.1¢ in proximity function of the magnetic field. The spin-flip scattering rate is
with an bulk superconductor. I'=0 (dashed curveandI' = 0.0&A (solid curve.

a relation of the formEy~ (consi £+ L,,) ~ 2 fits quite well. A=A(y)e,, A(y)=Hy. )

The sum of the lengths may he mterpretegi as an eﬁeCt'V%quation(l) can be considerably simplified in the case that
thickness of theN layer since the quasiparticle states PeN-ipa size of the system in thedirection is smaller or of the
etrate into the superconductor to distances of the order o rder of £. The system is limited to- W/2<y<W/2, where

&. The effect of spin-flip scattering in the normal metal on,,, , ;
the minigap structure is also shown in the inset of Fig. 5. TheW ¢ Therefore the Green’s functions do not dependyon

miniaan is suopressed & is increased until a gapless situ- and the equation can be averaged over the witthThe
inigap 1S supp 3 IS | sed untl a gapless situ equation reduces to the effective one-dimensional equation
ation is reached df 4~ 0.4A.

We would like to mention that a similar feature had been D
found before by McMilla® within a tunneling model ignor- E(GEaiFE— FEﬁiGE)z(—iEJrFin)FE—AGE
ing the spatial dependence of the pair amplitude. We have
considered here the opposite limit, assuming perfect trans- +2I" 4GeFe. (8

parency of the interface but accounting for the spatial depen-

dence of the Green’s functions. FBg=0 our results for the Here, Ter=T+ De’H?W?/12 acts as an effective pair-
structure of the DOS agree further with previous findings oforeaking rate, which depends on the transverse dimension
Golubov and Kupriyano¥ and Golubowet al*? Recently, a  and the applied magnetic field.

minigap in a two-dimensional electron gas in contact to a |f we approximate the Green'’s functions in the supercon-

Superconductor has also been Stud-%d ductor by their bulk Values, the DOS .in the normal metal at
zero energy can be calculated analytically:
C. Density of states in a magnetic field N(O) [tanH2yTe/Dx), 2T5<A
An applied magnetic field suppresses the superconductiv- No - (1—a®)/(1+a?), 2T4>A, ©

ity in both superconductor and normal metal. To study the
effect of the magnetic field on our system we consider thavhere
geometry shown in Fig. (b). Because in the experimental

setup the thickness of the films is much smaller than the _ Aexp(—2\I'¢/Dx) 16
London penetration depth, we can neglect the magnetic field a= 2 _ A2 " (10
2T i+ VAT 24— A

produced by screening currents. Therefore it is reasonable to
assume a constant magnetic field, which is present in botm Fig. 6 the dependence of the DOS on the magnetic field at
S andN. The vector potential is then chosen to be x=1.5¢ is shown for two different spin-flip scattering rates
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scattering rate of'=0.01%\ in the normal metal as a fit
parameter. This is necessary in the framework of our ap-
proach to explain the finite zero-bias conductance at zero
field. We furthermore assumed ideal boundary conditions at
the N-S interface, i.e.;,y=1, the motivation being that great
care was used in the experiment to produce a good metallic
junction, and significant Fermi velocity mismatches are not
to be expected.

At low and high voltages the agreement with the experi-
mental data is good for all three field values. On the other
hand, the maximum in the DOS is not reproduced well by
our calculation. Including the effect of a nonideal boundary,
i i.e., y<1, leads to an increase of the peak in the DOS but to
h=0.15 (H.=400G) a less satisfactory fit at low voltages. We cannot resolve this

- discrepancy, but we would like to point out that our theory is
comparatively simple and does not include all the geometric
4 T details of the experimer(e.g., the geometry of the overlap
/ h=0 (H,,=0) junction is not really one dimensional and would be difficult

5 to treat realistically. Our intention is to show that the theo-
retical treatment described here contains the physical ingre-
dients to explain the basic features of the experimental data.
The overall agreement between theory and experiment dem-
onstrated in Fig. 7 shows this to be the case.
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In conclusion, we have given a theoretical answer to the
FIG. 7. Quantitative comparison of experiméRef. 19 (dotted ~ question asked in the Introduction; viz., what is—beyond the
lines) and theory(solid lines. The experimental magnetic fields are Proximity effect—the effect of a superconductor on the spec-
H=0, 400, and 800 Gh=HeWD/12A)¥2 The theoretical curves trum of a normal metal coupled to it? Using ttreal-time
have been normalized Bg,=dI/dVe,,{eV/A=1.5). Usadel equations, we have calculated the local density of
states in the vicinity of a\-S boundary in both finite and

infinite geometries. It shows an interesting subgap structure:
(equal rates for normal metal and superconductor the If the normal metal is infinite, the density of states is sup-

absence of paramagnetic impurities the DOS increases lin- . ; ;
early with the field, whereas it starts quadratically if para_pressed close to the Fermi energy, but there is no gap in the

magnetic impurities are present. At the field defined by th spectrum. This is the behavior found in a recent experithient.

. ) Sn thin normal metals we find a minigap in the density of
relationl’ = 0.2A the field dependence of the DOS shows Astates which is of the order of the Thouless energy. We have

kink. This kin[I)<OaSri§es{hbecause ab(cj)vet thig valuel'gy lthe also investigated the suppression of these effects by an ap-
Zero-energy in the superconductor is nonZgapless lied magnetic field and find good agreement with experi-

behavioy, which leads to an even stronger suppression of th ent
proximity effect. '

Figure 7 shows a quantitative comparison of our results
with experimental data taken by the Saclay grbum this
experimenf the differential conductance of three tunnel  We are grateful to D. Esteve and H. Pothier for raising the
junctions attached to the normal metal part of the system waguestions leading to this work and for many inspiring discus-
used to probe the DOS at different distances from the supesions. We would also like to acknowledge helpful discus-
conductor. Accordingly, we have calculated the self-sions with N. O. Birge, M. Devoret, S. Guan, and A. D.
consistent DOS in the presence of a magnetic field for alFaikin. The support of the Deutsche Forschungsgemein-
energies and determined the differential conductdfate  schaft, through SFB 195, as well as the A. v. Humboldt
usedx= 1.8, consistent with an estimate from a scanningaward of the Academy of FinlantG.S) is gratefully ac-
electron microscopéSEM) photograph, and used a spin-flip knowledged.
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