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The kinetic roughening of a driven interface between spin-up and spin-down domains in a model with a
nonconserved scalar order parameter and quenched disorder is studied numerically within a discrete time
dynamics at zero temperature. Starting from a flat interface in a two-dimensional system the time evolution of
the height correlation function is analyzed for different driving fields. It is found that the normal dynamic
scaling ansatz is not sufficient to describe the observed behavior. The data are analyzed within a novel scaling
ansatz. Arguments are given that the present model belongs to the Edwards-Wilkinson universality class with
exponents, depending on the driving field, which is due to correlated effective noise.@S0163-1829~96!04237-3#

I. INTRODUCTION

The morphology and time evolution of interfaces in ran-
dom media and of growing surfaces are problems of great
current interest. For growing surfaces many problems can be
mapped on equations like the Edwards-Wilkinson~EW!
equation,1 the Kardar-Parisi-Zhang~KPZ! equation,2 or simi-
lar equations.3–5 Recently, interest in the morphology and
dynamics of interfaces in random media has increased con-
siderably. Much work is devoted to problems like the immis-
cible displacement of viscous fluids in porous media6,7 or
pinning and roughening phenomena in magnetic systems8,9

~see also Refs. 4 and 5!. This second group of problems has,
different from the first group, in general quenched~time-
independent! disorder which results in a different roughness
exponenta ~defined below! in the range between 0.6 and
1.25 in 111 dimensions. Thus it differs clearly from the
KPZ value of 1/2. Different starting points for a solution like
power law distributed noise amplitudes10 are proposed but
the situation is up to now still unclear.

The aim of this paper is to investigate the morphology and
dynamics of the roughening process of a domain wall driven
through a medium with quenched disorder. A main result of
our work is that the corresponding exponents in the depin-
ning phase depend on the strength of the driving field. An
interpretation of this behavior in terms of an effective time-
correlated noise is given.

II. MODEL

We study a model with nonconserved scalar order param-
eter ~model A in the classification of Halperin and
Hohenberg11! with Langevin dynamics at zero temperature.
Thermal noise is neglected since it is believed to be
irrelevant.13,14 The Ginzburg-Landau-type Hamiltonian for
this system with quenched disorder is given by
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wheref denotes a scalar order parameter,H a homogeneous
driving magnetic field, andB(r ) a quenched random field
and it is assumed that it has zero mean and that it is uncor-
related.

The dynamics of the model at zero temperature is defined
by the relaxation equation
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with a relaxation time proportional tog. This type of equa-
tion has been used in the past by various authors as a staring
point for a derivation of local equation of motions for the
position of an interface in the medium, i.e., for that position
r (t) where f(r ,t) changes sign.12 Although the gradient
term of the EW equation1 or the celebrated nonlinear term in
the KPZ equation2 is readily obtained within this approach,
the resulting equations remain approximative. It is therefore
of interest to study the full problem defined in Eq.~2!. We
consider quenched disorder but restrict ourselves to zero
temperature. This makes Eq.~2! particular suitable for a de-
scription of field-driven interface movement in magnets at
low temperatures.

In Ref. 15 we studied the field-driven interface dynamics
of this model numerically using a discrete version of the
Hamiltonian

H5(
l

u0
4

~Sl
422Sl

2!2J(
l,l8

~SlSl82zd l,l8Sl
2!

2(
l

~H1Bl!Sl , ~3!

where l5(x,y), l85(x8,y8) are nearest-neighbor pairs on a
square lattice with lattice constantd, z is the number of
nearest neighbors, andB(r )5Bl . The fieldsf are scaled so
thata5b5u0 andJ5J̃/d2 andSl denotes the scaled fields at
discrete lattice pointsl. TheSl may be termed as soft Ising
spins at lattice pointsl with 2`,Sl,`. Due to this dis-
cretization, the relaxation equation is replaced by

g
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In the following we assumeJ.0, corresponding to ferro-
magnetic spin-spin coupling, andu0.0, which is required in
order thatH, Eq. ~3!, be bounded foruSlu→`. The ground
state is obtained as a time-independent solution of Eq.~4!.
Thus in the ground state the spin configuration is such that
H is stationary with respect to variations of all spinsSl . In
the absence of a random field and external field it can be seen
from Eq.~3! that the ground state is double degenerated with
all spins having the valueSl51 or all spins having the value
Sl521 independent of the strength of the parametersu0 and
J.

Integration of Eq.~4! with the Euler scheme results in a
set of difference equations

Sl~t1Dt!5Sl~t!1DtF2u@Sl
2~t!21#Sl~t!1(

l8
Sl8~t!

2zSl~t!1h1blG , ~5!

where magnetic fieldsh andbl are measured in units ofJ,
time t is measured in units ofg/J, andu5u0 /J. Equation
~5! is iterated starting from a vertical flat initial interface. At
time t50 all spins on the left-hand side of the interface
located atx50 are set toSl51 and all spins at the right-
hand side are set toSl521. They direction where periodic
boundary conditions are assumed is parallel to the interface.
The linear system sizeL in this direction is chosen to be
L5400 for all simulations if not specified otherwise.

Note that with open boundary conditions the interface
width is larger than with periodic boundary conditions. How-
ever, the boundary effects introduced in this way are signifi-
cant and can be neglected only in systems with a linear size
large compared to the extension of the boundary layers. Such
large systems cannot be simulated in a reasonable time so
that periodic boundary conditions are a better choice for an
investigation of the scaling behavior of the bulk. The exten-
sion of the system perpendicular to the interface was chosen
in such a way that it does not play any role for the interface
morphology. For more details see Ref. 15.

After a short time intervalDu this sharp interface softens.
Without random fields and driving field this time interval is
of the order ofDu'10Dt and the width of the interface
approaches its stationary value which is of the order of
Dx'3 for our choice of parameters~for a more detailed
discussion of Dx see Sec. II!. In this special case
H5B(r )50 and the assumed initial conditions, Eq.~2!, can
be solved exactly with the result that the scaled fields are
given byS(r )5tanh(x/Dx) andDx5A2J/u0 is the intrinsic
width of the interface in units of the lattice constant. For
small driving fields this width is practically independent of
the driving field. The interface remains flat and moves for
H.0 with constant velocity towardsx51`, leaving the
system in its ground state in which all spins are lined up with
the external field. Introducing random fields the interface de-
velops a rough structure. We are interested in this roughness
on length scales large compared to the intrinsic surface width
Dx since only on these length scales is scaling of the corre-
lation function expected to work.

The random fieldsbl are drawn with equal probability
from an interval between2p and p. If not specified, the

parameters are chosen asp50.2 andu50.9. The time inter-
val Dt for the numerical integration was set toDt50.1
since previous investigations have shown that smaller time
intervals do not change the results.

In our earlier work15 we found that there exists a critical
driving field hC so that an interface gets trapped for driving
fields h,hC and moves with a constant averaged velocity
for fields larger thanhC where the average is over small time
intervals.hC depends on the strength of the random fields. Its
value ishC'0.015 for the parameters given above. Note that
hC is smaller than the maximum of the random fields by
more than a factor of 10.

If the driving field is set to zero, the magnetic moments
close to the initially flat interface relax in such a way that the
interface develops into a rough structure before all local mo-
ments are trapped in a metastable configuration. The dynam-
ics of this roughening process and especially its scaling be-
havior have been analyzed in detail for an interface in a
two-dimensional medium previously.16 The roughening for
h.0 will be analyzed in the present paper.

III. DYNAMIC SCALING ANALYSIS

For not too large values ofp and for all applied driving
fields h we found that the interface can be described by a
single-valued functionx5 h(y,t); i.e., there are practically
no overhangs or droplets. Here the position of the interface is
defined as that point at whichS(x,y) as a function ofx for
fixed y changes sign.

As characteristics of the interface18 we subsequently ana-
lyze the height correlation function which is defined as

C~r ,t!5^@ h~y1r ,t!2 h~y,t!#2&. ~6!

The angular brackets denote an average over all lattice sites
at positionsy as well as over different realizations of the
quenched disorder. Another quantity of interest is the width
of the interface,

w~L,t!5^@ h~y,t!2^ h~y,t!&#2&1/2, ~7!

which is related toC(r ,t) according to

w~L,t!25
1

2L(r51

L

C~r ,t!. ~8!

Equation~8! is exact for periodic boundary conditions. Be-
cause of this relation, we will concentrate in the following on
the scaling behavior of the height correlation function.

In kinetic roughening phenomena dynamical scaling
assumptions18 are proposed. A central role in these scaling
assumptions plays a time-dependent correlation length
j(t). For r,j(t) the correlations do not grow further. Their
saturation value is assumed to scale like

C~r!j,t!}r 2a ~9!

with the roughness exponenta. For r larger than the time-
dependent correlation lengthj(t) the interface fluctuations
are uncorrelated in space but they are still growing with
time; their time evolution can be described by

C~r@j,t!}t2b. ~10!
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The correlation length grows with time according to
j(t)5t1/z, where z is called the dynamic exponent.j(t)
may reach the system size, in which case a crossover to a
finite-size behavior occurs. The scaling relations~9! and~10!
are considered as the limiting behavior of a general dynamic
scaling relation18

C~r ,t!5@j~t!#2agS r

j~t! D . ~11!

In order that Eqs.~9! and ~10! are recovered the scaling
function g(x) must have the propertiesg(x)'const for
x@1 andg(x)}x2a for x!1 andz5a/b.

Having introduced the usually assumed scaling assump-
tions we turn now to a discussion of our results. Figure 1
shows the spatial correlations of the height correlation func-
tion of a system in the depinning phase as a function of the
distancer for different times on logarithmic scales. The data
are obtained as averages over 200 runs with different random
field configurations. Anr -independent saturation is observed
for large r in agreement with Eq.~10! and a linear depen-
dence on ln(r) for small r in agreement with Eq.~9!. How-
ever, in this latter case for driving fields close to the pinning
transition, ln@C(r,t)# is still t dependent; i.e., contrary to the
scaling prediction, Eq.~9!, the correlations are still growing
also for very small times.

Such a behavior has also been observed in a recent study
by Schroederet al.19 of the molecular beam epitaxy~MBE!
model of Wolf and Villain.20 In this study,C(1,t) can be
identified as the time evolution of the average step height. It
grows as a power lawC(1,t)}t2k over a remarkable large
time interval of about five decades and then seems to satu-
rate, independent of system size. For small system sizes the
saturation depends on it. One possibility to take this unusual
behavior into account is a modification of the scaling relation
~11! in the following way:

C~r ,t!5j~t!2a/lgS r

j~t! D , ~12!

with the limiting forms

C„r@j~t!,t…}j~t!2a/l ~13!

and

C„r!j~t!,t…}r 2aj~t!2a~1/l21!. ~14!

If the correlation lengthj(t) is small compared to the sys-
tem size, it is expected to behave like a power law. If we
keep the definition of the exponentb given in Eq.~10!, we
have to set

j~t!}tlb/a ~15!

according to Eq.~13!. The exponent appearing in Eq.~15!
can be considered as dynamical exponent,z5a/bl, but
other interpretations are possible.19 From Eq. ~13! one can
see that the exponentk introduced by Schroederet al.19 is
related tol according tol512k/b and

C„r!j~t!,t…}t2kr 2a. ~16!

Equation~16! is capable of explaining the observed increase
of C(r ,t) with time in the small-r region.

For r<3 the data in Fig. 1 show a small upward turn; i.e.,
the r dependence ofC(r ,t) is not powerlike for very small
r . This has to do with the intrinsic widthDx of the interface
due to the softening of the spins discussed in Sec. II. Chang-
ing the system parameters this width can be varied. It can be
seen from Fig. 2 that the region where the small-r scaling
breaks down is directly given by this intrinsic width.

To calculate the roughness exponenta we use the asymp-
totic behavior given in Eq.~14! for the largestt available.
For larget, j(t) saturates and the correlation function is
proportional to r 2a. It is shown in Fig. 3 in logarithmic
scales for three different values of the driving field. The ex-
ponenta is obtained from a fit to a power law within the
linear region starting atr53. Since the linear region is rather
small, we also fitted the data over the whole interval with a
scaling function of the form

C~r ,`!5A@ tanh~r /B!#2a, ~17!

following earlier work.16,17Within the error bars both meth-
ods give the same value for the roughness exponent. The
solid lines show the final fit with Eq.~17!. Good agreement
with the data is obtained over the wholer interval.

FIG. 1. The height correlation functionC(r ,t) for h50.02 at
different times as indicated.

FIG. 2. The height correlation function for different values of
the coupling constantJ with u50.9/J, p50.2/J, andh50.05/J in
the long-time limit.
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To determine the exponentsb and k ~or l) we use the
asymptotic forms~10! for larger (r5L/2 is the largest value
available due to periodic boundary conditions! and ~16! for
fixed r53. Figure 4 showsC(L/2,t) on logarithmic scales
for three different values of the driving field. The solid lines
are fits to the data for the wholet interval using as an
ansatz16,17

C~L/2,t!5@Dtanh~t/t0!#
2b. ~18!

The inset in Fig. 4 shows the correlation functionC(r ,t) for
r53 which is fitted to Eq.~16!. The corresponding expo-
nentsb andl512k/b together with the roughness expo-
nent and the dynamical exponentz are shown in Fig. 5 for
different values of the magnetic field.

Figure 6 shows the final scaling plot forh50.02 with a
satisfactory data collapse. The same is true for other values
of the magnetic field not shown here.

The results obtained so far are for systems of size
L5400. The saturation of the correlation function observed
in Fig. 1 may be due to finite-size effects. Another possibility
is the existence of an intrinsic length, above which a satura-
tion takes place independent of system length. This was ob-
served forh50, where the initially flat interface settles

down in a metastable position,16 and we have verified in the
meantime that a similar behavior holds for everyh,hC . For
moving interfaces, however, the saturation is due to finite-
size effects. To prove this we consider eightL5400 systems,
each of which has a different distribution of random fields
and which are all driven in a steady state atts5219. Due to
the periodic boundary conditionshi(1)5 hi(L11), one can
connect different systems so thathi(L11)5 hi11(1) with
i denoting the different systems. Running the larger system
for another 33217 time steps it is clearly seen from Fig. 7
that the correlation function for larger is still increasing

FIG. 3. Determination of the exponenta for different driving
fieldsh.hC .

FIG. 4. Determination of the exponentb from the small time
behavior of the height correlation function atL/25200 andl from
C(3,t) ~inset! for h50.02.

FIG. 5. The dependence of the exponentsa, b, l, andz on the
rescaled driving fieldh/p for ~a! p50.2, ~b! p50.1, and ~c!
p50.05.
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which proves that the saturation observed in Fig. 1 is due to
finite-size effects and not due to an intrinsic length scale.
Note that the data in Fig. 7 are for one magnetic field only
and that this very large system is still not driven into a steady
state. Computer time limitations make it impossible to run
these very large systems into steady states or to make these
runs for different magnetic fields or random field configura-
tions.

Having established that the saturation of the correlation
function is due to finite-size effects we now turn to a discus-
sion of the size dependence of the correlation function
C(r ,t) which also will lead to an independent estimate of
the exponentz. Finite-size effects manifest themselves in a
modifiedj(t) in Eq. ~12! in such a way thatj(t) approaches
L for larget. This is achieved by writingj(t) as

j~t!5j0FTS t

t0
D G1/z, ~19!

with T(x)5x for x!1 andT(x)51 for x@1 and j0}L.
From the small-t limit it follows that t0}L

z. Thus from the
measurement oft0 by fittingC(L/2,t) for different values of
L the exponentz can be obtained. Results are shown in Fig.

8 for h50.05. The corresponding exponentz is 1.9460.03
which is close to z52.09 obtained from the relation
z5a/bl.

Finally we note that not only does the correlation length
becomeL dependent for larget, the scaling functiong(x)
appearing in Eq.~12! also gets anL dependence. This can be
seen by studying the width of the interface. From the exact
relation ~8! it follows from Eq. ~12! for j(t)!L that

@w~L,t!#25
1

2LE1
L/j~t!

dxg~x!@j~t!#2a/l11 ~20!

For j(t)!L, g(x) can be replaced by its asymptotic value
g(x)'const andw2 thus scales as@w(L,t)#2}t2b. It has
been verified that the exponentb deduced in this way agrees
with b obtained from the correlation function. In the large
time limit, on the other hand,j(t→`)}L so that

@w~L,t!#2.L2a/lE
1/L

1

dxg~x!. ~21!

In Fig. 9 we show the scaling behavior forw(L,t→`). The
exponent is given by 0.75 and therefore agrees very well
with the valuea50.75 obtained from the correlation func-

FIG. 6. Scaling plot of the height correlation function according
to Eq. ~14! for r>3 andh50.02.

FIG. 7. The height correlation functionC(r ,t→`) for
L5400 andC(r ,t) for a system withL53200 for different times
as indicated (h50.1).

FIG. 8. Time dependence ofC(L/2,t) for different system sizes
as indicated. The inset shows the size dependence of the time con-
stantt0 (h50.05).

FIG. 9. Size dependence of the roughnessw(L,t→`) and the
average step heightC(1,t→`) (h50.03).
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tion ~for h50.03). We conclude therefore that in the large
t limit g(x) is proportional toL2a(121/l). This view is also
supported by considering the average step height in the large
t limit. It is also shown in Fig. 9. Obviously, the step height
is independent ofL. Calculating the average step height from
Eq. ~12! we obtain@j(t→`)→L#

C~r51,t→`!}L2a/lg~1/L !. ~22!

Thus, only by inducing the above-mentioned factor does this
quantity become independent ofL.

IV. DISCUSSION

There is an obvious dependence of the exponents shown
in Figs. 5~a!–5~c! on the strength of the driving field. For the
larger field valuesh the exponentl is practically one so that
the usual scaling scenario, Eqs.~9! and ~10!, is valid. For
smaller fieldsl drops by more than 20% and both the expo-
nentsa andb rise considerably whenh approaches the criti-
cal valuehC of the depinning transition. Increasing the driv-
ing field the velocity of the interface increases and the
exponentsa andb approach the values 0.5 and 0.25, respec-
tively, for p50.2. Changing the strength of the random fields
a dependence of the exponents onp is also observed. At the
depinning transitionhC(p) the exponenta has its maximal
valuea'0.9, independent ofp which is close to the value
obtained by Donget al.21 For increasingh, a decreases and
tends towards different and rather small values for
h@hC(p). As shown above the parameteru influences the
intrinsic widthDx and the value of the critical fieldhC but
not the exponents. We have checked this in previous work16

for h50 and have verified this also forhÞ0.
Also shown in Figs. 5~a!–5~c! is the dynamical exponent

z defined byz5a/bl. In this exponent the ratio of two
quantities enters,a and b, which both decrease rather
strongly by roughly a factor of 2 with increasing field. The
third exponent which enters,l, increases with increasingh
only slightly above the depinning transition and then remains
constant. Interestingly,z as defined above does not show this
strongh dependence but stays constant,z'2. This behavior
is observed for all values ofp considered. The fluctuations
observed inz are due to numerical uncertainties. They are
rather small forp50.2 where each data point has been ob-
tained by averaging over about 200 realizations of the ran-
dom field configurations but are larger for the other twop
values where only 40 random field configurations are consid-
ered due to computer time limitations.

The decrease of the roughness with increasing driving
field is easy to understand. Roughness occurs since some
parts of the interface are trapped locally by the random fields
for a short time interval; other parts move. These time inter-
vals decrease with increasing driving fields and they get very
large whenh approacheshC , resulting in a very rough struc-
ture. On the contrary the fast moving interface flattens; it has
fairly large straight portions as can be seen in pictures of the
interface obtained from the numerics and also quantitatively
from the maximum value of the height correlation function
C(L/2,t→`)[Cm(h) ~Fig. 10! and the average step height
C(1,t→`) or C(2,t→`) ~see inset of Fig. 10!.

The driving fieldh cannot be increased too far, however,

since for very large driving fields of the order ofp or larger
a different type of dynamics is observed. For these fields
nucleation processes begin; i.e., isolated groups of spins in
the sea of down spins turn over, forming islands of up spins,
and the interface develops overhangs on all scales, meaning
that the self-affine structure of the interface gets lost.

In the following we will give arguments in favor of the
conjecture that the observed strong dependence of the expo-
nents on the strength of the driving field can be understood in
terms of an EW equation with correlations in the noise term.
In Ref. 22 the EW model with an equation of motion for the
interface positionh(x,t),

] h

]t
5n¹2 h1h~x,t !, ~23!

was considered with noise correlations

^h~x,t !h~x8,t8!&;Dux2x8u2r2d11ut2t8u2u21. ~24!

Dynamical scaling leads to18

h~x,t !;tb f ~x/t1/z!, ~25!

where f (y) has the limiting valuesu f (y)u;const fory@1
and f (y);ya for y→0. Equation~25! is meant to be valid in
a statistical sense; it is the analog to Eq.~11!. Equation~25!
is invariant under the transformationx→ax, t→azt,
h→abz h. Applying a naive dimensional analysis to the EW
equation with this transformation one obtains two relations
between the exponents,z52 and

2r2d111z~2u11!22zb50, ~26!

whered is the embedding dimension.
In the present soft spin model the interface moves through

a random medium. The analog to the noise term in Eq.~26!
is then the random fields at the moving interface which play
the role of an effective noise. It cannot be treated as uncor-
related since it is due to a local pinning-depinning process
which depends on the very position of the interface. Such a
behavior has been observed earlier by Havlinet al.23 who

FIG. 10. The maximum value of the height correlation function
Cm(h). The inset shows the driving field dependence of
C(1,t→`) andC(2,t→`) for h.hC .
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reported that if the noise is the result of a stochastic process,
it cannot be treated as random, but becomes correlated in
space and/or time.

We have measured the correlations of the random fields at
the interface,

^b„x, h~x,t!…b„x8, h~x8,t8!…&5K1~t2t8!K2~x2x8!,
~27!

whereb„x, h(x,t)… denotes the random field at the interface
position and the average is over space and time~for fixed
distanceux2x8u and time differenceut2t8u). We found that
the spatial correlations are very weak if not absent, leading to
2r51 ~for d52). The reason is easy to understand: The
interface gets trapped at random fields which are large and
negative and it moves fast in a region where the random
fields are large and positive. Looking at the interface at a
certain instant of time the distribution of random fields at the
interface is therefore centered at negative field values so that
the spatial correlations are finite even for points far apart.
The time correlations of the random fields at the interface are
shown in Fig. 11 forh50.02. For large time differences a

power law behavior is observed with an exponent
2u21520.8. Inserting this exponent into the scaling rela-
tion, Eq.~26!, we obtainb50.6. This value is in fairly good
agreement with the value obtained before,b50.57. We con-
sider this as strong evidence of the soft spin model to be in
the EW universality class above the depinning transition
with field-dependent exponents due to time-correlated noise.
Further evidence for this conjecture comes from our obser-
vation that although the exponentsa,b,l depend onh and
p, the exponentz defined above byz5a/bl is much less
dependent on these parameters and has a value of roughly 2
as is required by the scaling argument for the EW equation
with correlated noise, Eq.~23!.

Finally we would like to comment on the possibility that
our system may be of the KPZ type. Of course, the nonlinear
KPZ-type term2 is very likely to be present but we think that
it is not important, at least for the fast moving interfaces, in
contrast to Ref. 24. This term arises from an expansion of
A11(¹ h)2, where h(y,t) denotes the position of the inter-
face. The nonlinear term can be expressed in a discrete rep-
resentation as25

~¹ h!25 1
4 @h~y21!2 h~y11!#2, ~28!

showing that its average is given by the heigh correlation
function as

~¹ h!2&5 1
4C~r52,t!. ~29!

The inset of Fig. 10 shows the quantityC(r52, t→`) for
different values of the driving field. Forh.hC it is very
small compared to 1 and decreases monotonically for in-
creasingh so that it can be neglected.

To further support this conjecture we follow the authors
of Ref. 26 and impose a ‘‘tilt’’ of slopem on the interface.
Due to the nonlinearity (¹ h)2 of the KPZ models, the aver-
age velocity has anm2 dependence from the tiltm in contrast
to the EW model which has a tilt-independent velocity. We
have found that our model has no slope dependence of the
velocity.
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