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Interface roughening in driven magnetic systems with quenched disorder
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The kinetic roughening of a driven interface between spin-up and spin-down domains in a model with a
nonconserved scalar order parameter and quenched disorder is studied numerically within a discrete time
dynamics at zero temperature. Starting from a flat interface in a two-dimensional system the time evolution of
the height correlation function is analyzed for different driving fields. It is found that the normal dynamic
scaling ansatz is not sufficient to describe the observed behavior. The data are analyzed within a novel scaling
ansatz. Arguments are given that the present model belongs to the Edwards-Wilkinson universality class with
exponents, depending on the driving field, which is due to correlated effective [B(§63-182006)04237-3

[. INTRODUCTION where¢ denotes a scalar order paramekém homogeneous
driving magnetic field, andd(r) a quenched random field
The morphology and time evolution of interfaces in ran-and it is assumed that it has zero mean and that it is uncor-
dom media and of growing surfaces are problems of greatelated.
current interest. For growing surfaces many problems can be The dynamics of the model at zero temperature is defined
mapped on equations like the Edwards-Wilkins@w) by the relaxation equation
equation the Kardar-Parisi-Zhan@KPZ) equatior? or simi-
lar equations=> Recently, interest in the morphology and dg(r,t)  JH )
dynamics of interfaces in random media has increased con- YT T aa(rt)’ @)
siderably. Much work is devoted to problems like the immis- ) ) ) ]
cible displacement of viscous fluids in porous médiar ~ With a relaxation time proportional tg. This type of equa-
pinning and roughening phenomena in magnetic sy$t@ms tion has been qseql in the past by various autho_rs as a staring
(see also Refs. 4 and.5This second group of problems has, pomt_ for a denvatlon of local equ.at|on. of motions for .the
different from the first group, in general quenchéime- position of an interface in the'medlum, i.e., for that pqsmon
independentdisorder which results in a different roughness' (t) where ¢(r t) changes sigf" Although the gradient
exponenta (defined below in the range between 0.6 and term of the EW eq_uat|0"m_r the ce_lebrate_d _nonl!near termin
1.25 in 1+1 dimensions. Thus it differs clearly from the the KPZ gquatlo?1|§ readily obtained within this approach,
KPZ value of 1/2. Different starting points for a solution like the resulting equations remain approximative. It is therefore
power law distributed noise amplitud8sare proposed but ©f interest to study the full problem defined in E®. We
the situation is up to now still unclear. consider quenched disorder but restrict Qurselves to zero
The aim of this paper is to investigate the morphology andeMperature. This makes E@) particular suitable for a de-
dynamics of the roughening process of a domain wall driverscription of field-driven interface movement in magnets at
through a medium with quenched disorder. A main result of®W témperatures. _ . _
our work is that the corresponding exponents in the depin- In.Ref. 15 we stud]ed the f!eld-drlvgn |nterface.dynam|cs
ning phase depend on the strength of the driving field. ArPf th!s mpdel numerically using a discrete version of the
interpretation of this behavior in terms of an effective time- Hamiltonian
correlated noise is given.

=3 (S 2593 (582, )

1. MODEL
We study a model with nonconserved scalar order param- - 2| (H+B)S, ©)
eter (model A in the classification of Halperin and
Hohenberd") with Langevin dynamics at zero temperature. wherel=(x,y), I’=(x',y’) are nearest-neighbor pairs on a

Thermal noise is neglected since it is believed to besquare lattice with lattice consta® z is the number of
irrelevant!*** The Ginzburg-Landau-type Hamiltonian for nearest neighbors, arB(r)=B;. The fields¢ are scaled so
this system with quenched disorder is given by thata=b=u, andJ=J/ 5% andS, denotes the scaled fields at
discrete lattice points. The S may be termed as soft Ising
spins at lattice point$ with —<<S <. Due to this dis-

H:f drl = g¢(r,t)2+ §¢(r,t)4+ %[ng(r,t)]z cretization, the relaxation equation is replaced by
oo @
~[H+B(N](r,1)], (1) [T
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In the following we assum@>0, corresponding to ferro- parameters are chosenas 0.2 andu=0.9. The time inter-
magnetic spin-spin coupling, ang>0, which is required in val A7 for the numerical integration was set tbr=0.1
order thatH, Eq. (3), be bounded fotS|—=. The ground since previous investigations have shown that smaller time
state is obtained as a time-independent solution of (Bg. intervals do not change the results.

Thus in the ground state the spin configuration is such that In our earlier work® we found that there exists a critical
‘H is stationary with respect to variations of all spi&s In  driving field h¢ so that an interface gets trapped for driving
the absence of a random field and external field it can be sedields h<h: and moves with a constant averaged velocity
from Eq.(3) that the ground state is double degenerated witHor fields larger thar: where the average is over small time
all spins having the valu§=1 or all spins having the value intervals.h; depends on the strength of the random fields. Its
S= —1 independent of the strength of the parametigrand  value isho~0.015 for the parameters given above. Note that

J. hc is smaller than the maximum of the random fields by
Integration of Eq.(4) with the Euler scheme results in a more than a factor of 10.
set of difference equations If the driving field is set to zero, the magnetic moments
close to the initially flat interface relax in such a way that the
FAR) = FAT —urS2(r)—1 I / interface develops !nto a rough structure befqre all local mo-
S(rtan=S(n+Ar [Si(n) = 11S(7) 2‘ Si(7) ments are trapped in a metastable configuration. The dynam-

ics of this roughening process and especially its scaling be-
havior have been analyzed in detail for an interface in a

' (5) two-dimensional medium previoust. The roughening for
h>0 will be analyzed in the present paper.

—2S(7)+h+D

where magnetic fields andb, are measured in units &,

time 7 is measured in units of/J, andu=uy/J. Equation . DYNAMIC SCALING ANALYSIS

(5) is iterated starting from a vertical flat initial interface. At ) o

time =0 all spins on the left-hand side of the interface For not too large values gf and for all applied driving
located atx=0 are set toS=1 and all spins at the right- fields h we found that the interface can be described by a
hand side are set t§=—1. They direction where periodic ~Single-valued functionx= h(y,7); i.e., there are practically
boundary conditions are assumed is parallel to the interfacd0 overhangs or droplets. Here the position of the interface is
The linear system sizé in this direction is chosen to be defined as that point at whicB(x,y) as a function ok for

L =400 for all simulations if not specified otherwise. fixedy changes sign.

Note that with open boundary conditions the interface AS characteristics of the interfaewve subsequently ana-
width is larger than with periodic boundary conditions. How- lyze the height correlation function which is defined as
ever, the boundary effects introduced in this way are signifi- 2
cant and can be neglected only in systems with a linear size C(r,n)=([h(y+r,7) = h(y,n]%. 6)

large compared to the extension of the boundary layers. Sucthe angular brackets denote an average over all lattice sites
large systems cannot be simulated in a reasonable time $Q positionsy as well as over different realizations of the

that periodic boundary conditions are a better choice for auenched disorder. Another quantity of interest is the width
investigation of the scaling behavior of the bulk. The exten-gf the interface,

sion of the system perpendicular to the interface was chosen
in such a way that it does not play any role for the interface w(L,7)=([ h(y,n)—{ h(y,n)1??, (7)
morphology. For more details see Ref. 15. o )
After a short time interval ¢ this sharp interface softens. Which is related toC(r, 7) according to
Without random fields and driving field this time interval is 1L
of the order ofA6~10Ar and the width of the interface 2_
approaches its stationary value which is of the order of w(k,7) ZLZ 7). ®

Ax~3 for our choice of parameterdor a more detailed . . L .
discussion of Ax see Sec. )l In this special case Equation(8) is exact for periodic boundary conditions. Be-
H=B(r)=0 and the assumed initial conditions, E8), can cause of this relation, we will concentrate in the following on

be solved exactly with the result that the scaled fields ardhe sca!ing'behavior Of. the height correlation function. .
given by S(r) =tanh§/Ax) and Ax=+/2J/uy is the intrinsic In k"?e::]% roughening phenomena dyf‘am'ca' scal_mg
width of the interface in units of the lattice constant. Forassumptlo are proposed. A central role in these scaling

small driving fields this width is practically independent of 2SSUMPtions plays a time-dependent correlation length
the driving field. The interface remains flat and moves forg(T)' F.O”<§(T) 'the correlations do nqt grow further. Their
H>0 with constant velocity towardg= +x, leaving the saturation value is assumed to scale like

system in its ground state in which all spins are lined up with C(r<g,r)ore 9)
the external field. Introducing random fields the interface de- '

velops a rough structure. We are interested in this roughnesgith the roughness exponent Forr larger than the time-
on length scales large compared to the intrinsic surface widtlependent correlation lengt(r) the interface fluctuations
Ax since only on these length scales is scaling of the correare uncorrelated in space but they are still growing with

lation function expected to work. time; their time evolution can be described by
The random fieldsh, are drawn with equal probability

from an interval between-p and p. If not specified, the C(r>¢,7)x 7P, (10
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FIG. 2. The height correlation function for different values of
the coupling constant with u=0.9/J, p=0.2/J, andh=0.05/4 in
the long-time limit.

FIG. 1. The height correlation functio8(r,7) for h=0.02 at
different times as indicated.

The correlation length grows with time according to and
£(7)=r7%, wherez is called the dynamic exponens(r)

may reach the system size, in which case a crossover to a Cr< ocp2a 2a(1N—1) 14
finite-size behavior occurs. The scaling relati¢®sand(10) (r<&(),7) & ' (14
are considered as the limiting behavior of a general dynamitf the correlation lengthé(7) is small compared to the sys-

scaling relatior® tem size, it is expected to behave like a power law. If we
keep the definition of the exponeptgiven in Eq.(10), we
r have to set
— 2a
C(r,n=[&(7] g(g(T)>- 1y

E(r)oerPle (15
In order that Eqgs(9) and (10) are recovered the scaling . o
function g(x) must have the propertieg(x)~const for according to Eq(13). The exponent appearing in E(LS)
x>1 andg(x)=x2* for x<1 andz=a/B. can be considered as dynamical exponemt,a/B\, but

Having introduced the usually assumed scaling assumgRther interpretations are possibfeFrom Eq. (13) one can
tions we turn now to a discussion of our results. Figure 15€€ that the exponent introduced by Schroedest al.™ is
shows the spatial correlations of the height correlation funcfélated tox according tox=1-«/f and
tion of a system in the depinning phase as a function of the 2k 2a
distancer for different times on logarithmic scales. The data Clr=<g(), mer ™, (16)
are obtained as averages over 200 runs with different randoBquation(16) is capable of explaining the observed increase
field configurations. Am-independent saturation is observed of C(r,7) with time in the smalk region.
for larger in agreement with Eq(10) and a linear depen- Forr=3 the data in Fig. 1 show a small upward turn; i.e.,
dence on In() for smallr in agreement with Eq(9). How-  ther dependence of(r,7) is not powerlike for very small
ever, in this latter case for driving fields close to the pinningr. This has to do with the intrinsic widthx of the interface
transition, IRC(r,7)] is still 7 dependent; i.e., contrary to the due to the softening of the spins discussed in Sec. IIl. Chang-
scaling prediction, Ec(9), the correlations are still growing ing the system parameters this width can be varied. It can be

also for very smqll times. ' seen from Fig. 2 that the region where the smadiealing
Such a behaw% has also been observed in a recent studlyeaks down is directly given by this intrinsic width.
by Schroedeet al™ of the molecular beam epitaxViBE) To calculate the roughness exponentve use the asymp-

model of Wolf and Villain? In this study,C(1,7) can be totic behavior given in Eq(14) for the largestr available.
identified as the time evolution of the average step height. IfFor large 7, £(7) saturates and the correlation function is
grows as a power lavZ(1,7) % over a remarkable large proportional tor2®. It is shown in Fig. 3 in logarithmic
time interval of about five decades and then seems to satécales for three different values of the driving field. The ex-
rate, independent of system size. For small system sizes th#ynent« is obtained from a fit to a power law within the
saturation depends on it. One possibility to take this unusualnear region starting at= 3. Since the linear region is rather
behavior into account is a modification of the scaling relationsmall, we also fitted the data over the whole interval with a
(11 in the following way: scaling function of the form

C(r,T):g(T)ZQ,Ag<L), 12 C(r,)=AltanH(r/B)1?°, an

&(r) following earlier work!®” Within the error bars both meth-
with the limiting forms ods give the same value for the roughness exponent. The
solid lines show the final fit with Eq.17). Good agreement
C(r>&(7), r)x &(7)%9N (13)  with the data is obtained over the whalénterval.



o B Az

9317

54 INTERFACE ROUGHENING IN DRIVEN MAGNETIC ...
5
2
10°
5
2
iy 1
] 10
= s
© 2
10° .
3 o h=0.02:2a=1.7
, |° = s h=0.05: 20=1.28
1 3 o h=0.20: 2a=1.0
10 Q) 1 2

10 2 5 10 2 5 10 2

FIG. 3. Determination of the exponent for different driving
fieldsh>h¢.

To determine the exponent3 and x (or A) we use the
asymptotic formg210) for larger (r=L/2 is the largest value
available due to periodic boundary conditipramd (16) for
fixed r =3. Figure 4 show<(L/2,7) on logarithmic scales
for three different values of the driving field. The solid lines
are fits to the data for the whole interval using as an
ansatz®!’

C(L/2,7)=[ Atanh 7/ 7o) ]?A. (18

The inset in Fig. 4 shows the correlation functiGfr, ) for
r=3 which is fitted to Eq.(16). The corresponding expo-
nentsB and A =1— «/B together with the roughness expo-
nent and the dynamical exponentare shown in Fig. 5 for
different values of the magnetic field.

Figure 6 shows the final scaling plot for=0.02 with a
satisfactory data collapse. The same is true for other values
of the magnetic field not shown here.

The results obtained so far are for systems of size
L=400. The saturation of the correlation function observed
in Fig. 1 may be due to finite-size effects. Another possibility
is the existence of an intrinsic length, above which a satura-
tion takes place independent of system length. This was ob-
served forh=0, where the initially flat interface settles
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FIG. 5. The dependence of the exponemis3, A, andz on the

rescaled driving fieldh/p for (@) p=0.2, (b) p=0.1, and(c)
p=0.05.

down in a metastable positidfand we have verified in the
meantime that a similar behavior holds for evarghe . For
moving interfaces, however, the saturation is due to finite-
size effects. To prove this we consider eight 400 systems,

o h=0.20: 26=0.50 each of which has a different distribution of random fields
and which are all driven in a steady statergt2%°. Due to
the periodic boundary conditionks;(1)= h;(L+1), one can

connect different systems so that(L+1)= h;, 1(1) with
FIG. 4. Determination of the exponept from the small time i denoting the different systems. Running the larger system
behavior of the height correlation functionlat2=200 andx from  for another 3<2'7 time steps it is clearly seen from Fig. 7

C(3,7) (insed for h=0.02.

that the correlation function for large is still increasing
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FIG. 8. Time dependence @f(L/2,7) for different system sizes
as indicated. The inset shows the size dependence of the time con-
stantry (h=0.05).

FIG. 6. Scaling plot of the height correlation function according
to Eq.(14) for r=3 andh=0.02.

which proves that the saturation observed in Fig. 1 is due t% for h=0.05. The corresponding exponents 1.94+0.03
finite-size effects and not due to an intrinsic length scaleWhich is close t0z=2.09 obtained from the relation

Note that the data in Fig. 7 are for one magnetic field only_
and that this very large system is still not driven into a steadyz_ Of/'B)" .
Finally we note that not only does the correlation length

state. Computer time limitations make it impossible to N, comel. dependent for larae. the scaling functio (x)
these very large systems into steady states or to make theSe P ge, 9 Y

d e . : “appearing in Eq(12) also gets aih. dependence. This can be
tr:ér:]SS for different magnetic fields or random field configura seen by studying the width of the interface. From the exact

Having established that the saturation of the correlatior{elatlon (8) it follows from Eq. (12) for £() <L that
function is due to finite-size effects we now turn to a discus- 1 (L&
sion of the size dependence of the correlation function [w(L,7)]*=5— dxg(x¥)[&(n) P (20
C(r,7) which also will lead to an independent estimate of 2L s
the exponent. Finite-size effects manifest themselves in agpq, £ y<| a(x) can be replaced by its asvmptotic value
modified&(7) in I_Eq_. (12 ir_l such away_thag(r) approaches g(x)ic)onst, zgr(nd\)/vz thus scaﬂes aEW{L’T)]z;/ng. It has
L for large 7. This is achieved by writing(7) as been verified that the exponegtdeduced in this way agrees

1z with B8 obtained from the correlation function. In the large

T(l” , (19 time limit, on the other handé(7— )L so that

70

&(7)=£&o

1
with T(x)=x for x<1 andT(x)=1 for x>1 and &y>L. [W(L,T)]Zsza/)‘f dxg(x). (21)
From the smalkr limit it follows that 7o<LZ Thus from the n
measurement of, by fitting C(L/2,7) for different values of | Fig. 9 we show the scaling behavior fa(L, 7— ). The
L the exponenk can be obtained. Results are shown in Fig.exponent is given by 0.75 and therefore agrees very well
with the valuea=0.75 obtained from the correlation func-

o
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2| o L=3200, r=742%2 o882 ,0000000 5 ,
|| o 1=3200, r=re32” g g gl
10 8 g ’g
]
- 5 £ 2
[ - . e
£ i 8 -~ slope: a=0.75
S . 3 10°
10° o g
. ) 5
5 [ d
a * §
2
1 e 2 o o °© ° °
107, 5 1 2 3
107 2 5 100 2 5 100 2 5 10 10" s
2
r 5 10 2 5 10

FIG. 7. The height correlation functiorC(r,7—o) for
L=400 andC(r,7) for a system withL =3200 for different times FIG. 9. Size dependence of the roughnegt,r— ) and the
as indicated f=0.1). average step heigl@(1,7—) (h=0.03).
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tion (for h=0.03). We conclude therefore that in the large 2
7 limit g(x) is proportional toL 2“1~ This view is also L ol . o)
supported by considering the average step height in the large 10 N - . o ((2,00)
7 limit. It is also shown in Fig. 9. Obviously, the step height 510 s § .
is independent of . Calculating the average step height from * S o
Eq. (12) we obtain[ £(7—)—L] < 2., 3 * %o,
E 5 S - °
O 1wy - s
C(r="1,7—»)xL2\g(1LL). (22) . e,
i * 1057 2 5 10" 2
Thus, only by inducing the above-mentioned factor does this S A * h
guantity become independent bf 2 R N
10' *
IV. DISCUSSION 0.0 0.05 0.1 0.15 0.2
h

There is an obvious dependence of the exponents shown

in Figs. §a)-5(c) on the strength of the driving field. Forthe £ 10, The maximum value of the height correlation function
larger field values the exponenk is practically one sothat ¢_(n). The inset shows the driving field dependence of
the usual scaling scenario, Ed8) and (10), is valid. For  ¢(1,7— ) andC(2,7—) for h>hc.
smaller fieldsh drops by more than 20% and both the expo-
nentse and rise considerably wheh approaches the criti- - since for very large driving fields of the order pfor larger
cal valuehc of the depinning transition. Increasing the driv- 5 different type of dynamics is observed. For these fields
ing field the velocity of the interface increases and thenycleation processes begin; i.e., isolated groups of spins in
exponentsy and3 approach the values 0.5 and 0.25, respecthe sea of down spins turn over, forming islands of up spins,
tively, for p=0.2. Changing the strength of the random fieldsand the interface develops overhangs on all scales, meaning
a dependence of the exponentspis also observed. Atthe that the self-affine structure of the interface gets lost.
depinning transitiorh¢(p) the exponent has its maximal In the following we will give arguments in favor of the
value a~0.9, independent ap which is close to the value conjecture that the observed strong dependence of the expo-
obtained by Dongt al?* For increasindh, a decreases and nents on the strength of the driving field can be understood in
tends towards different and rather small values forterms of an EW equation with correlations in the noise term.
h>hc(p). As shown above the parameterinfluences the |n Ref. 22 the EW model with an equation of motion for the
intrinsic width Ax and the value of the critical fields but interface positionh(x,t),
not the exponents. We have checked this in previous tRork
for h=0 and have verified this also for#0. Jh
Also shown in Figs. B)—5(c) is the dynamical exponent e vV2h+ n(x,t), (23
z defined byz=a/B\. In this exponent the ratio of two
quantities enterse and B, which both decrease rather \ya5 considered with noise correlations
strongly by roughly a factor of 2 with increasing field. The
third exponent which enters,, increases with increasirly (p(x,1) p(x' t"))~D|x—x'|22~ 4t —t'|26-1 (24
only slightly above the depinning transition and then remains
constant. Interestingly, as defined above does not show this Dynamical scaling leads 16
strongh dependence but stays constant,2. This behavior
is observed for all values gf considered. The fluctuations h(x,t)~tAf (x/t12), (25)
observed inz are due to numerical uncertainties. They are
rather small forp=0.2 where each data point has been ob-where f(y) has the limiting valuesf(y)|~const fory>1
tained by averaging over about 200 realizations of the ranandf(y)~y“ for y—0. Equation(25) is meant to be valid in
dom field configurations but are larger for the other two a statistical sense; it is the analog to Etfl). Equation(25)
values where only 40 random field configurations are considis invariant under the transformatiox—ax, t—a’,
ered due to computer time limitations. h—af? h. Applying a naive dimensional analysis to the EW
The decrease of the roughness with increasing drivingquation with this transformation one obtains two relations
field is easy to understand. Roughness occurs since sonetween the exponents=2 and
parts of the interface are trapped locally by the random fields
for a short time interval; other parts move. These time inter- 2p—d+1+2(26+1)—2z8=0, (26)
vals decrease with increasing driving fields and they get very
large wherh approacheb, resulting in a very rough struc- whered is the embedding dimension.
ture. On the contrary the fast moving interface flattens; it has In the present soft spin model the interface moves through
fairly large straight portions as can be seen in pictures of thea random medium. The analog to the noise term in(E6)
interface obtained from the numerics and also quantitativelys then the random fields at the moving interface which play
from the maximum value of the height correlation function the role of an effective noise. It cannot be treated as uncor-
C(L/2,7—x)=C(h) (Fig. 10 and the average step height related since it is due to a local pinning-depinning process
C(1,7—) or C(2,7—x) (see inset of Fig. 10 which depends on the very position of the interface. Such a
The driving fieldh cannot be increased too far, however, behavior has been observed earlier by Hawetral?® who
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2 power law behavior is observed with an exponent
S R 20—1=-0.8. Inserting this exponent into the scaling rela-
" tion, Eq.(26), we obtainB=0.6. This value is in fairly good
agreement with the value obtained befqges 0.57. We con-
sider this as strong evidence of the soft spin model to be in
the EW universality class above the depinning transition
with field-dependent exponents due to time-correlated noise.
Further evidence for this conjecture comes from our obser-
vation that although the exponernisB,\ depend orh and
p, the exponent defined above byg=a/B\ is much less
dependent on these parameters and has a value of roughly 2
as is required by the scaling argument for the EW equation
with correlated noise, Eq23).

Finally we would like to comment on the possibility that
our system may be of the KPZ type. Of course, the nonlinear
KPZ-type terni is very likely to be present but we think that
it is not important, at least for the fast moving interfaces, in

reported that if the noise is the result of a stochastic proces§0ntrast to Ref. 24. This term arises from an expansion of
it cannot be treated as random, but becomes correlated L+ (V )2, where h(y,t) denotes the position of the inter-
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FIG. 11. Time correlations of the random fields fo=0.02.

space and/or time. face. The nonlinear term can be expressed in a discrete rep-
We have measured the correlations of the random fields dgsentation &S
the interface,
(V h)?=32[h(y—1)— h(y+1)]?, (28
(b(x, h(x,7))b(x", h(x',7")))=Ky(7— 7")Ky(x—X"), showing that its average is given by the heigh correlation
function as

whereb(x, h(x,7)) denotes the random field at the interface NP
position and the average is over space and tifoe fixed (Vh9=2C(r=2.). (29
distancgx—x’'| and time differencér— 7'|). We found that ~ The inset of Fig. 10 shows the quant®(r =2, 7—x) for

the spatial correlations are very weak if not absent, leading tdifferent values of the driving field. Foan>h¢ it is very
2p=1 (for d=2). The reason is easy to understand: Thesmall compared to 1 and decreases monotonically for in-
interface gets trapped at random fields which are large andreasingh so that it can be neglected.

negative and it moves fast in a region where the random To further support this conjecture we follow the authors
fields are large and positive. Looking at the interface at af Ref. 26 and impose a “tilt” of slopen on the interface.
certain instant of time the distribution of random fields at theDue to the nonlinearity{ h)? of the KPZ models, the aver-
interface is therefore centered at negative field values so thaige velocity has am? dependence from the tith in contrast

the spatial correlations are finite even for points far apartto the EW model which has a tilt-independent velocity. We
The time correlations of the random fields at the interface aréave found that our model has no slope dependence of the
shown in Fig. 11 forh=0.02. For large time differences a velocity.
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