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We calculate magnetic-resonance absorption curves for an assembly of classical spins located in an fcc
lattice with spin-spin interactions which stabilize antiferromagnetic order of the first kind. The only source of
anisotropy in the model is the dipole-dipole interaction which, at equilibrium, confines the ordered moments
into planes perpendicular to the respective type-I ordering vectors. Our principal tool of analysis combines
numerical integration of the equations of motion with Monte Carlo simulations. Complete absorption line
shapes for classical spins can be calculated using this technique. Spin dynamics is investigated as well by
extending our earlier mean-field analysis, the results of which are compared with the simulations. Special
attention is paid to a sum rule that relates the intensities of the resonance peaks to the static susceptibility. To
this end, we calculate the static susceptibility matrixes for certain single-k and triple-k type-I structures. We
investigate, in particular, examples of cases where thermal fluctuations beyond the mean-field theory shift
resonance lines from zero frequency to a finite value. It is demonstrated that this effect is related to the
so-called ‘‘ordering-by-disorder’’ mechanism in which fluctuations stabilize a unique ground state in a con-
tinuously degenerate manifold. Our results explain several features observed in recent NMR studies of anti-
ferromagnetic nuclear-spin ordering in copper and silver at nanokelvin temperatures. Analogies with spin
dynamics in solid3He and superfluid3He-A are briefly discussed.@S0163-1829~96!06337-0#

I. INTRODUCTION

Spin dynamics in antiferromagnets in an fcc lattice have
become a subject of considerable current interest as the result
of extensive studies of nuclear magnetic ordering in simple
metals such as copper, silver, and rhodium at nanokelvin
temperatures.1 Of particular importance is antiferromagnetic
~AF! ordering of the first kind which has been found in cop-
per and silver,2 and is expected in rhodium.3 Another inter-
esting aspect of spin dynamics in these systems derives from
the inherent frustration in the fcc lattice which leads to ex-
tensive ground-state degeneracy. We have recently shown
that subtle fluctuation effects, which lift the degeneracy,
leave a signature in the nuclear-magnetic resonance signal.
Spin dynamics of type-I fcc antiferromagnets have also in-
teresting similarities with superfluid3He-A and solid 3He.
These features have provided the general motivation for the
present study.

Early evidence of magnetic ordering in copper and silver
was obtained from measurements of the dynamic susceptibil-
ity in zero external field, or in a low field below the critical
value.1 Characteristic changes were observed in the absorp-
tion signal when the system underwent AF ordering. The
NMR line shape in the AF state yields information on the
symmetry of the spin structure. In special cases, the nature of
the magnetic order can be obtained from NMR.4,5 Such in-
formation would be particularly useful for nuclear magnets
since neutron-diffraction measurements are exceedingly dif-
ficult, albeit feasible in certain cases.1,2 Until recently,6 how-
ever, analysis of antiferromagnetic NMR spectra of copper
and silver has yielded little information on the spin structure.
Even some important qualitative features of the AF reso-
nance spectra of copper and silver were not fully understood,
such as the number of maxima in the absorption curve.

Although the theory of AF resonance was developed in
the 1950’s,7–9 there are several complications which hamper
direct application of this early work to the present case. Most
of the NMR data on copper and silver were measured in zero
external field. As the crystal structure is cubic in these met-
als, there is no single-spin anisotropy in the Hamiltonian, and
the positions of the NMR lines are determined by spin-spin
interactions and by the ordered structure. In most electronic
systems in which AF resonance has been investigated, the
situation is different: Anisotropy caused by noncubic crystal
symmetry and/or magnetoelastic effects is important.

A diagonal component of the dynamic susceptibility ten-
sor x(v) can be written asx(v)5x8(v)1 ix9(v), where
the complex quantity has been divided into its real and
imaginary parts. Energy absorption in an axial radio-
frequency field is proportional to the imaginary partx9(v).
In resonance experiments in a low field, however, it is
more convenient to look at theform function x9(v)/v,
which is connected to the static susceptibilityx8(0)
through a Kramers-Kroenig relation, viz.,x8(0)
5(2/p)*0

`x9(v)dv/v. In the paramagnetic state when
B50, x9(v)/v peaks atv50; such a signal is called zero-
frequency resonance. The physical meaning of this response
can be illustrated by considering the signal caused by a small
steplike change in the external field. When the zero-
frequency resonance curve has, for example, the Lorentzian
form, the system reacts via a process in which the magneti-
zation relaxes exponentially towards a new equilibrium
value, and the relaxation time is essentially the inverse of the
linewidth at thev50 resonance.

According to measurements on copper10 and our theoreti-
cal work,6 relaxation in the paramagnetic state becomes more
complicated and clearly deviates from a simple shape such as
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the Lorentzian when spins are cooled towards the ordering
temperatureTN . In the AF state, the line shape undergoes a
clear change:x9(v)/v develops a peak, or several peaks, at
a finite frequency. These are called AF resonances. At this
point, the matrix nature ofx(v) becomes important since the
symmetry ofx(v) might be reduced in antiferromagnetic
state, and all diagonal components ofx(v) do not necessar-
ily behave in the same way.

The zero-frequency peaks of the paramagnetic state can
follow several alternative scenarios belowTN . ~i! The peak
can shift to higher frequencies to become the AF resonance.
~ii ! It may stay atv50 or, ~iii ! it it may shift to a low
frequency which is, however, clearly below the AF reso-
nance.

The last two scenarios have an interesting relationship
with the geometric frustration of the fcc lattice. A conse-
quence of this is that the type-I antiferromagnet shows con-
tinuous degeneracy within the mean-field~MF! theory. From
this one expects the presence of soft modes, i.e., spin-wave
excitations with zero energy. If there are soft modes with a
zero wave vector, their presence should be seen by NMR,
since this technique probes excitations which have a nonzero
magnetization.

In most cases when one might expect a soft mode, we find
a peak in the form function at a low but nonzero frequency
~see Sec. IVD!. This is explained by the presence of an
artificial hidden symmetry in the MF Hamiltonian. When
fluctuations beyond the MF theory are considered, the
v50 resonance is found6 to move to a finite frequency. The
effect can be understood in terms of a thermally induced
anisotropy field which is also responsible for lifting the
ground-state degeneracy. The phenomenon is a manifestation
of the so-called order-by-disorder mechanism, introduced by
Villain and his co-workers.11 It has been discussed exten-
sively in the context of ground-state selection in frustrated
systems.12 Appearance of a gap in the magnon dispersion
relation at zero wave vector has been investigated previously
using neutron scattering in the electronic magnet
Ca3Fe2Ge3O12.

13

We have recently employed a numerical method, which
combines Monte Carlo simulations and numerical solutions
of the equations of motion, to compute complete NMR ab-
sorption line shapes.6,14 In principle, our technique yields
complete resonance curves for classical spin systems. In the
present paper we show simulated NMR absorption spectra
for a model in which the strength of the nearest-neighbor
dipolar interaction, with respect to the exchange coupling, is
similar to that between nuclear spins in silver. However, the
results should illustrate, for a large range of interaction con-
stants, features which cannot be extracted from mean-field
calculations. Apart from the type-I ground state, the only
essential assumption in our procedure is the sign of the an-
isotropic spin-spin interaction: The ordered moments are in
the plane perpendicular to the type-I ordering vectors.

First, however, we present and extend a previous15 mean-
field description of the AF resonance in type-I fcc antiferro-
magnets. It is well known that the MF approximation for the
dynamics fails in several important respects. For example,
the MF theory does not give any information about the shape
of the absorption peak. Nevertheless, the MF results are use-
ful as they provide a basis for understanding the salient fea-

tures of AF resonance curves. By comparing the MF predic-
tions with the simulated results, we can test the reliability of
the MF dynamics.

This paper is organized as follows. In Sec. II we discuss
the MF theory of the AF resonance in type-I fcc antiferro-
magnets. The general expressions for the resonance frequen-
cies and their intensities are derived. Special attention is paid
to the sum rule which relates the intensities of the resonances
at finite frequencies and atv50 to the static susceptibility.
To this end, we calculate complete static susceptibility ma-
trices for type-I structures. We also briefly discuss similari-
ties between the spin dynamics of type-I antiferromagnets
and of solid 3He and superfluid3He-A. In Sec. III we de-
scribe specific results for single-k and a triple-k structures
which are likely candidates for the ground states of copper
and silver in certain field regions. In Sec. IV, we present
simulated NMR spectra of type-I antiferromagnets. Various
components of the absorption matrix are compared with pre-
dictions of the MF dynamics. In Sec. V we compare our
results with experiments on copper and silver. Details of the
calculation of the static susceptibility matrix are presented in
the Appendix.

II. MEAN-FIELD THEORY

For the Hamiltonian we assume

H5(
i. j

(
mn

I i
mAi j

mnI j
n2g\B•(

i
I i . ~1!

Here theI i are quantum spin operators and the matrixAi j

contains the spin-spin interactions which originate from ex-
change and classical dipole-dipole forces.

A. Statics

Type-I antiferromagnetism in an fcc lattice is character-
ized by the the spin configurations15,16

^I i&/I5m1 (
j51,2,3

djcos~Qj•r i !, ~2!

with the type-I ordering vectorsQj5(p/a)êj . Herea is one
half of the fcc lattice parametera05(4/r)1/3, andr5N/V is
the number density of the fcc lattice sites. The three fcc
crystal axes are denoted by the unit vectorsê1, ê2 andê3. As
an example, we have illustrated in Fig. 1 one of the possible

FIG. 1. Illustration of a type-I fcc antiferromagnet. In this
single-k state the ordering vectorQ5Q35(p/a)ê3. The structure
consists of ferromagnetic sheets in which the spins^I i&/I are either
1d3 or 2d3 in a zero external field. Dipolar anisotropy confines
d3 to the plane perpendicular toê3.
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single-k structures.
According to the mean-field~MF! theory, thermal expec-

tation values of spins are

^I i&
I

5
Bi

Bi
BI S gI\Bi

kBT
D , ~3!

where BI(x) is the Brillouin function andBi the average
local field

Bi
m5Bm2

1

g\(
n, j

Ai j
mn^I j

n&. ~4!

The Fourier transform of the interaction matrix is defined
by

A~q!5(
j
Ai jexp@2 iq•~r i2r j !# . ~5!

It is diagonal for the type-I ordering vectors:

A~Qj !5lI1~l12l!êj êj . ~6!

We assumel1.l which implies an easy-plane anisotropy.
As a result, structures with

êj•dj50 ~7!

are favored@see Eq.~2!#. Anisotropy is of this type if dipolar
forces are the dominant anisotropic spin-spin interactions.
This should be the case for copper and silver.17

For q50 one finds

A~0!5l0I ~8!

if the sample is assumed to be spherical; in this case only
exchange forces contribute tol0.

For the spin structure of Eq.~2!, the static susceptibility
x0 parallel to the static magnetic field is15

x05m0rgI\/Bc , ~9!

which does not depend on temperature or magnetic field in
the AF phase. HereBc is the zero-temperature critical field
for type-I antiferromagnetism

Bc5~ I /g\!~l02l!. ~10!

Calculation of the full static susceptibility matrixx(v50) is
somewhat complicated, mostly due to the degeneracy of the
MF ground states. Whilex(v50) for a single-k structure
can be obtained, with some modifications, from the work by
Van Vleck,18 it seems that double-k and triple-k structures
have not been investigated before. Our calculation of
x(v50) is presented in Appendix I.

The MF ground state of Eq.~2! is continuously degener-
ate since two components of thedj vectors are left undeter-
mined. A unique ground state is stabilized by thermal or
quantum effects beyond the MF approach.19

B. Dynamics

In MF theory, the dynamics is described by

d^I i&
dt

5g^I i&3Bi . ~11!

Without time-dependent external fields, Eq.~3! gives the ex-
pectation valueŝ I i&. It is impossible to find a consistent
solution for the dynamic susceptibilityx(v) without consid-
ering Eq.~3! and Eq.~11! together, since both are needed to
solve the zero-frequency behavior ofx(v). This point will
be illustrated in Sec. III using the MF theory and in Sec. IV
by direct numerical methods based on the linear-response
theory.

The equations of motion form anddj , j51,2,3, can be
found by Fourier transforming Eq.~11!. This yields15

1

g

dm

dt
5m3B2BD (

j51,2,3
~dj3êj !~ êj•dj ! ~12!

and

1

g

ddj
dt

5dj3~B2Bcm!2BD~m3êj !~ êj•dj !

2BD~dk3êl !~ êl•dl !2BD~dl3êk!~ êk•dk!.

~13!

In Eq. ~13! indices (j ,k,l ) denote, again,~1,2,3!, ~2,3,1! or
~3,1,2!. The coefficient

BD5~ I /g\!~l12l!, ~14!

with the dimension of magnetic induction, could be called
the anisotropy field for type-I order. When the dipole-dipole
interaction is the only anisotropic contribution to spin-spin
interactions, the tabulated20 lattice sums yield, for an fcc lat-
tice,BD'(m0/4p)rgI\36.501.

If only one of thedj ’s is nonzero, Eqs.~12! and ~13! are
almost identical with those proposed5 for solid 3He. The
difference is that in3He it is generally possible to neglect the
terms proportional to the dipole-dipole energy in Eq.~13!
because they are small. This approximation is not needed,
however, when equations are solved to the first order in the
excitation field,15 since the same terms disappear anyway.
Equations~12! and~13! have also much in common with the
Leggett equations21 of superfluid 3He-A if we identify his l̂
and d with our ê1 and d1. Spin dynamics of3He-A re-
sembles, however, a uniaxial antiferromagnet with an easy
axis alongl̂. The Leggett equations for a constantl̂ are, there-
fore, obtained whenBD in Eq. ~12! is negative and theBD
terms in Eq.~13! are again ignored. It should be mentioned,
however, that the dynamics of easy-plane and easy-axis an-
tiferromagnets with some overlap with the cases discussed
here, has been presented earlier using a somewhat different
formalism.7–9

Assume that a fieldB(t)5B01B1(t) is applied on the
system. We expand the spin vectors in leading orders of
B1: m(t)5m(0)1m(1)(t)1O(B1

2) and similarly for dj (t).
Our aim is to solve for the quantitym(1)(t) which is of first
order inB1(t). One obtains from Eq.~13!, using Eq.~7!
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1

g

d

dt
~ êj•dj !5~ êj3dj

~0!!•~B12Bcm
~1!!1O~B1

2!. ~15!

Combination of this result with Eq.~12! yields

1

g

d2m~1!

dt2
5m~0!3

dB1

dt
2B03

dm~1!

dt
2gBD (

j51,2,3
~dj

~0!3êj !

3~ êj3dj
~0!!•~B12Bcm

~1!!. ~16!

Introducing the Fourier transformation f (v)
5(2p)21*2`

` f (t)exp(ivt)dt and noting that M1(v)
5rgI\m(1)(v) andM1

m(v)5(nxmn(v)B1
n(v)/m0, we find

if vÞ0,

xH~v!/x05@Y~v!2Iv2/gBc#
21Y~v!, ~17!

where

Y~v!5gBD (
j51,2,3

~ êj3dj
~0!!~ êj3dj

~0!!

2 iv (
j51,2,3

~m~0!3êj !êj . ~18!

Subscript ‘‘H ’’ of xH(v) in Eq. ~17! emphasizes that the
theory gives only the non-dissipative part of
x(v)5xH(v)1xAH(v) sinceY(v) and the right-hand side
of Eq. ~17! are Hermitian matrices. This follows since the
description without relaxation mechanisms fails exactly at
the resonant frequencies.

To obtainxAH(v) we use a consequence of the Kramers-
Kroenig relations, namely

xAH~v!5
1

ip
PE

2`

` xH~v0!dv0

v02v
. ~19!

The rules for constructingxAH(v) from the poles of
xH(v) are the following:

V2

V22v2→
ipV

2
@d~v2V!2d~v1V!#, ~20!

Vv

V22v2→
ipV

2
@d~v2V!1d~v1V!#. ~21!

The dynamic susceptibility matrix can be written as

x~v!/x05
1

2(a
La

12v/~Va2 iGa!

1
1

2(a
La*

11v/~Va1 iGa!
, ~22!

whereVa is the resonant frequency and the Hermitian ma-
trix La the resonant amplitude. Equation~17! is the Hermit-
ian part of this expression in the limitGa→01 when v
Þ0. Equation~22! must also contain an appropriate term
with zero resonant frequency. TheV50 term is of the form

L0

12 iv/G0

and describes a simple exponential relaxation of the induced
magnetization.L0 can be calculated from the equation

x~0!/x05(
a

Re$La%, ~23!

which decomposes the static susceptibility matrix into con-
tributions from various resonancesVa . Calculation of
x(0) is discussed in Appendix I. Only do the resonances at
v50 and at Larmor frequenciesv5gB0 persist in the dis-
ordered state.

III. APPLICATIONS

In the following discussion we write the susceptibility us-
ing an orthonormal coordinate system with the basis
( x̂,ŷ,ẑ). We always selectẑiB0. In all cases of interest we
can also assume that the spins lie in theyz plane; this fixes
our coordinate system with respect to the directions of the
spins.

A. Single-k states

It is meaningful to divide single-k states into two classes.
The zero-field configuration and structures withQj iB0 form
the first class and can be considered exceptional. All other
single-k structures fall into the second class. It turns out that
x(0) is anisotropic in the first case and isotropic in the sec-
ond. MF theory predicts a zero-frequency resonance only for
configurations in the first class.

1. B50 and a field along Qj

Assume first thatB0>0 is along a crystalline axis, say
ẑ5ê3. We consider a structure with the modulation vector
Q3 which is in the direction ofB0:

m5~B0 /Bc!ê3i ẑ,

d15d250,

d356@p22~B0 /Bc!
2#1/2ŷ. ~24!

Here we assumeB0<pBc wherepBc is the critical field for
antiferromagnetism at polarizationp in the mean-field
theory. This configuration is the relevant ground state for a
range of spin-spin interaction constants.1,19 Various calcula-
tions indicate that the vectord3 is either alongê1, ê2 or
ê16ê2; our results do not depend, however, on this direction.

The nonzero components of the static susceptibility
x(0) are given by

xxx~0!5xzz~0!5x0 , xyy~0!5xyy ~25!

with

xyy /x05
BDBcp

2~12t!1B0
2lt/~l2l0!

BDBcp
2~12t!1~V' /g!2lt~l2l0!

. ~26!

Here t5t(p) is a monotonous function of polarization de-
fined in Appendix I; in particular,t assumes the values
t(0)50 andt(1)51. The qualitative behavior atB050 is
such thatxyy increases from zero atT50 to xyy5x0 at
T5TN .

18 When B0Þ0, a small external field along theŷ
direction twistsd3 out of the easy planeê3•d350.
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QuantityV' is a resonant frequency, viz.,

V'
2 /g25B0

2~12BD /Bc!1p2BDBc . ~27!

Apart from thev50 peak,V' is the only resonance in
x(v). The nonzero components of the amplitudeL' are

L'
xx51, L'

xy5~L'
yx!*5 igB0 /V' , L'

yy5~gB0 /V'!2.
~28!

We have for thev50 resonance

L0
yy5xyy /x02~gB0 /V'!2, L0

zz51, ~29!

and find thatL0
yy vanishes in the zero-temperature limit

whenp→1.
Let us now assume that the structure given by Eq.~24! is

actually stabilized by an additional phenomenological anisot-
ropy term}(d3• x̂)

2. This interaction energy can be included
in the analysis of Sec. II B by replacing Eq.~6! with

A~Q3!5lI1~lT2l!x̂x̂1~l12l!ê3ê3 , ~30!

wherelT.l. After steps analogous to Eqs.~11!–~18! one
finds that the matrixY(v) assumes the form

Y~v!5gBD~ ê33d3!~ ê33d3!1gBT~ x̂3d3!~ x̂3d3!

2 iv (
j51,2

~m3êj !êj , ~31!

whereBT5(I /g\)(lT2l). The difference inx(v), caused
by lTÞl, is the emergence of a longitudinal resonance

V i
2/g25@p22~B0 /Bc!

2#BTBc ~32!

with the amplitudeL i
zz51; we obtain nowL0

zz50 for the
v50 line. TheV i resonance can be called an ‘‘ordering-by-
disorder’’ peak since it originates directly from the fluctua-
tions which stabilize the MF ground state having the largest
entropy.

2. General field direction

For a single-k structurex(v) depends in the MF theory
only on the directions ofB0 andQj sincedj iB03Qj and
because the matrixY(v) can be expressed using vectors
which are proportional toB0, Qj anddj . Therefore, in the
appropriate coordinate system one can writex(v) using as a
parameter only the angleu betweenB0 andQj . As before,
this system can be defined asẑiB0 and ŷiB03Qj and
x̂5 ŷ3 ẑ. The explicit magnetic structure assumingQj5Q3
is as follows:

m5~B0 /Bc!@sinu~cosfê11sinfê2!1cosuê3#i ẑ,

d15d250,

d35@p22~B0 /Bc!
2#1/2~sinfê12cosfê2!i ŷ. ~33!

One obtains two resonant frequenciesV1 andV2 given by

V6
2 5 1

2 $v0
21g2B0

26A~v0
22g2B0

2!214g2B0
2v0

2cos2u%,
~34!

where v0
25(BD /Bc)g

2(p2Bc
22B0

2). The same result was
first found4 for antiferromagnetically ordered solid3He, and

later for metallic fcc nuclear magnets.15 A practical differ-
ence is thatv0 has a strong field dependence in nuclear
magnets but can be taken as a constant in solid3He. The
amplitudesL6 have not been given earlier; if we assume
ŷ5sinfê12cosfê2 they can be written as

L6
xx5

g2B0
22V7

2

V6
2 2V7

2 1
V1

2 V2
2 cot2u

g2B0
2~V6

2 2V7
2 !

, ~35a!

L6
yy5

g2B0
22V7

2

V6
2 2V7

2 , ~35b!

L6
zz5

V7
2 ~V6

2 2g2B0
2!

g2B0
2~V6

2 2V7
2 !

, ~35c!

L6
xy5~L6

yx!*5 i
V6~g2B0

22V7
2 !

gB0~V6
2 2V7

2 !
, ~35d!

L6
xz5L6

zx52
V1

2 V2
2 cotu

g2B0
2~V6

2 2V7
2 !

, ~35e!

L6
yz5~L6

zy!*5 i
V6V7

2 cotu

gB0~V6
2 2V7

2 !
. ~35f!

It can be seen that Re$L2%1 Re$L1%5I which is consis-
tent with the resultx(0)5x0I , obtained by using the static
theory of Appendix I whenBÞ0 anducosuuÞ1. The results
of the dynamic and the static theory may disagree, however,
whenV2→0, as happens whenB0→0 or ucosuu→1. In this
casex(0)Þx0I as was shown in Sec. III A1. The discrep-
ancy indicates that the dynamic theory does not necessarily
yield the correct amplitude for the zero-frequency resonance
when one of the nonzero resonant frequencies moves to zero.
Instead, one must apply both theories to obtainx(v) in the
limiting case as was done in Sec. III A1.

The completely isotropic susceptibility of the single-k
structure of Eq.~33! is in striking contrast with the zero-field
behavior of the single-k configuration of Eq.~24!, in which
the susceptibility along the sublattice magnetization tends to
zero with decreasingT.

B. Triple-k state

We assumeB0i ê11ê2. In this case a triple-k structure
seems favorable in large enough fields according to several
calculations,1,19 consistently with neutron-diffraction mea-
surements on copper.22 The state can be written as

m5~B0 /Bc!2
21/2~ ê11ê2!i ẑ,

d15d25@~B0 /Bc!~p2B0 /Bc!#
1/2ê3i ŷ,

d35~B0 /Bc2p!221/2~ ê11ê2!. ~36!

If B050, this reduces to a special case of Eq.~24!; we as-
sumeB0.0 from here on. Static susceptibility for this spin
configuration isx(0)5x0I except forB0 /pBc51/2. Typi-
cally a small external field alongŷ twists d1 andd2 in the
easy planesê1•d150 andê2•d250.

At B0 /pBc51/2, however, Eq.~36! assumes an excep-
tionally symmetric form with one half of the spins along
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B0 and the other half parallel toŷ; in this case a field in the
y direction turnsd3 out of the easy-planeê3•d350 and, for
p51, the susceptibility is reduced toxyy /x05Bc /
(Bc1BD).

Therefore, the triple-k structure has generally a com-
pletely isotropic susceptibility, similarly to a single-k struc-
ture in an external field which is not in the direction of any of
the crystalline axes. A structure which closely resembles Eq.
~36! can also be found whenB0 is along a crystal axis.19 Its
properties are, however, more complicated because the spin
configuration is somewhat less symmetric than predicted by
Eq. ~36!. We do not discuss this case in more detail.

For the configuration given by Eq.~36!, there are two
resonances withvÞ0, one in the component parallel to the
static field and the other in the transverse components of the
susceptibility matrix. The transverse resonant frequency
v5V' is given by

V'
2 /g25B0

21BD~pBc2B0!p . ~37!

The nonzero components of the amplitudeL' at the reso-
nance are

L'
xx51, L'

xy5~L'
yx!*5 igB0 /V' , L'

yy5~gB0 /V'!2.
~38!

Apart from the value of the resonant frequency,L' is thus of
the same form as Eq.~28!. For the parallel resonance at
v5V i we find

V i
2/g25~BD /Bc!B0~pBc2B0! ~39!

andL i
zz51.

At V50 there is a transverse resonance with

L0
yy5xyy /x02~gB0 /V'!2, ~40!

wherexyy5x0 except atB0 /pBc51/2 as discussed above.

IV. SIMULATION STUDIES OF SPIN DYNAMICS

Thermal fluctuations lead to deviations from the mean-
field theory outlined above. Their origin is the inaccuracy of
the MF assumption̂I i

mI j
n&5^I i

m&^I j
n&. To study these effects

we investigate by direct numerical simulation classical spins
interacting through the Hamiltonian

H5J1(
i. j

NN

Ŝi•Ŝj1D1(
i. j

NN

Ŝi•@ I23r̂ i j r̂ i j #•Ŝj

1J2(
i. j

NN

Ŝi•Ŝj2B•(
i
Ŝi , ~41!

whereŜi ’s indicate theN spin vectors at the fcc lattice sites.
We have replaced (g\/I )B in Eq. ~1! by B. Both the Hamil-
tonian of Eq.~1! and the temperature of the quantum-spin
model have been divided byI 2 and the classical limit
I→` has been taken to obtain the Hamiltonian of Eq.~41!
and the corresponding classical temperature. We measure the
magnetic fieldB and the angular frequencyv in terms of the
energyJ1 and givexab asN21( i]^Si

a&/]Bb, i.e., using the
units23 of the inverse energyJ1

21.

In order to stabilize type-I order we selectJ1.0,
J2520.15J1 andD150.35J1; in this case the global mini-
mum of the eigenvalues ofA(q) occurs for type-I ordering
vectors.24 D1 corresponds to a moderately large anisotropy,
about the same magnitude as was found for the nearest-
neighbor silver nuclei.25 We obtain the eigenvalues
l524(J11D1)16J2, l12l512D1, and l0512J116J2
for the spin-spin interactions of the model given by Eq.~41!.

A. Monte Carlo studies of ground-state selection

We study a lattice ofN516354096 spins with periodic
boundary conditions, using the MC algorithm26 of Ref. 27.
Before discussing dynamical considerations in Secs. IVB–
IVD we describe briefly how we deduce the stability of the
structures that were investigated in Sec. III for the static case.

In zero field, we inferred from slow cooling and heating
runs that the spins undergo a transition between paramag-
netic and type-I states atkBTN /J151.0760.02. We found,
therefore, a reduction ofTN

MF/TN
MC'2.0 from the MF value.

The spin configuration is the state given by Eq.~24!, with
ŷ along a crystal axis. We systematically found this structure
also after abrupt quenches fromT5` to T/TN'0.2. Alto-
gether 10 quenches were carried out by starting from a ran-
dom spin structure26 and by simulating 2000 Monte Carlo
updates per spin~MCS! at kBT/J150.2. We found
udj u'0.94 and 9 timesdj was along a crystal axis perpen-
dicular toQj within 7° at the end of the simulation. Once we
found an angle of 16° which appeared to result form a slow
decay of a structure with an angle of about 45° betweendj
and the crystal axes in the easy-planedj•êj50.

The collinearity of the zero-field structure is consistent
with Monte Carlo simulations of models with only isotropic
nearest-neighbor interactions.28–30 As a consequence of the
dipolar interaction, spins align parallel to a crystalline
axis.27,31,32According to some calculations, however, spins
should have an angle of 45° with a crystalline axis.19

In external fields, there are several possibilities for the
angle betweenB andQj : the difference in their free energies
vanish whenB→0. There is also the possibility for triple-k
structures. As a result, metastable states might appear in
quenches and a careful procedure must be used to determine
the ground state.

We carried out five cooling runs26 at B/Bc50.2 with
Bi ê3. The simulations were started from a random spin con-
figuration atkBT/J151.2, andT was reduced in 10 steps to
kBT/J150.9. At each temperature, 2000 Monte Carlo up-
dates per spin~MCS! were carried out. In all runs the con-
figuration given by Eq.~24! was found below the ordering
temperature, with eitherd3i ê1 or d3i ê2 within the statistical
accuracy.

We also studied the field directionBi ê21ê3 with
B/Bc50.2. A similar cooling procedure was employed as
described above forBi ê3. In all five simulations, we found
the configuration

m5~B0 /Bc!~ ê11ê2!i ẑ,

d15d350,

d25@p22~B0 /Bc!
2#1/2ê3i ŷ, ~42!
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or a structure withd1i ê3 and d250; the configurations are
related by a symmetry operation. The structure in Eq.~42! is
equivalent to Eq.~33! whenu5p/4.

As a third case, we investigatedBi ê21ê3 with
B/Bc50.4. In all five runs we found the triple-k structure of
Eq. ~36! with various sign combinations ofdj , resulting
from different selections for the origin of the space coordi-
nater i in Eq. ~2!.

Our results for the ground-state selection, both for the
single-k and triple-k structures, are in good agreement with
earlier Monte Carlo simulations which were used to model
the spin system of silver.31,32

B. Dynamics: Numerical techniques

Our numerical scheme to obtain NMR spectra is in many
ways similar to our earlier approach,14 which dealt with the
NMR response of exchange-coupled spin systems of two
spin species in a high external magnetic field. Our method is
also similar to the techniques employed in the calculation of
the dynamic structure factor.34,35 Linear-response theory36

yields the dynamic susceptibility

x~v!5
1

kBT
@C~ t50!1 ivC~v!#, ~43!

where C(v)5*0
`C(t)eivtdt. The autocorrelation matrix

C(t) is given by

C~ t !5
1

N
^@M ~ t01t !2^M &#@M ~ t0!2^M &#&. ~44!

HereM5( iŜi is the total spin.C(t) was evaluated for a
state reached by simulated cooling.

The time dependence ofM was found by solving the mi-
croscopic equations of motion

dŜi
dt

5
]H
]Ŝi

3Ŝi . ~45!

The conventional fourth-order Runge-Kutta method, with the
time stepDt50.04J1

21, was employed to solve Eqs.~45!.
During integrations, lengths of spins were conserved within
0.001 and internal energy per spin within 0.001J1.

Fourier transforms of autocorrelations were calculated
from

C~v!5E
0

t max
C~t!exp@2~ts!2/21 ivt#dt. ~46!

We selectedt max by setting exp@2(tmaxs)
2/2#50.05 so that

the finite-time cutoff produced only weak spurious oscilla-
tions. This scheme convolvesC(v) with a resolution distri-
bution which is approximately (A2ps)21exp(2v2/2s2). An
average overn integrations from different initial conditions
was taken in evaluating the autocorrelation matrix, Eq.~45!.
We employeds/J150.25 andn5200. Thet0 average was
calculated over 0.5tmax; the total evolution time for each
initial state was, therefore, 1.5tmax after which a simulation
of 200 MC updates per spin was carried out to produce the
initial state for the next time integration.37 The average value
of ^M & was used during the total time of all integrations.

To compare the MF results with the direct numerical pro-
cedure we calculated the autocorrelation matrix within the
MF theory. CMF(t) was then transformed tox(v) in the
same way asC(t). This procedure replaced thed functions
in the anti-Hermitian part ofxMF(v) by similar resolution
distributions as were used in the spin dynamics simulation.

C. Dynamics in zero field

In Figs. 2~a!–2~c! the dashed lines indicate the paramag-
netic spectrum atT/TN

MC51.07 in zero external magnetic
field. The curves were calculated under the assumption of
direction independence:x(v)5 Tr$x(v)%I /3. This holds
within our numerical accuracy. The static susceptibility is
about 95% of the MF-predictedx0 for the ordered state.

All continuous curves in Figs. 2~a!–2~c! are spectra for
the single-k structure of Eq.~24! at T/TN

MC50.93. The sub-
lattice polarization iŝ p&MC'0.58, as calculated from

umu21ud1u21ud2u21ud3u25p2, ~47!

with an average over the simulations@see Eq.~2!#. The main
resonance, Eq.~27!, can be seen in Fig. 2~a!. The ‘‘ordering-
by-disorder’’ peak, Eq.~32!, is displayed in Fig. 2~c!. This
peak can be analyzed for the strength of the effective thermal

FIG. 2. ~a!–~c!: Form functions for magnetic resonance in zero external field as given by simulations of spin dynamics: Dashed lines
have been calculated forkBT/J151.15 above the antiferromagnetic ordering temperature, while the continuous curves are for
kBT/J151.0 belowTN . The AF spin structure is given by Eq.~24! with p50.58 andŷ5ê2. Dotted lines correspond to mean-field results.
In ~a!, ~b!, and~c! the MF spectra have been divided by 4, 16, and 8, respectively, to fit them into the figures.
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anisotropy: we obtain BT /BD5(VMC
zz /VMC

xx )2

50.03••• 0.06. The errors are rather large since the peak is
not very sharp.

Both in Fig. 2~a! and in Fig. 2~c! the integrated static
susceptibility agrees within 2% with the MF resultx0, al-
though we believe that the accuracy of our simulatedx(0) is
only about 10%. In Fig. 2~b!, the shape of Im$xyy/v%,
which corresponds to the component parallel to the antifer-
romagnetic momentd3i ê2i ŷ, is very similar to the paramag-
netic spectrum shown by the dashed curve. The static sus-
ceptibility seems to agree withxyy/x050.80, obtained from
the MF Eq.~26! using p5^p&MC50.58. At lower tempera-
tures, however, the agreement becomes worse. At
T/TN

MC50.48, see Fig. 3~b!, we found that Eq.~26! with
p5^p&MC yields a susceptibility which is about 25% smaller
than the value found from simulations. AtT/TN

MC50.24 the
MF prediction is 40% smaller than the simulated result. Bet-
ter agreement could probably be obtained by calculating
x(0) using a more realistic approach like the spin-wave
theory.38

It is interesting to compare the peak positionsVMC
xx of the

simulated Im$xxx/v% curves with MF predictions. There are
two ways to do this. The MF resonant frequencies can be
calculated either by usingpMF at real temperatures for sub-
lattice polarizationsp, or by takingp5^p&MC . We find that
VMC

xx is estimated better by usinĝp&MC at large polariza-
tions, whereas whenT is only slightly less thanTN

MC use of
p5pMF yields a more accurate result. However, the form-
function-averaged resonant frequency,*0

` Im$xxx%dv/

*0
` Im$xxx/v%dv is in each case estimated better by

^p&MC . In the figures, we always calculate the MF curves
usingp5^p&MC .

In Figs. 3~a!–3~c! we have evaluated the spectra for the
configuration of Eq.~24! at the temperatureT/TN

MC50.48
where^p&MC'0.85. The agreement between the MF theory,
using p5^p&MC , and the simulation is now considerably
better for the main peak, as is found by comparing Fig. 3~a!
with Fig. 2~a!. The peak due to thermal anisotropy, shown in
Fig. 3~c!, is clearly sharper than atT/TN

MC50.93. For the
anisotropy field we obtainBT /BD5(VMC

zz /VMC
xx )250.018. In

a run atT/TN
MC50.24 we foundBT /BD50.011. The inte-

grated intensities of the MF and simulated peaks agree
within statistical accuracy in Figs. 3~a! and 3~c!, while the
situation is worse in Fig. 3~b! as discussed earlier.

D. Dynamics in external fields

1. Single-k structures

The continuous line in Figs. 4~a!–4~c!is the spectrum of
the single-k structure of Eq.~24! at B/Bc50.2ê3, when
T/TN

MC50.48; this corresponds tôp&MC'0.85. The relation
^m&5B/Bc was found to be valid for the MC simulations in
the ordered state within about 1%. Because of the external
field, the primary antiferromagnetic resonance can be seen
also in the diagonal component for the direction parallel to
the antiferromagnetic momentd3, as is shown by Fig. 4~b!.
The canting caused byB makes Eq.~26! somewhat more
accurate, and the MF result for staticxyy is now only 15%
smaller than in the simulation. The discrepancy can be attrib-

FIG. 3. ~a!–~c!: Form functions whenB50 and kBT/J150.5. The spin structure is given by Eq.~24! with p50.85 andŷ5ê2.
Continuous lines are spectra obtained from simulations and dotted lines correspond to MF results. Results of two simulations are shown to
illustrate the numerical accuracy. In~b! and ~c! the MF spectra have been divided by 8 and 2, respectively.

FIG. 4. ~a!–~c!: Form func-
tions at B/Bc50.2 when Bi ê3
and kBT/J150.5. Polarization
p50.85 and the spin structure is
given by Eq. ~24! with ŷ5ê2.
Continuous lines: simulations;
dotted lines: MF results. In~b!
and ~c! the MF spectra have been
divided by 4.
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uted to low-frequency contributionsv/J1,6, while the in-
tensity of the resonance peak atv/J1'8.1 is in close agree-
ment with the MF formula, Eq.~28!, usingp5^p&MC . The
intensities of the simulated peaks and MF resonances in Figs.
4~a! and 4~c! agree within numerical accuracy. We found for
BT /BD50.015 by solving Eqs.~27! and ~32!.

Our results for the single-k structure of Eq.~42! in a field
Bi ê11ê2 are shown in Figs. 5~a!–5~c! whenB/Bc50.2 and
T/TN

MC50.48. The sublattice polarization is again
^p&MC'0.85. The MF dynamics of this structure is discussed
in Sec. III A2. The intensities of the simulated peaks and the
MF resonances are in agreement, except for the case illus-
trated in Fig. 5~b! where the intensity of the simulated low-
frequency peak is 12% smaller than the MF prediction. The
low-frequency peaks are rather wide and have an interesting
shape; there is some intensity even at zero-frequency as is
seen from Fig. 5~b!.

2. Triple-k structure

Spectra for the triple-k structure of Eq.~36! in a field
Bi ê11ê2 are shown in Figs. 6~a!–~c!. The simulation was
carried out at B/Bc50.4 and T/TN

MC50.48 where
^p&MC'0.85. The perpendicular resonances can be seen in
Figs. 6~a! and 6~b!. The v50 peak, predicted by the MF
theory@see Eq.~40!#, has shifted to a finite frequency in the
simulation as is shown by Fig. 6~b!. The static susceptibili-
ties obtained from the simulations are smaller by 15 and
25 % than the MF results in Figs. 6~a! and 6~b!, respectively.
The discrepancy for intensity is particularly large for the
low-frequency peak in Fig. 6~b!. These effects might be
caused by an effective thermal anisotropy which was consid-
ered in detail for a single-k configuration in Sec. III A1. The
susceptibility anomaly atB/Bc5p/250.425, discussed in
Sec. III B , might also play a role. However, for the parallel
peak shown in Fig. 6~c!, the simulated intensities are in close
agreement with the MF result.

When we studied the spin dynamics in a slightly higher
field, B/Bc50.5, but at the same temperature, an interesting
qualitative difference was found: The low-frequency peak in
Im$xyy(v)%/v then is atv50, indicating the presence of
an AF soft mode which is not destroyed by thermal anisot-
ropy.

V. COMPARISON WITH EXPERIMENTS

NMR measurements have been made on the antiferro-
magnetically ordered states of copper and silver.39–41 The
experiments were done on polycrystalline foils by employing
the continuous-wave technique. Since the direction of the
external magnetic field with respect to the crystalline axes
affects the spin structure and hence the NMR line shape as
well, it is rather difficult to analyze the data in detail when
the field is different from zero.

A. Copper

We have compared the simulated and measured39 NMR
spectra of copper in our earlier paper.6 Experiments in zero
field revealed two resonances in the NMR absorption curve.
The one at high frequencies was interpreted as the conven-
tional AF resonance, while the one at low frequencies was
identified as the ‘‘ordering-by-disorder’’ peak of a single-k
structure@see Fig. 2~c!#. A rather good fit between the mea-
sured and simulated results was found by assuming that the
experimental data correspond to a superposition of antiferro-
magnetic and paramagnetic domains.

B. Silver

Hakonen and his co-workers have measured NMR line
shapes of antiferromagnetically ordered silver nuclei in a
polycrystalline sample belowTN 5 560 pK.40,41The spectra
were characterized by two antiferromagnetic resonant fre-

FIG. 5. ~a!–~c!: Form func-
tions at B/Bc50.2 when
Bi ê11ê2 andkBT/J150.5. Polar-
izationp50.85 and the spin struc-
ture is given by Eq.~42!. Continu-
ous lines: simulations; dotted
lines: MF results of Sec. III A 2. In
~b! and ~c! the MF spectrum has
been divided by 2.

FIG. 6. ~a!–~c!: Form func-
tions at B/Bc50.4 when
Bi ê11ê2 andkBT/J150.5. Polar-
izationp50.85 and the spin struc-
ture is the triple-k configuration of
Eq. ~36!. Continuous lines: simu-
lations; dotted lines: MF results.
In ~b! and ~c! the MF spectrum
has been divided by 2.

54 9283MAGNETIC RESONANCE OF TYPE-I fcc ANTIFERROMAGNETS



quencies. The observed positions of the resonances have
been indicated in Fig. 7~b! at different external magnetic
fields.

According to recent neutron-diffraction measurements,2

the ordered spin structure of silver is a single-k type-I state
whenB0 i @001#. The spin configuration for other field align-
ments has not been investigated by neutrons so far. Accord-
ing to theoretical calculations,19,31–33 triple-k structures
should be stable in elevated fields. However, for various field
directions withB0,30 mT, single-k states should dominate
the phase diagram. Therefore, we try to interpret the data on
this basis.

The dynamic susceptibility matrix of a single-k structure
in an external field was given in Sec. III A2. In polycrystals,
the resonant frequencies of Eq.~34! form two bands,
uvu<min$gB0,v0% and max$gB0,v0%<uvu<Ag2B0

21v0
2. We

calculate the absorption spectra for these two cases.
~i! We first assume that fluctuations stabilize, among the

three possibilities, the single-k structure for which the order-
ing vector maximizes (Qj•B0)

2. The condition of maximum
(Qj•B0)

2 is the simplest possible selection rule which is

consistent with the neutron-diffraction data2 and with most
of the theoretical predictions,19,31–33including the low-field
MC simulations of Sec. IV.

Whenv is in one of the two bands andv.0 the dissi-
pative part ofx(v) becomes

xAH~v!/v5
3p ix0

2
P~cosu!L̃6U ]V6

]cosu U
v25V

6
2 ~cosu!

21

,

~48!

where the subscript AH denotes the anti-Hermitian part of
x(v). The quantity cosu is the positive root of the equation
V6

2 (cosu)5v2, and subscripts1 and 2 denote the upper
and the lower bands, respectively. Forv,0, the matrix
L̃6 in Eq. ~48! should be replaced by its complex conjugate.
The quantityP(cosu) is just the probability with which the
angleu,p/2 betweenB0 and a crystalline axis is the small-
est of the three possibilities when all orientations of the crys-
tallites have the same probability. We find

P~cosu!5H 1, cosu>1/A2
12~4/p!arccoscotu, 1/A3,cosu,1/A2
0, cosu<1/A3

.

~49!

The nonzero components of the matrixL̃6 are

L̃6
xx5L̃6

yy5~L6
xx1L6

yy!/2, L̃6
xy5~L̃6

yx!*5L6
xy ,

L̃6
zz5L6

zz. ~50!

The quantities on the right-hand sides were given by Eq.
~35!.

Equation~48! can be obtained as follows:xAH(v) is first
averaged over orientations of microcrystallites using Eq.~19!
and Eqs.~34! and~35!. The orientations can be parametrized
by three Euler angles. The first fixes theŷ axis in Eq.~33!
with respect to the laboratory coordinates; in the calculation
L6 is replaced with its averageL̃6 over all rotations about
ẑ. The quantityu can be selected as the second Euler angle.
In the course of the calculation one can employ the formula

g~v!5E
0

p/2

f ~cosu!d@v2V6~cosu!#sinudu

5 f ~cosu!U ]V6~cosu!

]cosu U
v5V6~cosu!

21

. ~51!

The average over the third angle, related tof in Eq. ~33!,
yields the functionP(cosu).

~ii ! In the second case there is no preference between the
three type-I ordering vectors in various crystallites and all
values cosu are equally probable. The spectrum for positive
frequencies is then simply

xAH~v!/v5
p ix0

2
L̃6U ]V6

]cosu U
v25V

6
2 ~cosu!

21

, ~52!

FIG. 7. Calculated intensities and positions of antiferromagnetic
resonances in silver for an axial excitation field transverse (') or
parallel (i) to the static external field. A single-k structure with
polarizationp50.7 is assumed.~a,c! Intensity of the lower absorp-
tion band for transverse and parallel excitations, respectively.~b,d!
Average frequencies of the lower and upper resonances for trans-
verse and parallel excitations. The dashed line in~b! shows the
Larmor frequencygB0/2p of isolated spins for comparison. Solid
and open circles in~b! indicate the measured positions of the lower
and upper modes, respectively~Ref. 40 and 41!. In all frames the
continuous lines correspond to the case in which the ordering vector
maximizing (B0•Qj )

2 is selected in each microcrystallite; the dot-
ted curves show the result for an equal distribution of the three
type-I ordering vectors.
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where the notations are the same as in Eq.~48!.
The resonant frequencies, which are obtained from Eqs.

~52! and~52!, are restricted to two bands which can be rather
sharp. Some components of Eq.~52! even have integrable
singularities of the type 1/AuV02vu at the top of the lower
or at the bottom of the higher band which occur at
V05gB0 or atV05v0.

It is of interest to study the intensitiesI6 of the two
bands, defined by I6

' 5(2/ipx0)*6xAH
xx (v)dv/v or

I6
i 5(2/ipx0)*6xAH

zz (v)dv/v, where*6dv indicates inte-
gration over a positive-frequency band. The sums of the in-
tensities satisfyI2

' 1I1
' 5I2

i 1I1
i 51. Figure 7 illustrates re-

sults for the casep50.7 with exchange parameters such that
Bc5155 mT and BD /Bc50.15, which correspond to the
calculated forces between nuclear spins in silver.25,42

Figure 7~a! showsI2
' , the intensity of the low-frequency

branch of the spectrum when the excitation field is transverse
to the external field, as a function ofB0. SinceI1

' 512I2
' ,

the ratio I2
' /I1

' decreases with field as observed.43 The de-
crease is considerably smaller when the ordering vectors
maximizing (B0•Qj )

2 are selected than when all domains are
equally populated. Important additional insight to the domain
selection can be obtained by measuring also the parallel reso-
nance, shown in Fig. 7~c!, since the difference between the
two domain distributions is then larger.

Average frequencies of the upper and lower bands are
given by ^v&6

' 5(2/ipx0I6
' )*6xAH

xx (v)dv and ^v&6
i

5(2/ipx0I6
i )*6xAH

zz (v)dv; these quantities are shown in
Figs. 7~b! and 7~d! for the transverse and parallel resonances,
respectively. In the transverse case, it is possible to compare
our calculations against the NMR measurements of Hakonen
et al.40,41There is rather good agreement. It seems, therefore,
that the observed resonances can be interpreted in terms of a
single magnetically ordered phase with a single-k structure.
The same conclusion was made by the experimentalists.40,41

One has to note, however, that the experimental positions of
the high- and low-frequency branches were obtained using a
rather complicated procedure. It is not clear how a rigorous
comparison should be carried out; the problem is especially
difficult for the low-frequency mode.

Finally we would like to remark that the ground-state con-
figuration of a single-k state is a subtle problem in low ex-
ternal fields, whenB0 is not perpendicular to any of the
crystalline axes. The reason is the conflict between
fluctuation-induced thermal anisotropy and Zeeman energy.
As we found in our Monte Carlo simulations, discussed in
Sec. IVA , spins at zero field align along a crystalline axes,
and so does the correspondingdj vector. In a field, however,
MF theory requiresdj iB03Qj @see Eq.~33!#. Therefore, for
most field directions, a significant reorientation of spins
should occur in low fields. The nature of this transition is not
known. One can expect that, at least in some field directions,
the reorientation is similar to a spin-flop transition.8 It is of
first order and can, therefore, show hysteresis. The spin-flop
field should be on the order ofABTBc which, for the fluc-
tuations fields found in Sec. IVC, is somewhat below
0.1Bc . More experimental and theoretical work is needed to
understand this reorientation process in silver.

VI. CONCLUDING REMARKS

We extended earlier MF calculations15 to extract NMR
spectra for type-I antiferromagnets. MF predictions were
compared with results obtained using numerical methods.
Our computational technique combines Monte Carlo simula-
tions with numerical solutions of the equations of motion.
This makes it possible to calculate complete NMR absorp-
tion line shapes for a classical spin system including dipolar
interactions with neighboring spins. One has to remember,
however, that our technique is practical only for spin Hamil-
tonians with short range spin-spin interactions. Simulations
of such models enabled us to compare the locations and in-
tensities of the mean-field NMR resonances against in-
principle-exact numerical results. Although the dipole-dipole
interaction was truncated to nearest neighbors, with a
strength of the same magnitude as between nuclear spins in
silver, the results are expected to be qualitatively similar for
a large range of interaction constants. Apart from the type-I
ground state, the only essential assumption we made was the
sign of the anisotropic spin-spin interaction.

The simulations sorted out the cases where the MF ap-
proach is adequate from those where it fails to describe the
essential dynamics. Simulations provide probably the most
powerful practical method to calculate NMR spectra for dis-
ordered spin structures in paramagnetic regions. Slightly
above the ordering temperature, the spectra can show non-
trivial precursor effects caused by short-range correlations.

In the ordered states the MF theory proved useful. We
found, for example, that the MF prediction for the principal
AF resonance, in the direction perpendicular to the magnetic
moments, is rather good. However, the MF theory fails al-
most completely in its description of the diagonal component
of the dynamic susceptibility tensor along the direction par-
allel to the antiferromagnetic moments: In these cases the
extended low-frequency intensity distributions inx/v cannot
be accounted for by the MF theory.

We found that in some cases thermal effects which lift the
degeneracy of the mean-field ground states can be seen di-
rectly by inspecting a suitable component of the dynamic
susceptibility matrix. We modeled the removal of the MF
degeneracy by introducing an effective thermal anisotropy
field and studied its strength numerically. AtT'TN , the
thermal anisotropy field, which confines the spins to the easy
planes, was 3–6 % of the dipolar anisotropy field. We expect
that thermal-fluctuation-induced absorption peaks can be
found in antiferromagnetically ordered solid3He as well.
The low-field, up-up-down-down phase4,5 has an easy-plane
anisotropy and, therefore, there is a clear analogy with the
type-I antiferromagnets investigated by us.

The NMR response of antiferromagnetically ordered
nuclear spins in silver at nanokelvin temperatures were ana-
lyzed using the MF theory. The observed positions and in-
tensities of the two antiferromagnetic resonances could be
explained rather well; this was the case for copper, too. To
conclude, we have demonstrated that numerical simulations,
combined with mean-field calculations, provide a powerful
tool for investigating dynamics of magnetically ordering spin
systems.
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APPENDIX A: STATIC SUSCEPTIBILITY

Differentiating Eq.~3! with respect toB, we find for a
type-I spin configuration

2l
]Si

a

]bb
5(

m
S dam2t

Si
aSi

m

uSi u2
D S dmb2(

n, j
Ai j

mn
]Sj

n

]bb
D .
~A1!

Heredab is the Kronecker symbol and we have introduced
Si5^I i&/I and b5g\B/I , and defined a functiont5t(p)
which can be written in a parametric form:

t@p~x!#512
x

p~x!

dp~x!

dx
, p~x!5BI~x!. ~A2!

At zero temperature one hast51 which implies that
Si•]Si /]bb50, consistently with the conservation of lengths
uSi u51. At small polarizationst'0 sincep is then approxi-
mately proportional to x. In this case one obtains
x(0)'x0I . Fourier transformation of Eq.~A1! yields

(
m

@dam~l02l!2tl0D0
am#

]mm

]bb

2t(
j51

3

(
mn

Dj
amAmn~Qj !

]dj
n

]bb
5dab2tD0

ab ~A3!

and

2tl0(
m

Dj
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mn
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am!Amn~Qj !

2damdmnl#
]dj

n

]bb
2t(

mn
Dk

amAmn~Ql !
]dl

n

]bb

2t(
mn

Dl
amAmn~Qk!

]dk
n

]bb
52tDj

ab, ~A4!

where (j ,k,l ) stands for (1,2,3), (2,3,1), or (3,1,2). We have
written

Si
aSi

b

uSi u2
5D0

ab1(
j51

3

Dj
abcos~Qj•r i ! ~A5!

with

p2D0
ab5mamb1d1

ad1
b1d2

ad2
b1d3

ad3
b , ~A6!

p2Dj
ab5madj

b1dj
amb1dk

adl
b1dl

adk
b . ~A7!

Indices (j ,k,l ) are as in Eq. ~A4!. The susceptibility
xab(0)5m0r(g\)2]ma/]bb can now be found by solving
Eqs.~A5! and ~A6!.

The solution is slightly complicated by the fact that the
equations do not fix certain linear combinations of the quan-
tities ]dj

a/]bb ; this behavior is related to the ground-state
degeneracy within the MF theory. A possible way to elimi-
nate this inconvenience is to substitutel with l2e in the
left-hand sides of Eqs.~A1!, ~A5!, and ~A6!; the equations
can be then solved and the limite→0 taken. The physical
meaning of the procedure lies in the fact that any MF ground
state can be stabilized by adding a space-dependent external
field, proportional toe, in such a way that this field is at
every site along the spin direction of the given structure. A
small positivee amounts thus to the assumption of a stable
structure. In reality the stability is provided by certain ther-
mal and quantum mechanical effects which are ignored in
the MF description.
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11J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, J. Phys.~Paris!
41, 1263~1980!.

12C.L. Henley, Phys. Rev. Lett.62, 2056~1989!.
13A.G. Gukasov, Th. Bru¨ckel, B. Dorner, V.P. Plakhty, W. Prandl,

E.F. Shender, and O.P. Smirnov, Europhys. Lett.7, 83 ~1988!.
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O.V. Lounasmaa, and A.S. Oja, J. Low Temp. Phys.62, 433
~1986!.

40P.J. Hakonen and S. Yin, J. Low Temp. Phys.85, 25 ~1991!.
41P.J. Hakonen, S. Yin, and K.K. Nummila, Europhys. Lett.15, 677

~1991!.
42The valueBc 5 155mT is for a spherical sample. For a sample

with a zero demagnetizing factorBc5140mT, which is some-
what higher than the zero temperatureBc5100610mT extrapo-
lated from experiments~Refs. 2 and 41!.

43See the data in Fig. 19 in Ref. 41. There is a misprint in the
figure: the vertical axis should beI2 /I1 instead ofI1 /I2 .

54 9287MAGNETIC RESONANCE OF TYPE-I fcc ANTIFERROMAGNETS


