PHYSICAL REVIEW B VOLUME 54, NUMBER 13 1 OCTOBER 1996-I

Magnetic resonance of type-I fcc antiferromagnets
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We calculate magnetic-resonance absorption curves for an assembly of classical spins located in an fcc
lattice with spin-spin interactions which stabilize antiferromagnetic order of the first kind. The only source of
anisotropy in the model is the dipole-dipole interaction which, at equilibrium, confines the ordered moments
into planes perpendicular to the respective type-l ordering vectors. Our principal tool of analysis combines
numerical integration of the equations of motion with Monte Carlo simulations. Complete absorption line
shapes for classical spins can be calculated using this technique. Spin dynamics is investigated as well by
extending our earlier mean-field analysis, the results of which are compared with the simulations. Special
attention is paid to a sum rule that relates the intensities of the resonance peaks to the static susceptibility. To
this end, we calculate the static susceptibility matrixes for certain skgled triplek type-l structures. We
investigate, in particular, examples of cases where thermal fluctuations beyond the mean-field theory shift
resonance lines from zero frequency to a finite value. It is demonstrated that this effect is related to the
so-called “ordering-by-disorder” mechanism in which fluctuations stabilize a unique ground state in a con-
tinuously degenerate manifold. Our results explain several features observed in recent NMR studies of anti-
ferromagnetic nuclear-spin ordering in copper and silver at nanokelvin temperatures. Analogies with spin
dynamics in solid®He and superfluidHe-A are briefly discussedS0163-182896)06337-(

I. INTRODUCTION Although the theory of AF resonance was developed in
the 1950's’~° there are several complications which hamper
Spin dynamics in antiferromagnets in an fcc lattice havedirect application of this early work to the present case. Most
become a subject of considerable current interest as the reswolt the NMR data on copper and silver were measured in zero
of extensive studies of nuclear magnetic ordering in simpleexternal field. As the crystal structure is cubic in these met-
metals such as copper, silver, and rhodium at nanokelvials, there is no single-spin anisotropy in the Hamiltonian, and
temperature$.Of particular importance is antiferromagnetic the positions of the NMR lines are determined by spin-spin
(AF) ordering of the first kind which has been found in cop- interactions and by the ordered structure. In most electronic
per and silvef, and is expected in rhodiuthAnother inter-  systems in which AF resonance has been investigated, the
esting aspect of spin dynamics in these systems derives frogjuation is different: Anisotropy caused by noncubic crystal
the inherent frustration in the fcc lattice which leads to eX-symmetry and/or magnetoelastic effects is important.
tensive ground-state degeneracy. We have recently shown a giagonal component of the dynamic susceptibility ten-
that subtle fluctuation effects, which lift the degeneracy,sorx(w) can be written a((w)= x'(w)+ix"(w), where

leave a signature in the nuclear-magnetic resonance S'g.n%'e “complex quantity has been divided into its real and
Spin dynamics of type-I fcc antiferromagnets have also in-

teresting similarities with superfluidHe-A and solid 3He. ~ 'madinary parts. Energy absorption in an axial radio-
These features have provided the general motivation for thgequency field is prqportlongl to the Imaginary p’%h(“’)', ,
present study. In resonance experiments in a low f|eld_, however, it is
Early evidence of magnetic ordering in copper and silverMore convenient to look at théorm function x"(w)/,
was obtained from measurements of the dynamic susceptibiwhich is connected to the static susceptibility’(0)
ity in zero external field, or in a low field below the critical through —a Kramers-Kroenig relation, viz., x'(0)
value! Characteristic changes were observed in the absorp=(2/7)[;x"(w)dw/w. In the paramagnetic state when
tion signal when the system underwent AF ordering. TheB=0, x"(w)/w peaks aiw=0; such a signal is called zero-
NMR line shape in the AF state yields information on thefrequency resonance. The physical meaning of this response
symmetry of the spin structure. In special cases, the nature @lan be illustrated by considering the signal caused by a small
the magnetic order can be obtained from NKfRSuch in-  steplike change in the external field. When the zero-
formation would be particularly useful for nuclear magnetsfrequency resonance curve has, for example, the Lorentzian
since neutron-diffraction measurements are exceedingly difform, the system reacts via a process in which the magneti-
ficult, albeit feasible in certain casédUntil recently® how-  zation relaxes exponentially towards a new equilibrium
ever, analysis of antiferromagnetic NMR spectra of coppewnalue, and the relaxation time is essentially the inverse of the
and silver has yielded little information on the spin structure linewidth at thew=0 resonance.
Even some important qualitative features of the AF reso- According to measurements on copfleand our theoreti-
nance spectra of copper and silver were not fully understood;al work? relaxation in the paramagnetic state becomes more
such as the number of maxima in the absorption curve.  complicated and clearly deviates from a simple shape such as
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the Lorentzian when spins are cooled towards the ordering
temperaturely . In the AF state, the line shape undergoes a
clear changey”(w)/w develops a peak, or several peaks, at
a finite frequency. These are called AF resonances. At this
point, the matrix nature of(w) becomes important since the
symmetry of y(w) might be reduced in antiferromagnetic
state, and all diagonal componentsydiw) do not necessar-

ily behave in the same way. -

The zero-frequency peaks of the paramagnetic state can
follow several alternative scenarios beld@y. (i) The peak ) ) )
can shift to higher frequencies to become the AF resonance, /G- 1. lllustration of a type-I fcc antiferromagnet. In this
(i) It may stay atw=0 or, (iii) it it may shift to a low single-k state the ordering vect@= Q5;=(m/a)e;. The structure

S consists of ferromagnetic sheets in which the sglng| are either
frequency which is, however, clearly below the AF reso- . , ) : .
nance +d; or —dj in a zero external field. Dipolar anisotropy confines

. . . . .ds to the plane perpendicular &.
The last two scenarios have an interesting relationship> P perpendicular &

with the geolm(.etric frustration of the fcc lattice. A conse- res of AF resonance curves. By comparing the MF predic-
quence of this is that the type-| antiferromagnet shows congons with the simulated results, we can test the reliability of
tinuous degeneracy within the mean-fieMdF) theory. From .o \F dynamics.

this one expects the presence of soft modes, i.e., spin-wave Thig paper is organized as follows. In Sec. Il we discuss

excitations with zero energy. If there are soft modes with ahe MF theory of the AF resonance in type-I fcc antiferro-

zero wave vector, their presence should be seen by NMRyaqnets. The general expressions for the resonance frequen-

since this technique probes excitations which have a nonzergeg and their intensities are derived. Special attention is paid

magnetization. _ __to the sum rule which relates the intensities of the resonances
In most cases when one might expect a soft mode, we fing; finite frequencies and ai=0 to the static susceptibility.

a peak in the form .furllct|on at a low but nonzero frequencyry, thig end, we calculate complete static susceptibility ma-

(see Sec. VD This is explained by the presence of an yiceg for type-I structures. We also briefly discuss similari-

artificial hidden symmetry in the MF Hamiltonian. When yje hetween the spin dynamics of type-I antiferromagnets
fluctuations beyond the MF theory are considered, the, q of solid ®He and superfluiPHe-A. In Sec. Il we de-

“’ﬁzo resonance is foufido move to a f}nite I}requelrlmy. The seribe specific results for single-and a triplek structures

effect can be understood in terms of a thermally inducedyhich gre likely candidates for the ground states of copper
anisotropy field which is also respon5|ble_for I|ft|n_g the_and silver in certain field regions. In Sec. IV, we present
ground-state degeneracy. The phenomenon is a manifestatigi, jated NMR spectra of type-l antiferromagnets. Various
of the so-called order-by-disorder mechanism, introduced by, myonents of the absorption matrix are compared with pre-
Villain and his co-workerg?! It has been discussed exten- dictions of the MF dynamics. In Sec. V we compare our
sively in the context of ground-state selection in frustrated.g s with experiments on copper and silver. Details of the

2 . . .
systems.” Appearance of a gap in the magnon dispersion ;e jation of the static susceptibility matrix are presented in
relation at zero wave vector has been investigated previously,, Appendix.

using neutron scattering in the electronic magnet
CagFe,Ges04,.12

We have recently employed a numerical method, which
combines Monte Carlo simulations and numerical solutions For the Hamiltonian we assume
of the equations of motion, to compute complete NMR ab-
sorption line shape¥!* In principle, our technique vyields B )

. : H=> > I1EAH]!

complete resonance curves for classical spin systems. In the ST
present paper we show simulated NMR absorption spectra . )
for a model in which the strength of the nearest-neighbofi€re thel; are quantum spin operators and the makix
dipolar interaction, with respect to the exchange coupling, igontains the spin-spin interactions which originate from ex-
similar to that between nuclear spins in silver. However, thechange and classical dipole-dipole forces.
results should illustrate, for a large range of interaction con-
stants, features which cannot be extracted from mean-field A. Statics
calculations. Apart from the type-I ground state, the only 1y e | gntiferromagnetism in an fcc lattice is character-
_essentl_al assumption in our procedure is the sign of the AMsed by the the spin configuratiofid®
isotropic spin-spin interaction: The ordered moments are in
the plane perpendicular to the type-I ordering vectors.

First, however, we present and extend a previdoean- (I :m"i; djcogQj-ry), (2
field description of the AF resonance in type-I fcc antiferro- jmt23
magnets. It is well known that the MF approximation for the with the type-I ordering vector®; =(w/a)e . Herea is one
dynamics fails in several important respects. For examplehalf of the fcc lattice parameter,= (4/p) %, andp=N/V is
the MF theory does not give any information about the shap¢ghe number density of the fcc lattice sites. The three fcc
of the absorption peak. Nevertheless, the MF results are userystal axes are denoted by the unit vectrse, ande;. As
ful as they provide a basis for understanding the salient feaan example, we have illustrated in Fig. 1 one of the possible

Il. MEAN-FIELD THEORY

—yhB- 2 ;. (1)
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singlek structures. B. Dynamics

According to the mean-fieldMF) theory, thermal expec-

k , In MF theory, the dynamics is described by
tation values of spins are

d(l;)
i i i . <Ii>><Bi- (11)
(I >—%B|(YL:$), @) a7

Without time-dependent external fields, Eg) gives the ex-

where B,(x) is the Brillouin function andB; the average Pectation valuegl;). It is impossible to find a consistent
local field solution for the dynamic susceptibility( w) without consid-

ering Eq.(3) and Eq.(11) together, since both are needed to

1 solve the zero-frequency behavior pfw). This point will
Bff=B*— y—ﬁE A1) (4 bpeillustrated in Sec. IIl using the MF theory and in Sec. IV
= by direct numerical methods based on the linear-response
theory.
The Fourier transform of the interaction matrix is defined Th)(/e equations of motion fam andd; , j=1,2,3, can be
by found by Fourier transforming Eq11). This yields®
) 1dm o
A(Q)=2 Ajexd —ig-(ri—rp] . ©) ———=mxB-Bp >, (d;x&)(§-d) (12
- T v dt j=1,2,3
It is diagonal for the type-l ordering vectors: and
A(Q)=A+(A;— )88 . 6) 1 dd; N
A b | ;W:djx(B—ch)—BD(mXej)(ej~dj)
We assumer ;>\ which implies an easy-plane anisotropy. Al n A a
As a result, structures with ~Bo(dex@)(8-d) ~Bp(di X8 (8¢ dy).-
(13

In Eq. (13) indices (,k,l) denote, again(1,2,3, (2,3,1 or

are favoredsee Eq(2)]. Anisotropy is of this type if dipolar  (3:1,2- The coefficient
forces are the dominant anisotropic spin-spin interactions.

This should be the case for copper and sifver. Bo=(I/yA)(A1=M), (14
Forq=0 one finds with the dimension of magnetic induction, could be called
the anisotropy field for type-I order. When the dipole-dipole
A(0)=X\ol (8) interaction is the only anisotropic contribution to spin-spin

interactions, the tabulat®Yattice sums yield, for an fcc lat-
if the sample is assumed to be spherical; in this case onliice, By~ (uo/4m)pylf X 6.501.

exchange forces contribute 1g. If only one of thed;’s is nonzero, Eqs(12) and(13) are
For the spin structure of Eq2), the static susceptibility almost identical with those proposeébr solid 3He. The
Xo parallel to the static magnetic field'?s difference is that irfHe it is generally possible to neglect the
terms proportional to the dipole-dipole energy in Ef3)
Xo= Mop Yl /B, (9) because they are small. This approximation is not needed,

however, when equations are solved to the first order in the
which does not depend on temperature or magnetic field iexcitation field*® since the same terms disappear anyway.
the AF phase. Her8, is the zero-temperature critical field Equations(12) and(13) have also much in common with the

for type-l antiferromagnetism Leggett equatior$ of superfluid *He-A if we identify his |
and d with our & and d;. Spin dynamics of*He-A re-
Be=(1/yA)(Ag—N\). (100  sembles, however, a uniaxial antiferromagnet with an easy

axis alond. The Leggett equations for a constaatre, there-
Calculation of the full static susceptibility matri{w=0) is  fore, obtained whefBy in Eq. (12) is negative and th&p
somewhat complicated, mostly due to the degeneracy of therms in Eq.(13) are again ignored. It should be mentioned,
MF ground states. Whilg¢(w=0) for a singlek structure however, that the dynamics of easy-plane and easy-axis an-
can be obtained, with some modifications, from the work bytiferromagnets with some overlap with the cases discussed
Van Vleck!® it seems that doublk-and triplek structures here, has been presented earlier using a somewhat different
have not been investigated before. Our calculation oformalism/~°
x(w=0) is presented in Appendix I. Assume that a fieldB(t)=By+B4(t) is applied on the
~ The MF ground state of Eq2) is continuously degener- System. We expand the spin vectors in leading orders of
ate since two components of te vectors are left undeter- By m(t)=m®+m®)(t)+0O(B) and similarly for dj(t).
mined. A unique ground state is stabilized by thermal orOur aim is to solve for the quantity*)(t) which is of first
quantum effects beyond the MF approagh. order inB4(t). One obtains from Eq13), using Eq.(7)
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1d 2 2 (0) (1) 2
;a(ej-dj)=(ej><dj )-(Bi—Bm'*)+0O(B7). (15
Combination of this result with Eq12) yields
1 d’°’m® dB; dm®
- =mOx__1_ - (0)y¢ o
—g7 =M%~ BoxX—; yBDjEZB(dJ X§)
x(gxd)-(B;—Bm®). (16)

Introducing the Fourier transformation f(w)
=(2m) 1 f(t)explwt)dt and noting that M(w)
=pylimB(w) andM4(w) =2, x*"(»)B}(w)! mo, We find
if w#0,

(@) xo=[Y(0) =107 yB Y(w),  (17)

where
Y(0)=yBp 2 (&xd”)(&xd”)
— i=1,2,3

o >, (MmO%xg)§. (18)
j=1,2,3

Subscript ‘H” of yu(w) in Eq. (17) emphasizes that the

theory gives only the non-dissipative part

the resonant frequencies.

To obtainyy(w) we use a consequence of the Kramers-

Kroenig relations, namely

1 o d
)_(AH(w): pr_xm . (19

Wy~ w

The rules for constructingyan(w) from the poles of

xu(w) are the following:

02 i Q)
Qo i ()

The dynamic susceptibility matrix can be written as

/ _12 Aa
X()lxe=52 =550, it
1 A
t5 Tral(Q T (22)

where(} , is the resonant frequency and the Hermitian ma-
trix A, the resonant amplitude. Equati¢t) is the Hermit-

ian part of this expression in the limif ,—0+ when w

t
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and describes a simple exponential relaxation of the induced
magnetizationA, can be calculated from the equation

X(0)ixo=2 Re[A,}, (23

which decomposes the static susceptibility matrix into con-
tributions from various resonanceQ,. Calculation of
x(0) is discussed in Appendix I. Only do the resonances at
w=0 and at Larmor frequencias= yB, persist in the dis-
ordered state.

Ill. APPLICATIONS

In the following discussion we write the susceptibility us-
ing an orthonormal coordinate system with the basis
(x,¥,2). We always select||B,. In all cases of interest we
can also assume that the spins lie in yteeplane; this fixes
our coordinate system with respect to the directions of the
spins.

A. Single-k states

It is meaningful to divide singlé- states into two classes.
The zero-field configuration and structures V\@ﬁ\BO form
the first class and can be considered exceptional. All other

of _. )
. ) . singlek structures fall into the second class. It turns out that
x(®)= xy(w)+ xan(w) sinceY (w) and the right-hand side 9

of Eq. (17) are Hermitian matrices. This follows since the
description without relaxation mechanisms fails exactly a

x(0) is anisotropic in the first case and isotropic in the sec-

ond. MF theory predicts a zero-frequency resonance only for
configurations in the first class.

1. B=0 and a field along Q

Assume first thaB,=0 is along a crystalline axis, say
z=e;. We consider a structure with the modulation vector
Q3 which is in the direction oB:

m= (BO/BC)é3||27

d1:d2:0,

ds==[p*—(Bo/Bc)*1"%. (24)
Here we assumB,<pB_. wherepB, is the critical field for
antiferromagnetism at polarizatiop in the mean-field
theory. This configuration is the relevant ground state for a
range of spin-spin interaction constahts.Various calcula-
tions indicate that the vectads is either alonge,, €, or
€,* &,; our results do not depend, however, on this direction.

The nonzero components of the static susceptibility

x(0) are given by

X(0)=x*10)=xo0, Xx"Y(0)=xyy (25

with

/ BpBcp?(1—7)+ B3\ /(A — o)
XyyIXOTB B pA(1—7)+(Q, /7)) NN —No)’

(26)

Here 7= r(p) is a monotonous function of polarization de-

#0. Equation(22) must also contain an appropriate term fined in Appendix I; in particular,r assumes the values

with zero resonant frequency. Tle=0 term is of the form

Ao

7(0)=0 andr(1)=1. The qualitative behavior &,=0 is
such thaty,, increases from zero afl=0 to x,,=xo at
T=Ty.*® WhenBy,#0, a small external field along the
direction twistsds out of the easy plang;-d;=0.
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Quantity ), is a resonant frequency, viz., later for metallic fcc nuclear magnetSA practical differ-
21 0 o2 5 ence is thatw, has a strong field dependence in nuclear
O7/y*=By(1-Bp/Bc) +p“BpBec. (27 magnets but can be taken as a constant in sitd. The
Apart from the =0 peak,Q, is the only resonance in amplltudes;A+ have not been given earlier; if we assume
x(). The nonzero components of the amplitutle are y=singe, — cospe, they can be written as
2p2 2 202
AP=1, AY=(AY)*=iyBy/Q, , Ayy:(’yBo/QL)z- oY By— Q< Q+Q_CO'[20
1 1 L L Ai = 2 2 + 252 2 2\ (358)
(28) 05-0% Y B(Q:—-Q%)
We have for thew=0 resonance 2 2
AVY:M (35b)
AF=Xyylxo— (¥BolQ.)?  AG*=1, (29) = 04-027
and find thatA}’ vanishes in the zero-temperature limit
whenpo1 P o 0202 —7BY)
p—1. . . A= a2y (359
Let us now assume that the structure given by @4) is Y Bo(Q:—-Q%)
actually stabilized by an additional phenomenological anisot-
ropy termo (ds-X)2. This interaction energy can be included Xy Yo Qt(yZBS—Qi)
in the analysis of Sec. II B by replacing E@) with AZ=(AY)* = YBo(QZ—02) " (359
=M+ (A= N)XX+ (A ;—\)E3€
é(Qs) 7\|_ (Ar=N)XX+ (N —N)€s6s, (30 T 0202 cotd
whereA>\. After steps analogous to Eq&l1)—(18) one A=A ,},ZBOZ(Q%_QZI)’ (350
finds that the matrixy' (w) assumes the form -
R . . Q. 0%cots
Y(w)=17yB xd X dg) + yBr(XX d3)(xX d3) YIo (A = ——
Y(w)=7vBp(&5Xds)(€5Xds) + yBr(XXd3)(XXdg A=A =i a7 g7y (35f)
—iwIE12 (mxg)g, (31) It can be seen that RA _}+ Re{A  }=I which is consis-
i=1,

tent with the resulty(0)= xol, obtained by using the static

whereBr=(1/%)(A;—\). The difference iny(w), caused theory of Appendix | wherB#0 and|cosf|#1. The results

by A7%\, is the emergence of a longitudinal resonance of the dynamic and the static theory may disagree, however,
when{_—0, as happens wheB,—0 or |cosf|—1. In this

QZ/YZZ[FJZ—(BO/BC)Z]BTBC (32)  casex(0)# xol as was shown in Sec. lIIA1. The discrep-
ancy indicates that the dynamic theory does not necessarily
with the amplitudeA*=1; we obtain nowAg*=0 for the  yield the correct amplitude for the zero-frequency resonance
=0 line. The() resonance can be called an “ordering-by- when one of the nonzero resonant frequencies moves to zero.
disorder” peak since it originates directly from the fluctua- |nstead, one must apply both theories to obgfw) in the
tions which stabilize the MF ground state having the Iargesﬁmiting case as was done in Sec. llIA1.
entropy. The completely isotropic susceptibility of the sindde-
structure of Eq(33) is in striking contrast with the zero-field
behavior of the singlé- configuration of Eq(24), in which
For a singlek structurey(w) depends in the MF theory the susceptibility along the sublattice magnetization tends to
only on the directions 0B, and Q; sinced;||ByxQ; and  zero with decreasing.
because the matri¥ (w) can be expressed using vectors
which are proportional t@,, Q; andd;. Therefore, in the B. Triple-k state
appropriate coordinate system one can wyile) using as a We assumeB|e,+&,. In this case a triplé- structure
parameter only the anglé betweenB, andQ; . As before,  geems favorable in large enough fields according to several
this system can be defined @B, and y” BoXQj and  cgiculations® consistently with neutron-diffraction mea-

x=yxZz. The explicit magnetic structure assumi@=Qs  syrements on coppét.The state can be written as
is as follows:

2. General field direction

m=(Bo/Bc)2” VA& +&)lI2
dy=d,=[(Bo/Bc)(pP—Bo/Bc) 1'%,
ds=(Bo/Bc—P)2~ Y48+ &,). (36)

m=(By/B.)[Sinf(cospe, + singe,) + cose; |||z,

d1:d2:0

d3=[p*~ (Bo/Bo)?]Y4(singe, — cospe,)|y. (33

. . If Bo=0, this reduces to a special case of E2q); we as-

One obtains two resonant frequencies and{}_ given by sumeBy>0 from here on. Static susceptibility for this spin
2 _17, 2, 2n2 NIV ) configuration isy(0)= xol except forBy/pB.=1/2. Typi-
=3{wj+ + + A 0= AL .

0% =3{wp+ ¥Box V(w5 — v’Bo) + 4y Bowoco§0}(34) cally a small external field along twists d; andd, in the

easy planeg,-d;=0 andé,-d,=0
where w3=(Bp/B.)y?(p?B2—B3). The same result was At B,/pB,=1/2, however, Eq(36) assumes an excep-
first found" for antiferromagnetically ordered solitHe, and  tionally symmetric form with one half of the spins along
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B, and the other half parallel tg; in this case a field in the In order to stabilize type-l order we seled;>0,
y direction turnsd; out of the easy-plang;-d;=0 and, for J>=—0.13J; andD;=0.35Jy; in this case the global mini-

p=1, the susceptibility is reduced toy, /xo=B;/  mMmum of the eigenvalues @k(q) occurs for type-I ordering
(B.+Bp). vectors?* D, corresponds to a moderately large anisotropy,

Therefore, the triplde structure has generally a com- about the same magnitude as was found for the nearest-
pletely isotropic susceptibility, similarly to a singlestruc-  neighbor  silver nuclei> We obtain the eigenvalues
ture in an external field which is not in the direction of any of A= —4(J1+ D) +6J,, Ay —A=12D,, and \o=12J;+6J,
the crystalline axes. A structure which closely resembles Ecfor the spin-spin interactions of the model given by E4f).

(36) can also be found whef, is along a crystal axi¥’ Its
properties are, however, more complicated because the spin
configuration is somewhat less symmetric than predicted by
Eq. (36). We do not discuss this case in more detalil. We study a lattice oN=16%=4096 spins with periodic

For the configuration given by Ed36), there are two boundary conditions, using the MC algoritfftrof Ref. 27.
resonances witlv # 0, one in the component parallel to the Before discussing dynamical considerations in Secs. IV B-—
static field and the other in the transverse components of thi&/ D we describe briefly how we deduce the stability of the
susceptibility matrix. The transverse resonant frequencygtructures that were investigated in Sec. Il for the static case.

A. Monte Carlo studies of ground-state selection

=1, is given by In zero field, we inferred from slow cooling and heating
2 0 o runs that the spins undergo a transition between paramag-
QO7/y*=Bg+Bp(pB.—Bo)p . (37 netic and type-l states & Ty/J;=1.07+0.02. We found,

therefore, a reduction 6Fy /TN ~2.0 from the MF value.

The spin configuration is the state given by EB4), with

y along a crystal axis. We systematically found this structure

XX_ XY (A YXyk yy_ 2 also after abrupt quenches from=o to T/Ty\~0.2. Alto-

AV=1 AP=(AD)=iyBo/Qy AL _(YBO/QL()%) gether 10 quenrt):hgs were carried out by stgrting from a ran-
dom spin structur® and by simulating 2000 Monte Carlo

Apart from the value of the resonant frequenay, is thus of  updates per spin(MCS) at kgT/J;=0.2. We found

the same form as Eq28). For the parallel resonance at |dj|~0.94 and 9 timesl; was along a crystal axis perpen-

The nonzero components of the amplitudle at the reso-
nance are o

o= we find dicular toQ; within 7° at the end of the simulation. Once we
found an angle of 16° which appeared to result form a slow
Qﬁ/yzz(BD/BC)BO(pBC— Bo) (399  decay of a structure with an angle of about 45° between
. and the crystal axes in the easy-plahee;=0.
andAH =1 ) ) The collinearity of the zero-field structure is consistent
At 1=0 there is a transverse resonance with with Monte Carlo simulations of models with only isotropic

nearest-neighbor interactioff5:°° As a consequence of the
dipolar interaction, spins align parallel to a crystalline
axis?"3132 According to some calculations, however, spins
should have an angle of 45° with a crystalline aXis.
In external fields, there are several possibilities for the
angle betweeB andQ; : the difference in their free energies
Thermal fluctuations lead to deviations from the mean-vanish wherB—0. There is also the possibility for triple-
field theory outlined above. Their origin is the inaccuracy ofstructures. As a result, metastable states might appear in
the MF assumptiokl “1 "y =(1#)(1"). To study these effects quenches and a careful procedure must be used to determine

we investigate by direct numerical simulation classical spinghe ground state.

A= Xyl X0 (¥BolQ)?, (40

where x,,= xo except atB,/pB.=1/2 as discussed above.

IV. SIMULATION STUDIES OF SPIN DYNAMICS

interacting through the Hamiltonian We carried out five cooling rui% at B/B,=0.2 with
B|&;. The simulations were started from a random spin con-
NN NN R figuration atkgT/J;=1.2, andT was reduced in 10 steps to
H=312 S-S§+D: 2 S-[1-3F;f;1-S, kgT/J;=0.9. At each temperature, 2000 Monte Carlo up-
= =l dates per spifMCS) were carried out. In all runs the con-
NN R figuration given by Eq(24) was found below the ordering
+3,> S-S-B-X S, (41)  temperature, with eitheds||e, or ds||€, within the statistical
=] ! accuracy.

We also studied the field directioB|e,+&; with
B/B.=0.2. A similar cooling procedure was employed as
described above foB| &;. In all five simulations, we found
the configuration

whereS§’s indicate theN spin vectors at the fcc lattice sites.
We have replacedy/1)B in Eq. (1) by B. Both the Hamil-
tonian of Eqg.(1) and the temperature of the quantum-spin
model have been divided by?> and the classical limit

| —oo has been taken to obtain the Hamiltonian of Etf)
and the corresponding classical temperature. We measure the m=(Bo/By) (& +&)|Z,
magnetic fieldB and the angular frequenay in terms of the
energyJ; and givex“? asN~12;3(S")/dBP, i.e., using the dy;=ds=0,

units’® of the inverse energy; *. d,=[p2—(Bo/By)?1¥%y||y, (42
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FIG. 2. (a)—(c): Form functions for magnetic resonance in zero external field as given by simulations of spin dynamics: Dashed lines
have been calculated fokgT/J;=1.15 above the antiferromagnetic ordering temperature, while the continuous curves are for
kgT/J;=1.0 belowTy . The AF spin structure is given by E(R4) with p=0.58 andy=eé,. Dotted lines correspond to mean-field results.

In (a), (b), and(c) the MF spectra have been divided by 4, 16, and 8, respectively, to fit them into the figures.

or a structure withd,||@; and d,=0; the configurations are Fourier transforms of autocorrelations were calculated
related by a symmetry operation. The structure in@8) is  from
equivalent to Eq(33) when = /4.

As a third case, we investigated|e,+&; with t max
B/B.=0.4. In all five runs we found the triplle-structure of C(w):f C(n)exd —(70)%2+iw7]dT.  (46)
Eq. (36) with various sign combinations of;, resulting o ° -
from different selections for the origin of the space coordi-

natgri In qu't(Z)f- th d-stat leci both for th the finite-time cutoff produced only weak spurious oscilla-
ur results for the ground-state seiection, both 10r t&;, o 1his scheme convolveyw) with a resolution distri-

singlek and triplek structures, are in good agreement with . o . — 1 5
earlier Monte Carlo simulations which were used to modePution which is approximately\2ma) “*exp(~w?/20?). An

the spin system of silvet32 average oven integrations from differenF initial c_onditions
was taken in evaluating the autocorrelation matrix, @&).
We employeds/J;=0.25 andn=200. Thet, average was
calculated over 0f3,,; the total evolution time for each
Our numerical scheme to obtain NMR spectra is in manyinitial state was, therefore, 1,5, after which a simulation
ways similar to our earlier approathwhich dealt with the of 200 MC updates per spin was carried out to produce the
NMR response of exchange-coupled spin systems of twanitial state for the next time integraticti The average value
spin species in a high external magnetic field. Our method isf (M) was used during the total time of all integrations.
also similar to the techniques employed in the calculation of To compare the MF results with the direct numerical pro-
the dynamic structure factdf:>® Linear-response theoly cedure we calculated the autocorrelation matrix within the

We selected 1, by setting exp—(tmao)2/2]=0.05 so that

B. Dynamics: Numerical techniques

yields the dynamic susceptibility MF theory. CMF(t) was then transformed tg(w) in the
. same way a£(t). This procedure replaced th&functions
_ _ . in the anti-Hermitian part ofMF(w) by similar resolution

K(w) k T[C(t 0)+|w9(w)]' “3) distributions as were used in the spin dynamics simulation.

where 9(w)=f6°C(t)ei“’tdt. The autocorrelation matrix o _
C(t) is given by — C. Dynamics in zero field
- In Figs. 2a)—2(c) the dashed lines indicate the paramag-
1 netic spectrum aﬂ/TM°:1.07 in zero external magnetic
E(t): N<[M(t0+t)_<M>][M(t0)_<M>]>- (44 field. The curves were calculated under the assumption of
direction independencey(w)= Tr{x(w)}1/3. This holds

Here Miné is the total spin.C(t) was evaluated for a within our numerical accuracy. The stafic susceptibility is

state reached by simulated cooling. about 95% of the MF-predicteg, for the ordered state.
The time dependence M was found by solving the mi- All continuous curves in Figs.(2)—2(c) are spectra for
croscopic equations of motion the singlek structure of Eq(24) at T/TNC=0.93. The sub-
R lattice polarization igp)uc~0.58, as calculated from
ds§ JH -
dt 5 S 43 [m[2+ [ 2+ ||+ | daf2=p?, 47)

The conventional fourth-order Runge-Kutta method, with thewith an average over the simulatiojsee Eq(2)]. The main
time stepAt=0.04);', was employed to solve Eq$45).  resonance, Eq27), can be seen in Fig.(8). The “ordering-
During integrations, lengths of spins were conserved withirby-disorder” peak, Eq(32), is displayed in Fig. &). This
0.001 and internal energy per spin within 0.091 peak can be analyzed for the strength of the effective thermal
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FIG. 3. (8—(c): Form functions wherB=0 and kgT/J;=0.5. The spin structure is given by E(R4) with p=0.85 andy=é,.
Continuous lines are spectra obtained from simulations and dotted lines correspond to MF results. Results of two simulations are shown to
illustrate the numerical accuracy. (b) and(c) the MF spectra have been divided by 8 and 2, respectively.

anisotropy: we obtain  B1/Bp=(Qi/QN0)? [ Im{x*/w}dw is in each case estimated better by
=0.03--- 0.06. The errors are rather large since the peak i$p)uc. In the figures, we always calculate the MF curves
not very sharp. usingp={(p)mc -

Both in Fig. 2a) and in Fig. Zc) the integrated static In Figs. 3a)-3(c) we have evaluated the spectra for the
susceptibility agrees within 2% with the MF resylg, al-  configuration of Eq.(24) at the temperaturd/Ty=0.48
though we believe that the accuracy of our simulggéd) is ~ where(p)uc~0.85. The agreement between the MF theory,
only about 10%. In Fig. @), the shape of IfyY/w}, USING P=(P)mc. and the simulation is now considerably

which corresponds to the component parallel to the antiferPetter for the main peak, as is found by comparing Fig) 3
romagnetic momerds||&,||y, is very similar to the paramag- with Fig. 2(a). The peak due to thermal anisotropy, shown in

. ) MC_
netic spectrum shown by the dashed curve. The static su§/9- 3(C), is clearly sharper than a/Ty~=0.93. For the

ceptibility seems to agree witg?Y/ y,=0.80, obtained from anisotropy ﬁs'g we obtaiBr/Bp= (QKAZC/QﬁXc)ZZO-Olg- In
the MF Eq.(26) using p={p)yc=0.58. At lower tempera- & run a.tT/TN. =0.24 we foundBT/BQ=0.011. The inte-
tures, however, the agreement becomes worse. Agrated intensities of the MF and simulated peaks agree
T/TI\N/IC:O 48, see Fig. ®), we found that Eq(26) with within statistical accuracy in Figs.(@ and 3c), while the

p={(p)yc vields a susceptibility which is about 25% smaller situation is worse in Fig. ®) as discussed earlier.
than the value found from simulations. AITNC=0.24 the

MF prediction is 40% smaller than the simulated result. Bet-
ter agreement could probably be obtained by calculating
x(0) using a more realistic approach like the spin-wave

theory=* the single-k structure of Eq.(24) at B/B,=0.28;, when

It is interesting to compare the peak positidd§ of the T/T',l,"C=0.48; this corresponds @) yc~0.85. The relation
simulated Indx**/w} curves with MF predictions. There are (m)=B/B_ was found to be valid for the MC simulations in
two ways to do this. The MF resonant frequencies can behe ordered state within about 1%. Because of the external
calculated either by usingyr at real temperatures for sub- field, the primary antiferromagnetic resonance can be seen
lattice polarizationg, or by takingp=(p)uc. We find that  also in the diagonal component for the direction parallel to

wc iS estimated better by usin@)yc at large polariza-  the antiferromagnetic momen, as is shown by Fig. @).
tions, whereas wheff is only slightly less tharTNC use of  The canting caused bB makes Eq.(26) somewhat more
p=pwme Yields a more accurate result. However, the form-accurate, and the MF result for stag¢¥ is now only 15%
function-averaged resonant frequencyf,; Im{x**}dw/  smaller than in the simulation. The discrepancy can be attrib-

D. Dynamics in external fields
1. Singlek structures

The continuous line in Figs.(d—4(c)is the spectrum of

n{\¥V.JEjw}
)
2

0.02 r

0.015

0.005 [

00k

0.08

Im{x??J¢/w}

x 114

0.0

1.5

3.0 4.5
w/h

6.0

FIG. 4. (a—(c): Form func-
tions at B/B,=0.2 when B|/&
and kgT/J;=0.5. Polarization
p=0.85 and the spin structure is
given by Eq. (24 with y=¢,.
Continuous lines: simulations;
dotted lines: MF results. Inb)
and (c) the MF spectra have been
divided by 4.
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FIG. 5. (a—(c): Form func-
tions at B/B.=0.2 when
Bl &, +&, andkgT/J;=0.5. Polar-
izationp=0.85 and the spin struc-
ture is given by Eq(42). Continu-
ous lines: simulations; dotted
lines: MF results of Sec. IIIA2. In
(b) and (c) the MF spectrum has
been divided by 2.

In{ ¥ J}/w}

0 3 6 9 12
wfJy wfh wfJy

uted to low-frequency contributions/J;<6, while the in- When we studied the spin dynamics in a slightly higher
tensity of the resonance peakatl;~8.1 is in close agree- field, B/B.=0.5, but at the same temperature, an interesting
ment with the MF formula, Eq(28), usingp={p)uc. The qualitative difference was found: The low-frequency peak in
intensities of the simulated peaks and MF resonances in Figdm{x¥¥(»)}/w then is atw=0, indicating the presence of
4(a) and 4c) agree within numerical accuracy. We found for an AF soft mode which is not destroyed by thermal anisot-
B+/Bp=0.015 by solving Eqs(27) and(32). ropy.

Our results for the singl&-structure of Eq(42) in a field
B||e}v|te2 are shown in Figs. @)-5(c) whenB/B.=0.2 and V. COMPARISON WITH EXPERIMENTS
T/Ty~"=0.48. The sublattice polarization is again
{p)mc=0.85. The MF dynamics of this structure is discussed NMR measurements have been made on the antiferro-
in Sec. IllA2. The intensities of the simulated peaks and thenagnetically ordered states of copper and sifvef! The
MF resonances are in agreement, except for the case illu§xperiments were done on polycrystalline foils by employing
trated in Fig. Bb) where the intensity of the simulated low- the continuous-wave technique. Since the direction of the
frequency peak is 12% smaller than the MF prediction. Theexternal magnetic field with respect to the crystalline axes
low-frequency peaks are rather wide and have an interestingffects the spin structure and hence the NMR line shape as

shape; there is some intensity even at zero-frequency as Véell, it is rather difficult to analyze the data in detail when
seen from Fig. &). the field is different from zero.

2. Triplek structure A. Copper

Spectra for the triplée structure of Eq.(36) in a field We have compared the simulated and measStrstIR
Bllé, +&, are shown in Figs. @—(c). ThMeCS|muIat|on WaS  gpectra of copper in our earlier pafeExperiments in zero
carried out at B/B,=0.4 and T/Ty"=0.48 where fie|q revealed two resonances in the NMR absorption curve.
(P)mc~0.85. The perpendicular resonances can be seen ithe one at high frequencies was interpreted as the conven-
Figs. 8a) and Gb). The w=0 peak, predicted by the MF tijonal AF resonance, while the one at low frequencies was
theory[see Eq(40)], has shifted to a finite frequency in the identified as the “ordering-by-disorder” peak of a single-
simulation as is shown by Fig.(. The static susceptibili-  strycture[see Fig. 2c)]. A rather good fit between the mea-
ties obtained from the simulations are smaller by 15 andsyred and simulated results was found by assuming that the
25 % than the MF results in Figs(# and @b), respectively.  experimental data correspond to a superposition of antiferro-
The discrepancy for intensity is particularly large for the magnetic and paramagnetic domains.
low-frequency peak in Fig. (6). These effects might be
caused by an effective thermal anisotropy which was consid- :
ered in detall for a singl&-configuration in Sec. IllIA1. The B. Silver
susceptibility anomaly aB/B.=p/2=0.425, discussed in Hakonen and his co-workers have measured NMR line
Sec. IlIB, might also play a role. However, for the parallel shapes of antiferromagnetically ordered silver nuclei in a
peak shown in Fig. @), the simulated intensities are in close polycrystalline sample beloWy = 560 pK“*!The spectra
agreement with the MF result. were characterized by two antiferromagnetic resonant fre-

FIG. 6. (a—(c): Form func-
tions at B/B.=0.4 when
Bl & +&, andkgT/J;=0.5. Polar-
izationp=0.85 and the spin struc-
ture is the triplek configuration of
Eq. (36). Continuous lines: simu-
lations; dotted lines: MF results.
In (b) and (c) the MF spectrum
has been divided by 2.

Im{x¥J/w}

w/h
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FIG. 7. Calculated intensities and positions of antiferromagnetic TI(cosd) =
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consistent with the neutron-diffraction datand with most
of the theoretical prediction's;*1-*3including the low-field
MC simulations of Sec. IV.

When w is in one of the two bands and>0 the dissi-
pative part ofy(w) becomes

-1
*

Jcosd

3mixo
2

T1(cos) A

EAH(w)/w:

w?2=02 (cosh)

(48)

where the subscript AH denotes the anti-Hermitian part of
x(w). The quantity co8is the positive root of the equation
Q?:(cosa)=w2, and subscriptst and — denote the upper
and the lower bands, respectively. Fer<0, the matrix
A in Eq. (48) should be replaced by its complex conjugate.
The quantitylI(cos) is just the probability with which the
angle < /2 betweerB, and a crystalline axis is the small-
est of the three possibilities when all orientations of the crys-
tallites have the same probability. We find

1, co¥=1/2
1— (4/m)arccosco, 1/\/3<cosH<1/\2.
0, co¥<1//3

(49)

T
S-

he nonzero components of the matﬁg are
NF=NY=(AS+ A2, K= (AR)* =AY,

AZ=A\Z. (50)

continuous lines correspond to the case in which the ordering vector . . . )
maximizing B, Q;)? is selected in each microcrystallite; the dot- The quantities on the right-hand sides were given by Eq.

ted curves show the result for an equal distribution of the thre 35

type-1 ordering vectors.

guencies. The observed positions of the resonances ha

been indicated in Fig. (B) at different external magnetic
fields.

According to recent neutron-diffraction measureménts,
the ordered spin structure of silver is a singléype-| state
whenBj, || [001]. The spin configuration for other field align-

ments has not been investigated by neutrons so far. Accord-

ing to theoretical calculationS;>1=33 triple-k structures

should be stable in elevated fields. However, for various field

directions withBy<30 uT, singlek states should dominate

Equation(48) can be obtained as followga(w) is first
averaged over orientations of microcrystallites using(Eg)
and Eqgs(34) and(35). The orientations can be parametrized
by three Euler angles. The first fixes tfieaxis in Eq.(33)
\\;\(/aith respect to the laboratory coordinates; in the calculation
A+ is replaced with its averag&. over all rotations about
z. The quantityd can be selected as the second Euler angle.
In the course of the calculation one can employ the formula

g(w)=J’OW/Zf(cose)6[w—Qi(cost9)]sin6d0

90 . (cosd) |71

=f(cosd ScoD

) (51)

w=0Q_(cosv)

the phase diagram. Therefore, we try to interpret the data on

this basis.

The dynamic susceptibility matrix of a singkestructure
in an external field was given in Sec. lllA2. In polycrystals,
the resonant frequencies of E@34) form two bands,
|w| <min{yBy,wo} and maxyBo,wot<|w|<\y?B2+ w3. We

calculate the absorption spectra for these two cases.

The average over the third angle, relatedd¢tan Eq. (33),
yields the functionlI(cosd).

(i) In the second case there is no preference between the
three type-l ordering vectors in various crystallites and all
values co8 are equally probable. The spectrum for positive
frequencies is then simply

(i) We first assume that fluctuations stabilize, among the

three possibilities, the singlestructure for which the order-
ing vector maximizes@; - Bo)2. The condition of maximum
(QJ--BO)2 is the simplest possible selection rule which is

Q. |71t

Jcosy

i Xo~
2 _i

{AH(‘U)/‘U: (52

©?=02 (cos)




54 MAGNETIC RESONANCE OF TYPE-I fcc ANTIFERROMAGNETS 9285
where the notations are the same as in @8). VI. CONCLUDING REMARKS
The resonant frequencies, which are obtained from EqQs.
(52) and(52), are restricted to two bands which can be rather We extended earlier MF calculatiofisto extract NMR
sharp. Some components of E&2) even have integrable spectra for type-l antiferromagnets. MF predictions were
singularities of the type 1/Q,— w| at the top of the lower compared with results obtained using numerical methods.
or at the bottom of the higher band which occur atOur computational technique combines Monte Carlo simula-
Qo= 7yBy or atQy= wy. tions with numerical solutions of the equations of motion.
It is of interest to study the intensitids. of the two  This makes it possible to calculate complete NMR absorp-
bands, defined by |ii:(2ﬁ mx0) [+ Xaq(w)dow/w  or tion line shapes for a classical spin system including dipolar
.= (2h 7x0)J + X34 (w)dw/w, wheref .dw indicates inte-  interactions with neighboring spins. One has to remember,

gration over a positive-frequency band. The sums of the inhowever, that our technique is practical only for spin Hamil-
tensities satisfy* + 1 =1 Figure 7 illustrates re- tonians with short range spin-spin interactions. Simulations
Sl =N+ =1

sults for the casp=0.7 with exchange parameters such that©f SUch models enabled us to compare the locations and in-
B.=155 uT and B, /B,=0.15, which correspond to the tensities of the mean-field NMR resonances against in-
c D c— Y '

calculated forces between nuclear spins in sité? principle-exact numerical results. Although the dipole-dipole

Figure Ta) showsl® , the intensity of the low-frequency interaction was truncated to nearest neighbors, with a

o strength of the same magnitude as between nuclear spins in
branch of the spectrum when the excitation field is transverse. g g P

Silver, the results are expected to be qualitatively similar for
to the external field, as a function 8. Sincel: =1—1"*, y d y

ol - e a large range of interaction constants. Apart from the type-|
the ratiol =/ decreases with field as observédihe de-  grqund state, the only essential assumption we made was the
crease is considerably smaller when the ordering Vectorsign of the anisotropic spin-spin interaction.

maximizing B,- Q;)* are selected than when all domains are “The simulations sorted out the cases where the MF ap-
equally populated. Important additional insight to the domainy gach is adequate from those where it fails to describe the
selection can be obtained by measuring also the parallel resgysential dynamics. Simulations provide probably the most
nance, shown in Fig.(€), since the difference between the oerful practical method to calculate NMR spectra for dis-
two domain distributions is then larger. ordered spin structures in paramagnetic regions. Slightly
Average frequencies of the upper and lower bands argpove the ordering temperature, the spectra can show non-
given by (w)i=(2fimxols)fxiy(0)do and (o). trivial precursor effects caused by short-range correlations.
= (2l mxol.) [ « X34 (w)dw; these quantities are shown in  |n the ordered states the MF theory proved useful. We
Figs. 1b) and 7d) for the transverse and parallel resonancesfound, for example, that the MF prediction for the principal
respectively. In the transverse case, it is possible to compalgF resonance, in the direction perpendicular to the magnetic
our calculations against the NMR measurements of Hakonemoments, is rather good. However, the MF theory fails al-
et al*®*! There is rather good agreement. It seems, thereforenost completely in its description of the diagonal component
that the observed resonances can be interpreted in terms ob@ithe dynamic susceptibility tensor along the direction par-
single magnetically ordered phase with a siniglstructure.  allel to the antiferromagnetic moments: In these cases the
The same conclusion was made by the experimentéfiéts. extended low-frequency intensity distributionsyifw cannot
One has to note, however, that the experimental positions dfe accounted for by the MF theory.
the high- and low-frequency branches were obtained using a We found that in some cases thermal effects which lift the
rather complicated procedure. It is not clear how a rigorougiegeneracy of the mean-field ground states can be seen di-
comparison should be carried out; the problem is especiallyectly by inspecting a suitable component of the dynamic
difficult for the low-frequency mode. susceptibility matrix. We modeled the removal of the MF
Finally we would like to remark that the ground-state con-degeneracy by introducing an effective thermal anisotropy
figuration of a singlek state is a subtle problem in low ex- field and studied its strength numerically. At=Ty, the
ternal fields, whenB, is not perpendicular to any of the thermal anisotropy field, which confines the spins to the easy
crystalline axes. The reason is the conflict betweerplanes, was 3—6 % of the dipolar anisotropy field. We expect
fluctuation-induced thermal anisotropy and Zeeman energythat thermal-fluctuation-induced absorption peaks can be
As we found in our Monte Carlo simulations, discussed infound in antiferromagnetically ordered solitHe as well.
Sec. IVA, spins at zero field align along a crystalline axes;The low-field, up-up-down-down phasthas an easy-plane
and so does the correspondidgvector. In a field, however, anisotropy and, therefore, there is a clear analogy with the
MF theory requiresl;||Byx Q; [see Eq(33)]. Therefore, for type-I antiferromagnets investigated by us.
most field directions, a significant reorientation of spins The NMR response of antiferromagnetically ordered
should occur in low fields. The nature of this transition is notnuclear spins in silver at nanokelvin temperatures were ana-
known. One can expect that, at least in some field directionsyzed using the MF theory. The observed positions and in-
the reorientation is similar to a spin-flop transitiit.is of  tensities of the two antiferromagnetic resonances could be
first order and can, therefore, show hysteresis. The spin-flopxplained rather well; this was the case for copper, too. To
field should be on the order afB;B. which, for the fluc- conclude, we have demonstrated that numerical simulations,
tuations fields found in Sec. IVC, is somewhat belowcombined with mean-field calculations, provide a powerful
0.1B.. More experimental and theoretical work is needed totool for investigating dynamics of magnetically ordering spin
understand this reorientation process in silver. systems.
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3
=DgP+ >, D*cogQ;-ry) (A5)
APPENDIX A: STATIC SUSCEPTIBILITY =1

Differentiating Eq.(3) with respect toB, we find for a
type-I spin configuration with

1 4

st s 7S
_)\@—% (5a#—TW Mﬁ 2 A” ﬁb

(A1)
p?D§P=mmf+dfd? + dsd5+d5ds, (AB)
Here 8,4 is the Kronecker symbol and we have introduced
S={(l;}/I and b=y#B/I, and defined a functiorr= 7(p)
which can be written in a parametric form:
1-—— dp(x) =B A2 2
p(x)]= o) dx PX)=B(x). (A2) p?D{#=medf+d*mP+dpdf+didf. (A7)

At zero temperature one has=1 which implies that
S-dS/dbz=0, consistently with the conservation of lengths
|S|=1. At small polarizations~0 sincep is then approxi-
mately proportional tox. In this case one obtains
x(0)= xol. Fourier transformation of EA1) yields

Indices (,k,I) are as in EQ.(A4). The susceptibility
X“ﬁ(0)=,uop(yh)2(9m“/ab3 can now be found by solving
Egs.(A5) and (A6).

The solution is slightly complicated by the fact that the
equations do not fix certain linear combinations of the quan-
tities dd{"/dbg; this behavior is related to the ground-state

, degeneracy within the MF theory. A possible way to elimi-
_7_2 2 Da“A””(QJ) ad; Sug TDOB (A3) nate this inconvenience is to substititewith A — e in the

an omH
2, [8au(No=N) = 7AoDS 7,

=1 v left-hand sides of Eq9Al), (A5), and (A6); the equations
and can be then solved and the limit-0 taken. The physical
meaning of the procedure lies in the fact that any MF ground
- 7'7\02 Da“ +2 [(Sau—TDg")A*(Q)) state can be stabilized by adding a space-dependent external
w field, proportional toe, in such a way that this field is at
d” dy every site along the spin direction of the given structure. A
= OapSuh 7'2 Da”A’”(Q e small positivee amounts thus to the assumption of a stable
- structure. In reality the stability is provided by certain ther-
ady mal and quantum mechanical effects which are ignored in
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