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Critical dynamics of the body-centered-cubic classical Heisenberg antiferromagnet
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We have used spin dynamics techniques to perform large-scale simulations of the dynamic behavior of the
LXLXL body-centered-cubic classical Heisenberg antiferromagnet witd8 at a range of temperatures
above and below as well as at the critical poiipt The temporal evolutions of the spin configurations were
determined numerically from coupled equations of motion for individual spins by a fourth-order predictor-
corrector method, with initial spin configurations generated by Monte Carlo simulations. The neutron scatter-
ing functionS(q, w) was calculated from the space- and time-displaced spin-spin correlation function. We used
a previously developed dynamic finite-size scaling theory to extract the dynamic critical expofrent
S(q,w) at T.. Our results are in agreement with the theoretical prediction=0f£.5 and with experimental
results; however, we find that the asymptotic regime was only entelles 80. In the analysis of the form of
the transverse and longitudinal component$S@f, ) we found that a central diffusion peak appears below
T. predominantly in the longitudinal component and remains present through and BpoVée transverse
component of the spin-wave peak is Lorentzian belgwbut for T=T, is described best by a more complex
functional form. BelowT, we see evidence of multiple spin-wave peaks in the longitudinal component.
[S0163-182696)02138-9

l. INTRODUCTION experimental studi&s® have shown that it has a simple cubic
lattice structure with a nearest-neighbor exchange constant of
The isotropic Heisenberg antiferromagnet has the samé=0.58+0.06 meV and a second-neighbor constant of less
static critical behavior as the ferromagnet which has beethan 0.04 meV{both defined using our convention fdras
studied using a variety of approaches including a recentlefined in Eq(1)]. The critical point was found to be 83 K,
high-resolution Monte Carlo studyThis work determined which makes the study of the critical region amenable to
the critical temperature and the static critical exponents foneutron scattering experiments. The magnetic anisotropy was
the simple cubic and body-centered-cubic systems to a prdeund to be only 4.5 G, and no deviation from cubic sym-
cision equivalent to or better than that found with any othemrmetry was seen to occur . Neutron scattering experi-
method and substantiated the hypothesis of universality foments have been carried out on RbMnBy Tucciarone
static properties once again. The theory of the dynamic beet al® who found that in the critical region the neutron scat-
havior of the Heisenberg model is, however, not so clearlytering function was found to have a central pgakak at
understood. The dynamics of the Heisenberg antiferromagnétequencyw=0) as well as a spin-wave peak. This central
is very different from that of the ferromagnet since the ordempeak is thought to be due to spin diffusion resulting from
parameterthe staggered magnetizatjois no longer a con- nonlinearities in the dynamical equatiofsTwo-crystal neu-
served quantity. One only needs to look to linear spin-wavdron scattering revealed static critical exponents in agreement
theory to see that the low-temperature dispersion curves amgith theory and a three-crystal neutron scattering measure-
markedly different for the two models. Dynamic critical be- ment found a value of the dynamic critical exponent slightly
havior is describable in terms of a dynamic critical exponenfower than but still within the error bars of the theoretical
z which is dependent on conservation laws, lattice dimenprediction of z=1.5. Another more recent study by Cox
sion, and the static critical exponents. In their work on theet al!! indicates the presence of a small central peak below
theory of dynamic critical phenomeRajohenberg and Hal- T..
perin proposed a number of different dynamic universality In this paper we present results of large-scale computer
classes based upon the conservation laws. The classicsimulations of the dynamic behavior for the Heisenberg an-
Heisenberg ferromagnet and antiferromagnet are of classtiferromagnet. We focus mainly on the critical region but
and G, respectively; both of these classes have true dynamiedso have found results for temperatures above and below the
with spin variables of continuous degrees of freedom andritical point. In Sec. Il we define the model and discuss
real time dynamic behaviors governed by coupled equationdynamic scaling theory, and in Sec. Ill we present and dis-
of motion. The difference between the classes is that theuss our simulation results.
order parameter is only conserved in clds&Jsing dynamic
scaling they found that=3— gB/v for class J, and various
theoretical methods® were used to determine that=d/2 Il. MODEL AND METHODS
for class G wherg8 and v are the static critical exponents
andd is the dimension of the system.
The material which is best described by the isotropic an- The classical Heisenberg antiferromagnet is defined by
tiferromagnetic Heisenberg Hamiltonian is RbMpFEarly  the Hamiltonian

A. Model
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The characteristic frequency can be seen as a generalized
H:JZ S-S, (1) halfwidth of S(q, ). In the dynamic scaling theory it is as-

() sumed thatw,(q,£) is a homogeneous function of and
where S, =(S',9,S?) is a three-dimensional classical spin ¢ 1-€-
of unit length at siter and J>0 is the antiferromagnetic o
coupling constant between nearest-neighbor spins. We con- om(0,£) =02 (a¢), ®)
sider LXLXL body-centered-cubic systems with periodic wherez is the dynamic critical exponent, and tifathe form
boundary conditions. The dynamlcs of the sSpIns will be gov-function, depends 0n|y on the productqﬁ but not ong and

erned by the coupled equations of motion, ¢ separately. Therefor8(q,«) as given in Eq(5) is sim-
plified,
d
ﬁsf—sfxa(% S, 2 o, o
Sg(q,w)—m)(g(@f(m,qg)- 9

and the time dependence of each spin can be determined
from the integration of these equations. ]
C. Form function
B. Dynamic scaling The form functions for both magneti€,, , and staggered
magnetic,fy, correlations as a function aj¢ have been
predicted for the isotropic antiferromagnet through the use of
renormalization group methods® For high enough tem-
[5erature, the relaxation regime, wheyg<1, f\ should be a
simple Lorentzian centered around the origin=0. As the
temperature decreases and we approach the critical regime,
Sq,w)=2, exfdiqg-(r—r")] gé>1 and two spin-wave peaks appear displaced symmetri-
rr! cally about the origin. The positions of the peak moves out-
ward asgé increases until a limiting value is reached as the

The neutron scattering functiof(q,») for momentum
transferqg and frequency transfep is an experimental ob-
servable and is fundamental to the study of spin dynamics. |
is given by

e dt itical region i hedt ins Lorentzian f
« expli wt) CX(r—1 t . 3 critical region is approached.y remains Lorentzian for
ffoo Aot CX )‘/277 @ T=T,.. Below T, the renormalization group theory becomes

more approximate due to complications arising from the
CK(r—r',t) is the space-displaced, time-displaced spin-spirpresence of an ordered phase. It can only predict that a spin-
correlation function defined, witk=Xx, y, or z, as wave peak exists and that it will become broader as tempera-
ture increases. We know from linear spin-wave theory that,
CHr—r",H)=(SDS(0)) —(S(H))SY(0)). (4 in the (q,0,0) direction, for Heisenberg spins &s-0 the
central peak vanishes and the spin-wave peak becomes
The diSplacemem is in units of the lattice unit cell |ength Sharper, approaching a function atw:85|n(q/2) for the
a. For the ferromagnetic casg(t) is the value of thek  pcc Jattice ando=4sin@2)[ 2+ cof(q/2)]Y2 for the simple-
component of the spin at positionand timet. For the anti-  cubic lattice. Renormalization group theory does not distin-
ferromagnetic case the lattice can be divided into sublatticeguish between the two lattice structures in making predic-
A and B, where in the ordered state the spins in sublatticajons.
B point in the opposite direction to the spins in sublattice
A. For the spins on sublattid, S(t) will be the negative of D. Simulational background
the spin value at that site.
The neutron scattering function can be written in the
form*?

Using a combination of Monte Carlo and spin dynamics
methods*'® we simulated the behavior of the body-
centered-cubic classical Heisenberg antiferromagnet with

o o 8=<L=<48 at the critical pointT.=2.054 243, where we
S'Si(q,w)= ﬂxg(q)f<ﬂ,q,§), (5) have chosen units such that the Boltzmann constant .
®m(q, @m(d, We also examined the behavior outside the critical region, at
where ¢ is the correlation Iength;(g(q) is momentum- Slightly above the critical pointT=2.1J, and at a se_t of
dependent susceptibility given by temperature_s belo_WC, T=1.00, 13J 1.5, and 1.9, with
L =232. All simulations were carried out on the Cray C90 at
o do the Pittsburgh Supercomputing Center.
f S'g(q,w)z—zx‘g(q), (6) We used the same hybrid Monte Carlo method as Chen
- & and Landatf in the study of the critical dynamics of the
Heisenberg ferromagnet to generate equilibrium configura-
tions. A single hybrid Monte Carlo step consisted of two
Metropolis steps and eight overrelaxation steps. Typically
1000 hybrid MC steps were used to generate each equilib-
( rium configuration. Our spin dynamics method differed only
Om q,%) dw 1 . . . . .
J s‘g(q,w)_:_x'g(q)_ (7) in that we carried out the integration to a larger time
—om(a.) 2m 2 tmax=2000"1 instead of, as in the previous study,

and f is the normalized form function. The characteristic
frequencyw,(q,€) is a median frequency determined by the
constraint
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FIG. 1. Graph ofS‘(q,w) for qg=/8 at T=1.3], T=1.5],
T=1.9, T=T, (2.054 241), andT=2.1J showing the broaden- ~3
ing and decrease in frequency of the spin-wave peak as temperature 10t g T (b)
increases. Il A b h,i
S<Q,CO> c e f,Q
tmax= 1200~ 1. We also used the technique of calculating par- . d R
tial spin sums “on the fly” which limits us to data in the 05 R
(g,0,0) direction withq determined by the periodic boundary ‘
conditions, “ .
2mn 0.0 ’ "‘KL‘W“.‘«:‘A N .n“:.«““:w
9=—"> n=*x1+2,...,+#(L-1),L. (10 : o
! f |
We used the fast Fourier transfor(RFT) algorithm to in- o 1 2 3

crease the efficiency of the program. The time-displaced,
space-displaced spin-spin correlation function was calculated
from an average over 200 different time starting points F!G. 3. Graphs ofS'(q,») and Sl(g,) for T=1.5) and

evenly spaced by 0JI! for a time period Bt <ty With g=3m/16. WQ see poss!ble_ multiple spin-wave peaks wh|ch are
teutor= 18001, The resolution of our results i@ is limited only present in the longitudinal component. We found predicted

by the finite time cutoff according to the relation two-spin wave peaks to match our results only fqr the case of spin
waves on the simple cubic subset of the fcc reciprocal lattice. The

1.2 approximated two-spin waves labeled a@ (2,—1,—1), (b)
Sw= . (1) (2-10), (© (200, (@ (3,-1-1), (& (3,-10), )
Leutoft (3,-1,-1), (9 (2,—1,0),(h) (3,—1,0), and(i) (2,—1,—1).

(The factor of 1.2r results from the difference between the

half-width ando.) In our casedw~0.021. Since all three carried out for the other two reciprocal lattice directions
Cartesian spatial directions are equivalent by symmetry, th€0,0,0) and (0,09) and the results were averaged.

same operation carried out for the,0,0) direction was also ~ While the original study of Chen and Landdwsed 100
equilibrium spin configurations for lattice sizes up to
L =40, we used 1000 equilibrium spin configurations for lat-

© j_ T | Comp. tice sizesL =8—32 and 400 equilibrium spin configurations
S(a.0) |45 | tran. for lattice sized =40 and 48.
9 We also averaged results for spin compondats< and
4r TS | leng, y, since the staggered magnetization is a conserved vector
-—|{19 | tran. along thez direction in spin space so that the neutron scat-
S 19 | long tering functionsg(q,_w) can be regrouped in terms of sym-
o b metry as a longitudinal component
e : sl(q,0)=S(q,®) (12)
o NIl IR TS isse ST ooy
0.0 0.1 0 0o and a transverse component
FIG. 2. Graph of the low» part of S*(q,») and S/(q,w) for SH(q,0)= E[Sx(q,w)JrSV(q,w)], (13)
q=37/16 atT=1.5J andT=1.9] showing the presence of a cen- 2

tral peak in the ordered phase which increases with increasing tem-

perature. We see that the central peak has a more intense longitithere the spins are reoriented so that the direction of the
dinal than transverse component. The oscillations seen are causefder parameter, staggered magnetization, remains parallel to
by the finite time cutoff. the z axis.
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FIG. 4. Graphs o' (q,») at T=T, for lattice sizeL =32 over the range o values,q= 7/16, 57/16, 57/8, and .

E. Dynamic finite-size scaling We can thus test dynamic scaling and estimate the dynamic
We used a previously developed dynamic finite-size scal€'tical €xponent. Simpson’s rule was used to carry out the
ing theory*18in order to extract an estimate for the dynamic integration in order to determine the characteristic frequency.
critical exponentz. Since the finite time cutoff was only e see that a value far can be obtained from the slqpe
100! for the ferromagnet, oscillations were introduced ©f @ graph of 1@y, vs log. if the value ofqlL is fixed;
into the result of the Fourier transform which had to behowever, this will only give us the correct answer if all the
smoothed out by convoluting the spin correlation functionlattice sizes included in the calculation are large enough to
with a resolution function in frequency. We found that by P€ in the asymptotic-size regime. The approximate lattice
taking the finite time cutoff out to 180 ! these oscillations ~ Siz€ Of the onset of the asymptotic regime can be seen by
became negligible and we could perform the finite-size scalcomparingwl val_ues for the different lattice S|zes_for a trial
ing analysis without the use of a resolution function. As av@lue of z. If z is chosen correctly, then for fixedL,
result the dynamic finite-size scaling relatibh¥ simplify to dEe to thekf|rst scaling relatiofEq. (14)], graphs of
S (g, w)/L?x((q) vs wL? should all fall onto the same curve

Sk(q ) for lattice sizes in the asymptotic regime. This can be used as
%k'_zg(wLZ,qL) (14)  a test for our solution of.
L*xL(q)
and Ill. RESULTS
wn(d,L)=wn(aL) =L 20(qL). (15 A Data for S(q,)

) _ _ _ Our results at the temperatures beldwy show, as ex-

S (g,) is the calculated neutron scattering function at lat-pected, the spin-wave peak becoming narrower and increas-

tice sizeL, x‘ﬁ(q) is given by ing in frequency, approaching linear spin-wave theory as
temperature decreases. Figure 1 shows a comparison of the

= do g= /8 transverse spin-wave peaks for five of the tempera-
f SL(g,@) 5—=xi(a), (16)  tures studied. Our peak widths even fbr=1.0J are wide
o enough that the contribution due to the finite resolution is
and w,(qL), the characteristic frequency, is given by negligible. The high-frequency oscillations present in the

data are only due to the finite time cutoff at IGwandq. At
+op(aL) do 1 higher T and g values these are mostly due to noise in the
J st(q,w)_: —X'E(Q)- (17 data. The longitudinal and transverse spin waves are at the
—om(ql) 2m 2 same frequency, and thus we see no evidence of the phenom-
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s finite-size effects at lattice side=16 in comparison to the result at
b lattice sizeL =32 which is in the asymptotic regime.
0.04 iy,

L =32
'5%‘ oLt < n cubic subset of the reciprocal fcc lattice that the beginning
‘ Aﬁﬁm LTk and end point of the two-spin wave belong and do not see
002 - : A that same agreement for other two-spin wave combinations.
'f; Figures 4 and 5 show transver&(q, ), and longitudi-
\\\! nal, §‘(q,w), components o5(q,w) at T=T_ at a set ofq
values. The longitudinal component is similar in form to that
0.00 ' of the Heisenberg ferromagnétAs is the case fol <T,
© 4 w 8 there is a much stronger central diffusion peak in the longi-

tudinal component than in the transverse component. The
FIG. 5. Graphs 08/(q,w) at T=T, for lattice sizeL=32 at the  spin-wave peak of the longitudinal component is also weaker
q valuesq=57/16 andg= . In comparison to the transverse com- than in the transverse component. Theoreticallyr atone
ponent the central diffusion peak is much stronger and the spinshould not be able to separate the longitudinal and transverse
wave peak is less intense. components but due to finite-size effects a residual magneti-
zation is present which causes the difference between these
enon of “second sound”; however, the spin-wave peak istwo components.
much less intense in the longitudinal component than in the Our results forS' (g, ») are in qualitative agreement with
transverse component. This is to be expected since accorditlge experimental resuftsn that we see the expected central
to linear spin-wave theory longitudinal exitations vanish aspeak as well as a spin-wave peak; however, they are in stark
T—0. As the zone boundary is approached the form of thelisagreement with theoreticaioupled-mode theofyresults
transverse spin-wave peak becomes increasingly asymmetrighich predict a minimum ab=0. Whenq is increased we
deviating from a qualitatively lorentzian form. see a uniform decrease in intensity and a combined fre-
We see the existence of a central peak that is increasing iuency increase and broadening of the spin-wave peak.
strength with increasing temperature and is much more inWhile over mosiy values the relative intensity of the central
tense in the longitudinal than in the transverse component aand spin-wave peaks remains a constant, at very sirihié
shown in Fig. 2. The central peak decreases less with inrelative intensity of the central peak decreases. Note that as
creasingq than the spin-wave peak and for the longitudinalwe move from smallg to the zone boundary the intensity
component becomes the dominant exitation as the zonghanges by four orders of magnitude, yet we still have rather
boundary is approached. Our results showing the existenagood resolution in the data. When we comp&téq, w) for
of a central peak beloW, are in agreement with the experi- the different lattice sizes we see that finite-size effects extend
mental results of Coet all? to a higher lattice size for the central peak than for the spin-
We also see possible evidence of multiple spin-wavevave component. There is no noticeable finite-size effect for
peaks which are most clearly seenTat 1.5] as shown in lattice sized =32 and above for the case of smallwhere
Fig. 3. These are only present in the longitudinal componenithe contribution due to the central peak is negligiblEhis
and broaden a$— T, becoming indistinguishable as sepa- indicates that this is the lower bound of the asymptotic re-
rate exitations. If we make the assumptions that the dominargime. In Fig. 6 we see the finite-size effects present for lat-
multiple spin-wave exitations are two-spin waves, then weice sizeL=16. The spin-wave peak is shifted to slightly
can estimate the frequencies of possible multiple spin-wavéigher frequency and the central peak is reduced and broad-
peaks. Restricting ourselves to sites on the reciprocal latticened.
which are in the vicinity of the single spin-wave vector we  When we increase the temperatureTie-2.1J, slightly
are left with a set of predicted multiple spin-wave frequen-above T., S(q,w) is completely isotropic and shows a
cies that we can match to our results as indicated in Fig. 3oroader and stronger central peak and a broader spin-wave
We only see spin-wave peaks corresponding to two-spipeak centered at a lower frequency than the resulf at
waves which are combinations of spin waves on the simpldhis lowering of the frequency of the spin-wave peak is pre-
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003 b e TR y:‘ a =77 curve at highg values could only be estimated due to the
BT =21 extremely broad nature of the central peak for sngalln
“‘?“.‘4 particular, for smallg the spin-wave peak was completely
001 F X\ hidden by the central peak. The dispersion curve values we
were able to obtain, however, show the decreased frequency
\\ as predicted by renormalization group thebry.
0.00 :

As a by-product of our results, though this is not a dy-
o) 4 ) 8 namic !oroperty, we 'obtained rgsults f,si(q) and Xé(q).
According to theoretical calculation$;® y(q)=q~ "7 in
FIG. 7. Graph ofS(q, ) atT=2.1] for lattice sizel = 32 at the the limit g—0. For the case of the Heisenberg magnet,

q valuesq=57/16 andq=. We see that the spin-wave peak is 2~ 7= B/v=1.962. Finite-size effects more pronounced
obscured by the central peak at the Iqwalue. than those in the transverse component caused our results not

to converge for the longitudinal component. Our results for
the transverse component showed finite-size effects even for
the largest three lattice sizes, and so we only considered the
largest lattice sizel(=48). We found, as shown in Fig. 9,
that the asymptotic regime fogq was entered at~n/3
vhere we obtained an exponent value of 2=1.96(Q8), in
agreement with theory.

dicted by renormalization group the8rpertaining to the
form function in the vicinity of the critical region. In Fig. 7
we see that at lovg the spin-wave peak is not discernible
due to the increased width and strength of the central pea
At higherq a spin-wave peak is discernible but is very broad
and is still masked by the central peak.

We were able to plot approximate dispersion curves at _ _
T.. Figure 8 shows a comparison of the dispersion curve to B. Results for dynamic scaling theory
the low-temperatureT=0.1J) dispersion curve which ap- In order to test the dynamic scaling theory we calculated
proximately matches linear spin-wave theory. The dispersiom, (qL) usingS*(qg,w) with qL=27 (n=1) for all lattice
sizes. We used the transverse component only in our dy-
namic finite-size scaling analysis since we have found in
calculating X”§(q) that finite-size effects are more pro-
nounced in the longitudinal than in the transverse compo-
nents. If we use all the lattice sizes to determinieom the
slope of the log,, vs lod- plot, we get a value of approxi-
mately z=1.4; however, using only the three largest lattice
sizes we obtained a value af=1.4894). We then graphed
wmL? vs L using these two values aof and this graph is
shown in Fig. 10. With the error bars on the results taken
into consideration it becomes clear that in faet1.48(4) is
the correct result from our data and the asymptotic regime is
reached abL ~30. This result serves as an important warning
against the use of lattice sizes which are too small and also
indicates the importance of the determination of accurate er-

FIG. 8. Graph of dispersion curves &t=0.1) where behavior 'or bars for all simulation results. Our resultot 1.48(4) is
closely matches linear spin-wave theofly£0, the solid ling com-  IN agreement with the experimental results of Tucciarone
pared to our results &, andT=2.1J. The error bars foT=2.1are €t al” and also validates dynamic scaling theory.
roughly the same as those f6g but are not plotted in the figure to We once again used our results to test dynamic scaling
enhance clarity. through the use of Eq14). We graphedS\(q, »)/L%x¥(q)
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FIG. 10. Graph ofw,L* vs L for z=1.4, the dynamic critical FIG. 12. Successful Lorentzian fit fdr=1.3J, q=5#/16, and

exponent value gained from the slope of the log-log plot using alllattice sizel =32.
lattice sizes, and=1.48, the value of the dynamic critical exponent
ghained fr%m fittir(;g onlyhthe Iarg(?st)threﬁ lattice sizels. Tht()e sizedof 5 J=A 1 BT, BT,

the error bars indicate that=1.48(4) is the correct value obtaine q,w)= % T3 =Y 7|
from our results, the asymptotic regime being reached for lattice ito® It(ete)” It(o-oy
sizeL=32. Dynamic scaling theoryzE& 1.5) is thus verified. One (18)
sees the danger inherent in using lattice sizes that are too small a
the importance of an accurate estimation of the error bars on a n
simulation results. In calculating,,, n=1 (qL=2#) was used.

ere the first term is the contribution from the central peak
d the last two terms are from spin-wave creation and an-
nihilation. We found, as shown in Fig. 13, that this function
did not fit the high-frequency tails d§(q,w), a region not

vs wL? for the three lattice sizes found to be in the asymp-accessed by the experiment. This indicates that the Lorentz-
totic regime with the dynamic critical exponent set toian form commonly assumed in fitting spin-wave peaks in
z=1.48. As shown in Fig. 11 the three graphs were collineathe neutron scattering function may not be accurate in the
to within the bounds of their error bars, thus once agaircritical regime. Attempts to fit the data &t=2.1J also indi-
validating dynamic scaling theory. We also included the
shape of the scaling function fdr=16 in Fig. 11 to show

0.8
finite-size effects in the smaller lattices.

(a)
L N A Data points
- . . S<q’w> ’ =~ -~ Lorentzian
C. Fitting data to analytical functions
) L. QL — Our function
We were successful in fitting (g, o) at temperatures 0.4
below T, to a Lorentzian form for frequency values smaller | % 7 Halperin-Hohenberg

than w~4/J as shown in Fig. 12.

Tucciaroneet al. “successfully” fit their experimental
data to the Lorentzian form

_______
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FIG. 11. Graph of scaling functions for Ilattice sizes
L=32,40,48 showing the three graphs to be colinear within error FIG. 13. Attempted fits show a lack of fit for high-frequency
bars forz=1.48, thus validating dynamic scaling theory. The form tails for T=T, when the spin-wave peak is fit to a Lorentzian or
of the scaling function fot. =16 is included to show the effects of Halperin-Hohenberg function. This is rectified by our fitting func-
finite size.n=1 (qL=2w) was used. tion. In this graphL =32 andq=5/16.



9266 ALEX BUNKER, KUN CHEN, AND D. P. LANDAU 54

cate that the high-frequency tail drops off too rapidly to be fitwas found that is in agreement with theoretical and experi-
to a Lorentzian. We then attempted to fit to a critical spin-mental results. The asymptotic regime for the spin-wave
wave peak form proposed by Halperin and HohenBérg,  peak was found to be entered at the large lattice size of
L~30. As a by-product of our results we found that the
I' (19) momentum-dependent susceptibility for transverse exita-
o+ (w?—w2)?)’ tions, x;(0), approachesy;(g)eq %7 asg—0 as pre-
dicted by theory.

Below T, we found, in agreement with experiment, the
existence of a spin diffusion peak which was predominantly
longitudinal and the possible existence of longitudinal mul-
nential term in the new quartic denomenator we were able tg|ple spin-wave peaks. The spin-wave peak narrowed and

model this behavior. This resulted in a successful Seven@pproaehed the linear spin-wave theory resulTas0 as

' L , expected. Abovd ; we found the spin-wave peak to be at a
parameter fit forS™(q, ) over the entire range af values, lower frequency than the result di,, in agreement with
S(q,0)=(ap+a;w+a,w’+azw’+a,0*+ae?) 1, theory. o .

(20) We were successful in fitting the spin-wave peaks below
T. to a Lorentzian form and were also able to analytically fit
the data taken at and abovVeg to a function we created.

S(q,w)=A +B

1
Fi-l— w?
with somewhat better but still unsuccessful res(ifg. 13.

We found that the high-frequency tail drops off first as a

and this successful fit is shown in Fig. 13.

IV. CONCLUSION
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