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We have used spin dynamics techniques to perform large-scale simulations of the dynamic behavior of the
L3L3L body-centered-cubic classical Heisenberg antiferromagnet withL<48 at a range of temperatures
above and below as well as at the critical pointTc . The temporal evolutions of the spin configurations were
determined numerically from coupled equations of motion for individual spins by a fourth-order predictor-
corrector method, with initial spin configurations generated by Monte Carlo simulations. The neutron scatter-
ing functionS(q,v) was calculated from the space- and time-displaced spin-spin correlation function. We used
a previously developed dynamic finite-size scaling theory to extract the dynamic critical exponentz from
S(q,v) at Tc . Our results are in agreement with the theoretical prediction ofz51.5 and with experimental
results; however, we find that the asymptotic regime was only entered atL'30. In the analysis of the form of
the transverse and longitudinal components ofS(q,v) we found that a central diffusion peak appears below
Tc predominantly in the longitudinal component and remains present through and aboveTc . The transverse
component of the spin-wave peak is Lorentzian belowTc but for T>Tc is described best by a more complex
functional form. BelowTc we see evidence of multiple spin-wave peaks in the longitudinal component.
@S0163-1829~96!02138-8#

I. INTRODUCTION

The isotropic Heisenberg antiferromagnet has the same
static critical behavior as the ferromagnet which has been
studied using a variety of approaches including a recent
high-resolution Monte Carlo study.1 This work determined
the critical temperature and the static critical exponents for
the simple cubic and body-centered-cubic systems to a pre-
cision equivalent to or better than that found with any other
method and substantiated the hypothesis of universality for
static properties once again. The theory of the dynamic be-
havior of the Heisenberg model is, however, not so clearly
understood. The dynamics of the Heisenberg antiferromagnet
is very different from that of the ferromagnet since the order
parameter~the staggered magnetization! is no longer a con-
served quantity. One only needs to look to linear spin-wave
theory to see that the low-temperature dispersion curves are
markedly different for the two models. Dynamic critical be-
havior is describable in terms of a dynamic critical exponent
z which is dependent on conservation laws, lattice dimen-
sion, and the static critical exponents. In their work on the
theory of dynamic critical phenomena,2 Hohenberg and Hal-
perin proposed a number of different dynamic universality
classes based upon the conservation laws. The classical
Heisenberg ferromagnet and antiferromagnet are of class J
and G, respectively; both of these classes have true dynamics
with spin variables of continuous degrees of freedom and
real time dynamic behaviors governed by coupled equations
of motion. The difference between the classes is that the
order parameter is only conserved in classJ. Using dynamic
scaling they found thatz532b/n for class J, and various
theoretical methods2–5 were used to determine thatz5d/2
for class G whereb and n are the static critical exponents
andd is the dimension of the system.

The material which is best described by the isotropic an-
tiferromagnetic Heisenberg Hamiltonian is RbMnF3. Early

experimental studies6–8have shown that it has a simple cubic
lattice structure with a nearest-neighbor exchange constant of
J50.5860.06 meV and a second-neighbor constant of less
than 0.04 meV@both defined using our convention forJ as
defined in Eq.~1!#. The critical point was found to be 83 K,
which makes the study of the critical region amenable to
neutron scattering experiments. The magnetic anisotropy was
found to be only 4.5 G, and no deviation from cubic sym-
metry was seen to occur atTc . Neutron scattering experi-
ments have been carried out on RbMnF3 by Tucciarone
et al.9 who found that in the critical region the neutron scat-
tering function was found to have a central peak~peak at
frequencyv50) as well as a spin-wave peak. This central
peak is thought to be due to spin diffusion resulting from
nonlinearities in the dynamical equations.10 Two-crystal neu-
tron scattering revealed static critical exponents in agreement
with theory and a three-crystal neutron scattering measure-
ment found a value of the dynamic critical exponent slightly
lower than but still within the error bars of the theoretical
prediction of z51.5. Another more recent study by Cox
et al.11 indicates the presence of a small central peak below
Tc .

In this paper we present results of large-scale computer
simulations of the dynamic behavior for the Heisenberg an-
tiferromagnet. We focus mainly on the critical region but
also have found results for temperatures above and below the
critical point. In Sec. II we define the model and discuss
dynamic scaling theory, and in Sec. III we present and dis-
cuss our simulation results.

II. MODEL AND METHODS

A. Model

The classical Heisenberg antiferromagnet is defined by
the Hamiltonian
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whereSr5(Sr
x ,Sr

y ,Sr
z) is a three-dimensional classical spin

of unit length at siter and J.0 is the antiferromagnetic
coupling constant between nearest-neighbor spins. We con-
sider L3L3L body-centered-cubic systems with periodic
boundary conditions. The dynamics of the spins will be gov-
erned by the coupled equations of motion,

d

dt
Sr52Sr3J(

^rr 8&
Sr8 , ~2!

and the time dependence of each spin can be determined
from the integration of these equations.

B. Dynamic scaling

The neutron scattering functionS(q,v) for momentum
transferq and frequency transferv is an experimental ob-
servable and is fundamental to the study of spin dynamics. It
is given by

Sk~q,v!5(
r,r 8

exp@ iq•~r2r 8!#

3E
2`

1`

exp~ ivt !Ck~r2r 8,t !
dt

A2p
. ~3!

Ck(r2r 8,t) is the space-displaced, time-displaced spin-spin
correlation function defined, withk5x, y, or z, as

Ck~r2r 8,t !5^Sr
k~ t !Sr8

k
~0!&2^Sr

k~ t !&^Sr8
k

~0!&. ~4!

The displacementr is in units of the lattice unit cell length
a. For the ferromagnetic caseSr

k(t) is the value of thek
component of the spin at positionr and timet. For the anti-
ferromagnetic case the lattice can be divided into sublattices
A andB, where in the ordered state the spins in sublattice
B point in the opposite direction to the spins in sublattice
A. For the spins on sublatticeB, Sr

k(t) will be the negative of
the spin value at that site.

The neutron scattering function can be written in the
form12

Sj
k~q,v!5

2p

vm~q,j!
xj
k~q! f S v

vm~q,j!
,q,j D , ~5!

where j is the correlation length,xj
k(q) is momentum-

dependent susceptibility given by

E
2`

`
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2p
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and f is the normalized form function. The characteristic
frequencyvm(q,j) is a median frequency determined by the
constraint

E
2vm~q,j!

vm~q,j!

Sj
k~q,v!
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2p
5
1

2
xj
k~q!. ~7!

The characteristic frequency can be seen as a generalized
halfwidth of S(q,v). In the dynamic scaling theory it is as-
sumed thatvm(q,j) is a homogeneous function ofq and
j, i.e.,

vm~q,j!5qzV~qj!, ~8!

wherez is the dynamic critical exponent, and thatf , the form
function, depends only on the product ofqj but not onq and
j separately. ThereforeSj

k(q,v) as given in Eq.~5! is sim-
plified,

Sj
k~q,v!5

2p

vm~qj!
xj
k~q! f S v

vm~qj!
,qj D . ~9!

C. Form function

The form functions for both magnetic,f M , and staggered
magnetic, f N , correlations as a function ofqj have been
predicted for the isotropic antiferromagnet through the use of
renormalization group methods.4,13 For high enough tem-
perature, the relaxation regime, whereqj!1, f N should be a
simple Lorentzian centered around the originv50. As the
temperature decreases and we approach the critical regime,
qj@1 and two spin-wave peaks appear displaced symmetri-
cally about the origin. The positions of the peak moves out-
ward asqj increases until a limiting value is reached as the
critical region is approached.f M remains Lorentzian for
T>Tc . BelowTc the renormalization group theory becomes
more approximate due to complications arising from the
presence of an ordered phase. It can only predict that a spin-
wave peak exists and that it will become broader as tempera-
ture increases. We know from linear spin-wave theory that,
in the (q,0,0) direction, for Heisenberg spins asT→0 the
central peak vanishes and the spin-wave peak becomes
sharper, approaching ad function atv58sin(q/2) for the
bcc lattice andv54sin(q/2)@21cos2(q/2)#1/2 for the simple-
cubic lattice. Renormalization group theory does not distin-
guish between the two lattice structures in making predic-
tions.

D. Simulational background

Using a combination of Monte Carlo and spin dynamics
methods,14,15 we simulated the behavior of the body-
centered-cubic classical Heisenberg antiferromagnet with
8<L<48 at the critical pointTc52.054 241J, where we
have chosen units such that the Boltzmann constantk51.
We also examined the behavior outside the critical region, at
slightly above the critical point,T52.1J, and at a set of
temperatures belowTc , T51.0J, 1.3J, 1.5J, and 1.9J, with
L532. All simulations were carried out on the Cray C90 at
the Pittsburgh Supercomputing Center.

We used the same hybrid Monte Carlo method as Chen
and Landau14 in the study of the critical dynamics of the
Heisenberg ferromagnet to generate equilibrium configura-
tions. A single hybrid Monte Carlo step consisted of two
Metropolis steps and eight overrelaxation steps. Typically
1000 hybrid MC steps were used to generate each equilib-
rium configuration. Our spin dynamics method differed only
in that we carried out the integration to a larger time
tmax5200J21 instead of, as in the previous study,
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tmax5120J21. We also used the technique of calculating par-
tial spin sums ‘‘on the fly’’ which limits us to data in the
(q,0,0) direction withq determined by the periodic boundary
conditions,

q5
2pn

L
, n561,62, . . . ,6~L21!,L. ~10!

We used the fast Fourier transform~FFT! algorithm to in-
crease the efficiency of the program. The time-displaced,
space-displaced spin-spin correlation function was calculated
from an average over 200 different time starting points
evenly spaced by 0.1J21 for a time period 0<t<tcutoff with
tcutoff5180J21. The resolution of our results inv is limited
by the finite time cutoff according to the relation

dv5
1.2p

tcutoff
. ~11!

~The factor of 1.2p results from the difference between the
half-width ands.! In our casedv'0.021. Since all three
Cartesian spatial directions are equivalent by symmetry, the
same operation carried out for the (q,0,0) direction was also

carried out for the other two reciprocal lattice directions
(0,q,0) and (0,0,q) and the results were averaged.

While the original study of Chen and Landau14 used 100
equilibrium spin configurations for lattice sizes up to
L540, we used 1000 equilibrium spin configurations for lat-
tice sizesL58232 and 400 equilibrium spin configurations
for lattice sizesL540 and 48.

We also averaged results for spin componentsk5x and
y, since the staggered magnetization is a conserved vector
along thez direction in spin space so that the neutron scat-
tering functionSj

k(q,v) can be regrouped in terms of sym-
metry as a longitudinal component

Si~q,v!5Sz~q,v! ~12!

and a transverse component

S'~q,v!5
1

2
@Sx~q,v!1Sy~q,v!#, ~13!

where the spins are reoriented so that the direction of the
order parameter, staggered magnetization, remains parallel to
the z axis.

FIG. 1. Graph ofS'(q,v) for q5p/8 at T51.3J, T51.5J,
T51.9J , T5Tc (2.054 241J), andT52.1J showing the broaden-
ing and decrease in frequency of the spin-wave peak as temperature
increases.

FIG. 2. Graph of the lowv part of S'(q,v) andSi(q,v) for
q53p/16 atT51.5J andT51.9J showing the presence of a cen-
tral peak in the ordered phase which increases with increasing tem-
perature. We see that the central peak has a more intense longitu-
dinal than transverse component. The oscillations seen are caused
by the finite time cutoff.

FIG. 3. Graphs ofS'(q,v) and Si(q,v) for T51.5J and
q53p/16. We see possible multiple spin-wave peaks which are
only present in the longitudinal component. We found predicted
two-spin wave peaks to match our results only for the case of spin
waves on the simple cubic subset of the fcc reciprocal lattice. The
approximated two-spin waves labeled are~a! (2,21,21), ~b!
(2,21,0), ~c! (2,0,0), ~d! (3,21,21), ~e! (3,21,0), ~f!
(3,21,21), ~g! (2,21,0), ~h! (3,21,0), and~i! (2,21,21).
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E. Dynamic finite-size scaling

We used a previously developed dynamic finite-size scal-
ing theory14,16 in order to extract an estimate for the dynamic
critical exponentz. Since the finite time cutoff was only
100J21 for the ferromagnet, oscillations were introduced
into the result of the Fourier transform which had to be
smoothed out by convoluting the spin correlation function
with a resolution function in frequency. We found that by
taking the finite time cutoff out to 180J21 these oscillations
became negligible and we could perform the finite-size scal-
ing analysis without the use of a resolution function. As a
result the dynamic finite-size scaling relations14,16simplify to

SL
k~q,v!

LzxL
k~q!

5G~vLz,qL! ~14!

and

vm~q,L ![vm~qL!5L2zV̄~qL!. ~15!

SL
k(q,v) is the calculated neutron scattering function at lat-
tice sizeL, xL

k(q) is given by

E
2`

`

SL
k~q,v!

dv

2p
5xL

k~q!, ~16!

andvm(qL), the characteristic frequency, is given by

E
2vm~qL!

1vm~qL!

SL
k~q,v!

dv

2p
5
1

2
xL
k~q!. ~17!

We can thus test dynamic scaling and estimate the dynamic
critical exponentz. Simpson’s rule was used to carry out the
integration in order to determine the characteristic frequency.

We see that a value forz can be obtained from the slope
of a graph of logvm vs logL if the value of qL is fixed;
however, this will only give us the correct answer if all the
lattice sizes included in the calculation are large enough to
be in the asymptotic-size regime. The approximate lattice
size of the onset of the asymptotic regime can be seen by
comparingvLz values for the different lattice sizes for a trial
value of z. If z is chosen correctly, then for fixedqL,
due to the first scaling relation@Eq. ~14!#, graphs of
SL
k(q,v)/LzxL

k(q) vsvLz should all fall onto the same curve
for lattice sizes in the asymptotic regime. This can be used as
a test for our solution ofz.

III. RESULTS

A. Data for S„q,v…

Our results at the temperatures belowTc show, as ex-
pected, the spin-wave peak becoming narrower and increas-
ing in frequency, approaching linear spin-wave theory as
temperature decreases. Figure 1 shows a comparison of the
q5p/8 transverse spin-wave peaks for five of the tempera-
tures studied. Our peak widths even forT51.0J are wide
enough that the contribution due to the finite resolution is
negligible. The high-frequency oscillations present in the
data are only due to the finite time cutoff at lowT andq. At
higherT andq values these are mostly due to noise in the
data. The longitudinal and transverse spin waves are at the
same frequency, and thus we see no evidence of the phenom-

FIG. 4. Graphs ofS'(q,v) at T5Tc for lattice sizeL532 over the range ofq values,q5p/16, 5p/16, 5p/8, andp.
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enon of ‘‘second sound’’; however, the spin-wave peak is
much less intense in the longitudinal component than in the
transverse component. This is to be expected since according
to linear spin-wave theory longitudinal exitations vanish as
T→0. As the zone boundary is approached the form of the
transverse spin-wave peak becomes increasingly asymmetric,
deviating from a qualitatively lorentzian form.

We see the existence of a central peak that is increasing in
strength with increasing temperature and is much more in-
tense in the longitudinal than in the transverse component as
shown in Fig. 2. The central peak decreases less with in-
creasingq than the spin-wave peak and for the longitudinal
component becomes the dominant exitation as the zone
boundary is approached. Our results showing the existence
of a central peak belowTc are in agreement with the experi-
mental results of Coxet al.11

We also see possible evidence of multiple spin-wave
peaks which are most clearly seen atT51.5J as shown in
Fig. 3. These are only present in the longitudinal component
and broaden asT→Tc , becoming indistinguishable as sepa-
rate exitations. If we make the assumptions that the dominant
multiple spin-wave exitations are two-spin waves, then we
can estimate the frequencies of possible multiple spin-wave
peaks. Restricting ourselves to sites on the reciprocal lattice
which are in the vicinity of the single spin-wave vector we
are left with a set of predicted multiple spin-wave frequen-
cies that we can match to our results as indicated in Fig. 3.
We only see spin-wave peaks corresponding to two-spin
waves which are combinations of spin waves on the simple

cubic subset of the reciprocal fcc lattice that the beginning
and end point of the two-spin wave belong and do not see
that same agreement for other two-spin wave combinations.

Figures 4 and 5 show transverse,S'(q,v), and longitudi-
nal, Si(q,v), components ofS(q,v) at T5Tc at a set ofq
values. The longitudinal component is similar in form to that
of the Heisenberg ferromagnet.14 As is the case forT,Tc
there is a much stronger central diffusion peak in the longi-
tudinal component than in the transverse component. The
spin-wave peak of the longitudinal component is also weaker
than in the transverse component. Theoretically atTc one
should not be able to separate the longitudinal and transverse
components but due to finite-size effects a residual magneti-
zation is present which causes the difference between these
two components.

Our results forS'(q,v) are in qualitative agreement with
the experimental results9 in that we see the expected central
peak as well as a spin-wave peak; however, they are in stark
disagreement with theoretical~coupled-mode theory! results5

which predict a minimum atv50. Whenq is increased we
see a uniform decrease in intensity and a combined fre-
quency increase and broadening of the spin-wave peak.
While over mostq values the relative intensity of the central
and spin-wave peaks remains a constant, at very smallq the
relative intensity of the central peak decreases. Note that as
we move from smallq to the zone boundary the intensity
changes by four orders of magnitude, yet we still have rather
good resolution in the data. When we compareS'(q,v) for
the different lattice sizes we see that finite-size effects extend
to a higher lattice size for the central peak than for the spin-
wave component. There is no noticeable finite-size effect for
lattice sizesL532 and above for the case of smallq ~where
the contribution due to the central peak is negligible!. This
indicates that this is the lower bound of the asymptotic re-
gime. In Fig. 6 we see the finite-size effects present for lat-
tice sizeL516. The spin-wave peak is shifted to slightly
higher frequency and the central peak is reduced and broad-
ened.

When we increase the temperature toT52.1J, slightly
above Tc , S(q,v) is completely isotropic and shows a
broader and stronger central peak and a broader spin-wave
peak centered at a lower frequency than the result atTc .
This lowering of the frequency of the spin-wave peak is pre-

FIG. 5. Graphs ofSi(q,v) atT5Tc for lattice sizeL532 at the
q valuesq55p/16 andq5p. In comparison to the transverse com-
ponent the central diffusion peak is much stronger and the spin-
wave peak is less intense.

FIG. 6. Graph ofS'(q,v) for q5p/8 andT5Tc showing the
finite-size effects at lattice sizeL516 in comparison to the result at
lattice sizeL532 which is in the asymptotic regime.
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dicted by renormalization group theory4 pertaining to the
form function in the vicinity of the critical region. In Fig. 7
we see that at lowq the spin-wave peak is not discernible
due to the increased width and strength of the central peak.
At higherq a spin-wave peak is discernible but is very broad
and is still masked by the central peak.

We were able to plot approximate dispersion curves at
Tc . Figure 8 shows a comparison of the dispersion curve to
the low-temperature (T50.1J) dispersion curve which ap-
proximately matches linear spin-wave theory. The dispersion

curve at highq values could only be estimated due to the
extremely broad nature of the central peak for smallq. In
particular, for smallq the spin-wave peak was completely
hidden by the central peak. The dispersion curve values we
were able to obtain, however, show the decreased frequency
as predicted by renormalization group theory.4

As a by-product of our results, though this is not a dy-
namic property, we obtained results forxj

i (q) and xj
'(q).

According to theoretical calculations,17,18xj(q)}q
2(22h) in

the limit q→0. For the case of the Heisenberg magnet,
22h5b/n51.962.1 Finite-size effects more pronounced
than those in the transverse component caused our results not
to converge for the longitudinal component. Our results for
the transverse component showed finite-size effects even for
the largest three lattice sizes, and so we only considered the
largest lattice size (L548). We found, as shown in Fig. 9,
that the asymptotic regime forq was entered atq'p/3
where we obtained an exponent value of 22h51.960(8), in
agreement with theory.

B. Results for dynamic scaling theory

In order to test the dynamic scaling theory we calculated
vm(qL) usingS

'(q,v) with qL52p (n51) for all lattice
sizes. We used the transverse component only in our dy-
namic finite-size scaling analysis since we have found in
calculating xj

i (q) that finite-size effects are more pro-
nounced in the longitudinal than in the transverse compo-
nents. If we use all the lattice sizes to determinez from the
slope of the logvm vs logL plot, we get a value of approxi-
mately z51.4; however, using only the three largest lattice
sizes we obtained a value ofz51.48(4). We then graphed
vmL

z vs L using these two values ofz and this graph is
shown in Fig. 10. With the error bars on the results taken
into consideration it becomes clear that in factz51.48(4) is
the correct result from our data and the asymptotic regime is
reached atL'30. This result serves as an important warning
against the use of lattice sizes which are too small and also
indicates the importance of the determination of accurate er-
ror bars for all simulation results. Our result ofz51.48(4) is
in agreement with the experimental results of Tucciarone
et al.9 and also validates dynamic scaling theory.

We once again used our results to test dynamic scaling
through the use of Eq.~14!. We graphedSL

k(q,v)/LzxL
k(q)

FIG. 7. Graph ofS(q,v) atT52.1J for lattice sizeL532 at the
q valuesq55p/16 andq5p. We see that the spin-wave peak is
obscured by the central peak at the lowq value.

FIG. 8. Graph of dispersion curves atT50.1J where behavior
closely matches linear spin-wave theory (T50, the solid line! com-
pared to our results atTc andT52.1J. The error bars forT52.1 are
roughly the same as those forTc but are not plotted in the figure to
enhance clarity.

FIG. 9. log-log plot ofxj
'(q) vs q showingxj

'(q)}q21.96 as
q→0 in agreement with theory.
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vs vLz for the three lattice sizes found to be in the asymp-
totic regime with the dynamic critical exponent set to
z51.48. As shown in Fig. 11 the three graphs were collinear
to within the bounds of their error bars, thus once again
validating dynamic scaling theory. We also included the
shape of the scaling function forL516 in Fig. 11 to show
finite-size effects in the smaller lattices.

C. Fitting data to analytical functions

We were successful in fittingS'(q,v) at temperatures
belowTc to a Lorentzian form for frequency values smaller
thanv'4/J as shown in Fig. 12.

Tucciaroneet al. ‘‘successfully’’ fit their experimental
data to the Lorentzian form

S~q,v!5AS G1

G1
21v2 1

BG2

G2
21~v1vs!

2 1
BG2

G2
21~v2vs!

2D ,
~18!

where the first term is the contribution from the central peak
and the last two terms are from spin-wave creation and an-
nihilation. We found, as shown in Fig. 13, that this function
did not fit the high-frequency tails ofS(q,v), a region not
accessed by the experiment. This indicates that the Lorentz-
ian form commonly assumed in fitting spin-wave peaks in
the neutron scattering function may not be accurate in the
critical regime. Attempts to fit the data atT52.1J also indi-

FIG. 10. Graph ofvmL
z vs L for z51.4, the dynamic critical

exponent value gained from the slope of the log-log plot using all
lattice sizes, andz51.48, the value of the dynamic critical exponent
gained from fitting only the largest three lattice sizes. The size of
the error bars indicate thatz51.48(4) is the correct value obtained
from our results, the asymptotic regime being reached for lattice
sizeL532. Dynamic scaling theory (z51.5) is thus verified. One
sees the danger inherent in using lattice sizes that are too small and
the importance of an accurate estimation of the error bars on all
simulation results. In calculatingvm , n51 (qL52p) was used.

FIG. 11. Graph of scaling functions for lattice sizes
L532,40,48 showing the three graphs to be colinear within error
bars forz51.48, thus validating dynamic scaling theory. The form
of the scaling function forL516 is included to show the effects of
finite size.n51 (qL52p) was used.

FIG. 12. Successful Lorentzian fit forT51.3J, q55p/16, and
lattice sizeL532.

FIG. 13. Attempted fits show a lack of fit for high-frequency
tails for T5Tc when the spin-wave peak is fit to a Lorentzian or
Halperin-Hohenberg function. This is rectified by our fitting func-
tion. In this graphL532 andq55p/16.

54 9265CRITICAL DYNAMICS OF THE BODY-CENTERED- . . .



cate that the high-frequency tail drops off too rapidly to be fit
to a Lorentzian. We then attempted to fit to a critical spin-
wave peak form proposed by Halperin and Hohenberg,12

S~q,v!5AS G1

G1
21v2D 1BS G2

G2
21~v22vs

2!2D , ~19!

with somewhat better but still unsuccessful results~Fig. 13!.
We found that the high-frequency tail drops off first as a
power law and then exponentially. Equation~19! can be ex-
pressed as an inverted quartic equation. By adding an expo-
nential term in the new quartic denomenator we were able to
model this behavior. This resulted in a successful seven-
parameter fit forS'(q,v) over the entire range ofq values,

S~q,v!5~a01a1v1a2v
21a3v

31a4v
41a5e

a7v!21,
~20!

and this successful fit is shown in Fig. 13.

IV. CONCLUSION

In the largest spin dynamics simulation yet performed,
with larger lattices, more initial configurations, and longer
time development than ever before, the dynamic finite-size
scaling theory developed by Chen and Landau has once
again been validated. A result for the dynamic critical expo-
nent for the bcc Heisenberg antiferromagnet ofz51.48(4)

was found that is in agreement with theoretical and experi-
mental results. The asymptotic regime for the spin-wave
peak was found to be entered at the large lattice size of
L'30. As a by-product of our results we found that the
momentum-dependent susceptibility for transverse exita-
tions, xj

'(q), approachesxj
'(q)}q222h as q→0 as pre-

dicted by theory.
Below Tc we found, in agreement with experiment, the

existence of a spin diffusion peak which was predominantly
longitudinal and the possible existence of longitudinal mul-
tiple spin-wave peaks. The spin-wave peak narrowed and
approached the linear spin-wave theory result asT→0 as
expected. AboveTc we found the spin-wave peak to be at a
lower frequency than the result atTc , in agreement with
theory.

We were successful in fitting the spin-wave peaks below
Tc to a Lorentzian form and were also able to analytically fit
the data taken at and aboveTc to a function we created.
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