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We develop and carry out Monte Carlo simulations for an ensemble of superparamagnetic particles uni-
formly distributed in a nonmagnetic matrix. We find the magnetization below the blocking temperatureTB
when it shows hysteresis and aboveTB in the superparamagnetic region. We determine the blocking tempera-
ture for a set of anisotropy strengths from the magnetization and the susceptibility of the particles. A fixed
number of Monte Carlo steps with a constrained acceptance rate is shown to be equivalent to an observation
time in the simulations that is much shorter than experimental observation times. We show how the blocking
temperature obtained in the simulations can be converted into the corresponding experimentally measurable
blocking temperature by using this difference in the observation times. This provides a method to compare
Monte Carlo simulation results with experiments, such as recent ones on fcc Co particles.
@S0163-1829~96!02537-4#

A number of numerical simulations have been performed
to study the magnetic properties of clusters or very small
particles both at nonzero1–8 and at zero temperatures.9,10The
nonzero-temperature properties have been studied in Monte
Carlo ~MC! simulations1,2 assuming that the anisotropy of
the particles can be neglected. While this assumption is rea-
sonable when the particles are studied on an atomic level or
when the magnetization of the particles behaves essentially
paramagnetically, it excludes the low-temperature properties
when the magnetization shows hysteresis due to the anisot-
ropy. Here we intend to study the combination of tempera-
ture and anisotropy effects on the magnetization of fine mag-
netic particles using the Metropolis Monte Carlo scheme.11

The description of the magnetic properties of single-
domain particles in general for nonzero temperatures is based
on the superparamagnetic theory.12 The basic assumption of
this theory is that the atomic magnetic moments within a
particle are moving coherently and thus its magnetic moment
can be represented by a single vector with a magnitude equal
to m5m0N, wherem0 is the atomic magnetic moment in
Bohr magnetons andN is the number of atoms in the par-
ticle. The magnetic moment of the particle is considered
coupled to a uniaxial anisotropy, for instance, due to crystal
or stress anisotropy, and to the external magnetic field. In the
absence of an external field, the uniaxial anisotropy leads to
two equivalent equilibrium states of the moment. For an en-
semble of identical particles which have been initially satu-
rated in a given direction, the magnetization per particle will
decrease from its initial value asM5Mse

2t/t, where
Ms5m/V andV is the particle’s volume, as equal popula-
tions of the two states are acquired due to thermal fluctua-
tions.

The relaxation timet is essentially the average time to
reverse a particle’s magnetization from one of the equilib-
rium states to the other and is determined by the Boltzmann
factor exp(2D/kBT) and a characteristic constant frequency
f 0 ~of the order of 1010 Hz! through the relation

1

t
5 f 0exp~2D/kBT!, ~1!

whereT is the temperature,kB is Boltzmann’s constant, and
D is the energy barrier separating the two states.13 D is de-
termined by the anisotropy energy densityK and the parti-
cle’s volume,D5KV. For highT (kBT@D) the time scale
of the thermal relaxationt in Eq. ~1! is much shorter than
any experimental observation time over which magnetization
is measured, and so the system appears superparamagnetic.
On the other hand, for lowT (kBT!D), the thermal reversal
time scalet becomes very large, much larger than any ob-
servation time, and the system appears ferromagnetic. The
temperature determined from Eq.~1! with t set equal to the
experimental observation timet defines the blocking tem-
peratureTB which separates the two regimes. However, the
time t is determined by the experimental requirements, and
so the definition ofTB is not unique, but can depend on the
type of experiment. Fort51000 sec we have

TB'D/30kB , ~2!

where the numerical factor comes from ln(f0t)'30 for
f 051010 Hz. If we want to use Monte Carlo or even a spin
dynamics simulation based on Landau-Lifshitz or Langevin
equations to study the magnetic properties in the presence of
anisotropy, it is impossible to make a long enough simula-
tion that will correspond to 1000 sec. Therefore, part of our
goal here is to describe how a laboratory value ofTB can be
obtained from simulations that correspond to observation
times much less than 1 sec.

We show in this paper that all of the results in the super-
paramagnetic theory can be obtained by Monte Carlo simu-
lations where we use an observation time much smaller than
the experimentally used values. Nevertheless, the data from
the simulations can be compared with experimental results
after we account for the shorter observation time of the
Monte Carlo simulations.

We choose to do the simulations by using a Metropolis
Monte Carlo scheme rather than using Landau-Lifshitz or
Langevin equations because the implementation of the tem-
perature is straightforward. However, it presents the usual
problem with MC schemes that individual MC steps do not
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correspond to real time, but are only sampling the phase
space at some rate. If the MC acceptance rate can be set to
some desired value~we use 30–40 %!, however, this effec-
tively sets the rate of motion in phase space. For the problem
here, the magnetic moment can remain for many steps in one
side of the double potential well due to the anisotropy term.
Over some characteristic number of MC steps, it will typi-
cally pass near the barrier to go to the other side of the well.
That is, there really will be a characteristic attempt frequency
to jump to the other well, measured in attempts per MC step.
This frequency should correspond approximately tof 0 in Eq.
~1! and implies the conversion of MC steps, or ‘‘MC time,’’
into real time. We do not, however, try to measure the char-
acteristic frequency directly in MC simulations. Instead, we
use a fixed large number (1.23106) of MC steps, keeping
the acceptance rate from 30% to 40%, and determineTB
from magnetization and susceptibility results for different
values ofD. We find a linear relation betweenTB andD, as
in Eq. ~2!, but with the numerical factor of approximately
14.8 instead of 30. The smaller numerical factor is inter-
preted to mean that the 1.23106 MC steps correspond to a
much shorter ‘‘observation time’’tMC than the 1000 sec ap-
plied in Eq.~2!, according to ln(f0tMC)'14.8.

By understanding this effective physical time scale over
which the MC averages were made, it allows us to infer the
corresponding laboratory measurements that would be made
at the 1000 sec time scale. Although the model used here is
simple, these ideas are important for the interpretation of any
simulation of a more realistic model of fine magnetic par-
ticles with metastable states relaxing over a barrier at finite
T.

We assume that our system consists of an assembly of
spherical particles with identical sizes. The particles are em-
bedded in a nonmagnetic matrix and can be considered ap-
proximately as noninteracting. Due to the spherical shape of
the particles, we assume that the origin of the anisotropy is
only from crystal anisotropy. Such a kind of a system has
been realized experimentally~see, for example, Ref. 14!.

Next, we assume that the magnetization is homoge-
neously distributed throughout the volume of the particle and
thus can be represented by a single vector with a constant
magnitude. The Hamiltonian of each particle is

H52mHW •Ŝ2D~ n̂•Ŝ!2, ~3!

whereHW is the external magnetic field,Ŝ, the ‘‘spin’’ of the
particle, is a unit vector along its magnetization, andn̂ is a
unit vector along the particle’s anisotropy axis. Then̂ vectors
of the particles are assumed to be uniformly distributed in all
directions. When we calculate the component of the magne-
tization of the system along the field, it is enough to calculate
the average magnetization of the particles with anisotropy
axesn̂ in a single plane which includes the direction of the
field HW . The magnetization of the system will then be ob-
tained using the azimuthal symmetry about the direction of
the field. We chose thez axis to be alongHW and take the
xz plane as the plane containingHW and n̂. The Hamiltonian
of each particle is invariant under the transformation
n̂→2n̂, and so we may restrict the angleu between the field
HW and a given anisotropy axisn̂ in the interval 0<u<p/2.

To obtain the magnetization per particle and the susceptibil-
ity of the system we perform two averages. First, we deter-
mine the thermal averageŝSz&u and ^Sz

2&u for a given
n̂(u) by Monte Carlo simulations, and second, we average
these results over the uniform distribution ofn̂ on the unit
sphere. Then the magnetization per particle will be

M5Ms^Sz&5MsE
0

p/2

^Sz&usinudu ~4!

and the mass susceptibility is

x5
mss

kBT
E
0

p/2

~^Sz
2&u2^Sz&u

2!sinudu, ~5!

with thermal averages

^Sz
k&u5E e2bH$u,u8%Sz

kdV8Y E e2bH$u,u8%dV8 ~6!

for k51,2 and H$u,u8%52mHSz2D(nxSx1nzSz)
2,

Ŝ5(sinu8cosf8,sinu8sinf8,cosu8), n̂5(sinu,0,cosu), b51/
kBT, and dV85sinu8du8df8. The saturation magnetization
ss5MsV/m is in emu/g,m is the particle’s mass, and the
magnetic momentm of the particle is in Bohr magnetons.

The average over the distribution of anisotropy axes, i.e.,
taking the integrals in Eq.~4! and Eq.~5!, is performed nu-
merically using the extended midpoint rule, dividing the in-
terval 0,u<p/2 into 90 parts, and incrementingu by
Du51°. The thermal averages^Sz&u and ^Sz

2&u , defined by
Eq. ~6!, are calculated in the Monte Carlo simulations for
eachu using the Metropolis algorithm.11 The most important
part of our implementation of the Monte Carlo simulation is
in the way of performing Monte Carlo steps~MCS!. In a
Monte Carlo step an attempt to change the spin fromŜold to
Ŝnew is made such that the deviation ofŜnew from Ŝold is
small but randomly chosen with a fixed limitdSmax. This
approach allows the freedom to control the acceptance rate
of MC moves by adjusting the limitdSmax and, more impor-
tantly, models the real system more accurately than other
schemes used2 where Ŝnew is completely randomly chosen
independently fromŜold . It is very important to understand
that if we employed this latter type of move, the system
would always be paramagnetic for anyT.0 and no hyster-
esis would result. That is, for completely random and inde-
pendent moves arbitrarily large fluctuations are allowed in a
single Monte Carlo step and the system will escape very
quickly from any metastable state which may be responsible
for hysteresis. We actually perform the Monte Carlo in such
a way that it samples the phase space only ‘‘locally’’~near
current position!, allowing for confinement into metastable
states responsible for hysteresis. It is important to use such a
nonergodic scheme in order to obtain the blocking tempera-
ture.

The initial equilibration for eachu and given initial values
of H and T uses the first 10 000–15 000 MCS, which are
also used to adjust the acceptance rate to be approximately
between 30% and 40%. These limits of the acceptance rate
are chosen to optimize the simulations; however, it is essen-
tial that we use this same acceptance rate for different tem-
peratures in order to produce a constant rate of sampling. In
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this way, the mapping of MC ‘‘time’’ to experimental time
will be considered to be the same for different temperatures.
By using a constant phase space sampling rate, it is then
possible to observe the obvious change from fast relaxation
in the superparamagnetic regime to slower relaxation in the
ferromagnetic regime.

The next 1.23106 MCS are used to collect data but the
consecutive measurements are taken with a specific interval
of MCS between them to minimize the correlation in the
data. In the sense of our above discussion, the observation
time of the simulation is determined by the number of MCS,
NMC51.23106, made, with a fixed acceptance rate, for each
measurement. When changing eitherH or T a new fine
equilibration is performed, adjusting also the acceptance rate
before collecting data again. To consider how to use our
simulation data to findTB , we review howTB is found in
real experiments.

In experiments, the blocking temperature is determined by
scanningM (T) or x(T), starting from a zero-field-cooled
sample and then applying a very small field and taking mea-
surements as a function ofT. The magnetization of the sys-
tem is very close to zero for very low temperature since
approximately half of the particles with a particular anisot-
ropy axis n̂ have their moments alongn̂ and the other half
along2n̂; n̂ is also uniformly distributed on the unit sphere.
That is, the thermal fluctuations are very weak (kBT!D),
and they cannot move the moments from the metastable state
~moment has component againstH) to the global equilibrium
state~moment has component alongH) implied by the pres-
ence of the very small field,mH!D. Equivalently, the re-
laxation timet in Eq. ~1! will be much greater than any
physical observation time. IncreasingT will increase the
thermal fluctuations (t decreases! and thus the probability
for a transition from the metastable state to the equilibrium
state. This will increasêSz&. The increase will continue until
the system reachesTB . The assembly of particles will be in
the superparamagnetic region forT.TB and ^Sz& will de-
crease accordingly when we further continue to increaseT.
TB can also be determined from the inverse susceptibility,
which will have a minimum forT5TB and will increase
linearly with T in the superparamagnetic region.

To determineTB in the simulations we follow the experi-
mental procedure. We start with two spins for eachu. Ini-
tially one of them is alongn̂ and the other along2n̂ since in
the zero-field-cooled sample one-half of the particles with
this n̂ will have on the average their magnetization alongn̂
and the other half along2n̂. Then we apply very small
constant fieldH and start to calculateM (T). This is done for
a number of values of the anisotropy coupling constant
100<D/kB<700 (K). These are typical values, for instance,
for Co particles whereKbulk52.73106 erg/cm3. Different
values ofD will correspond to different sizes of particles.
The reduced magnetizationM /Ms (Ms is the saturation mag-
netization! obtained by simulation~zero field cooled! is
shown in Fig. 1 as function ofT for H5500 Oe and different
values ofD/kB . Selected error bars are shown in the super-
paramagnetic region; the error bars forT,TB are of the size
of the symbols used or smaller. Changing the value ofH to
100 Oe did not change the observed position of the peak of
the magnetization but made the data more noisy, particularly

for largeD whenmH is more than two orders of magnitude
smaller thanD. The susceptibility is shown in Fig. 2 for the
same set of parameters. The blocking temperatures deter-
mined from the peak of the magnetization or from the mini-
mum of the susceptibility do not differ by more than 1~K!.
The dependence ofTB onD and a linear fit are shown in Fig.
3. We haveD/kBTB

MC514.8160.25 from the slope of the
linear fit. Therefore, if we assume that the characteristic fre-
quencyf 0 is the same as in the experiment (10

10 Hz!, we can
use Eq.~1! to define an effective observation timetMC of the
Monte Carlo simulations. SubstitutingD/kBTB

MC514.81 in
Eq. ~1!, we obtaintMC52.7031024 sec for a measurement
consisting ofNMC51.23106 MCS. Increasing the number of
MCS decreasesTB

MC and increasestMC , but to use a relax-
ation time equal to 1000 sec in the simulations, we would
have to use approximately 1.231063exp(15.21) MCS per
data point.

Nevertheless, we can compare the magnetization curves
from our simulations with the experimental ones after we
take into account the much smaller observation time in the
simulations compared to the observation time of 1000 sec
used in the experiments. To account for this difference we

FIG. 1. Dependence of the reduced magnetization on the tem-
perature for the zero-cooled system and different values ofD/kB .
The external field is constant and equal to 500 Oe.

FIG. 2. Reduced inverse susceptibility of the system vsT for the
same values ofD/kB as in Fig. 1.
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have to consider the measurement of the magnetization in
two intervals of time with different lengths. If the tempera-
ture and the magnetic field are fixed, the magnetization mea-
sured in intervals of timet1 and t2 (t1,t2) will be greater
for the shorter interval of timet1 since the magnetization will
fluctuate less on a shorter time scale. Thus, if we are to
measure the same value of the magnetization in two intervals
of time t1Þt2 at the same external field, we have to perform
the measurements at different temperatures. A particular rate
of the fluctuations in a given interval of time can be seen in
a shorter interval of time if the temperature is higher since
the rate of fluctuations of the magnetization will increase
with temperature. Therefore, we expect that a value of the
magnetization measured in an interval of timet1 and at tem-
peratureT1 should be measured also in a time intervalt2
(t1Þt2) but at temperatureT2 such thatT1 /TB15T2 /TB2,
whereTB1 andTB2 are the blocking temperatures determined
from Eq. ~1! with relaxation timet set tot1 and t2, respec-
tively.

We can also apply Eq.~1! to obtain a relation between the
blocking temperature in MC simulations and the blocking
temperature in experiments. If an MC observation timetMC
leads to a blocking temperatureTB

MC and the longer labora-
tory observation timetL leads to the lower blocking tempera-
tureTB

L then these are related by

D

kBTB
L 5

D

kBTB
MC1 lnS tL

tMC
D . ~7!

If the absolute scale of time for the MC simulation were
known, then this would specify how to obtain the laboratory
blocking temperature from the simulation. However,tMC is
not known in an absolute sense, since the ‘‘time’’ in the MC
simulation is measured only in MC steps, with no physical
dimensions. Alternatively, we can adopt a different interpre-
tation of Eq. ~7!. In the MC simulation we found
D/kBTB

MC514.81, and we can use Eq.~7! to determine the
value of tMC that recovers the usual experimental result
D/kBTB

L'30. Using tL5103 sec, this leads to
tMC5tLexp(215.12)52.7031024 sec, the same value as
stated earlier. We should also note that Eq.~7! can be gen-
eralized to the case where the anisotropy constantD takes a

different value in the simulation than in the laboratory@i.e.,
changeD→D8 on the right-hand side~RHS!#. The formula
really only specifies how the ratioD/TB changes with obser-
vation time.

With these ideas in mind, we can compare our results
from the simulations with the data for fcc Co particles 18~Å!
in diameter.14 The experimental values for the anisotropy
energy and the magnetic moment per particle are
D/kB'648 K andm5550mB with TB52262 K. The block-
ing temperature determined from the Monte Carlo simula-
tions ~Fig. 1! for D/kB5648 K is TB

MC54461 K. By Eq.
~7!, this maps intoTB

L521.7 K, in agreement with the ex-
perimental value, as must be the case, because the experi-
mental value of the anisotropy constant is determined from
the experimental blocking temperature via Eq.~2!.

The hysteresis loops~magnetization forH increasing
only! are shown in Fig. 4 for the same value ofD/kB and a
set of temperaturesT,TB . The observed coercivity agrees
well with the theoretical value given by

Hc50.483
2K

Ms
~12AT/TB! ~8!

for an assembly of particles with randomly oriented anisot-
ropy axes.15 The inset of Fig. 4 showshc5Hc /Hc0, where
Hc050.96K/Ms , from the Monte Carlo data and from the
theory. The reduced remanent magnetizationMr /Ms also
agrees well with the theoretical value of 0.5 and starts to
deviate from it whenT approachesTB .

While the values ofhc are in good agreement with the
superparamagnetic theory, the experimental values for the
same ratio ofT/TB are approximately one order of magni-
tude smaller. This could be caused by existence of imperfec-
tions in the crystal structure of the particles though it does
not seem to be the case.14 There are also considerable devia-
tions from the bulk properties when the size of the particles
is decreased. For instance, the 18 Å diameter particles show
an anisotropy energy density about an order of magnitude
larger than the bulk value and the atomic magnetic moment
also increases. These are attributed to surface effects which

FIG. 3. Dependence of the blocking temperature on the anisot-
ropy energy and a linear fit to it.

FIG. 4. One-half of the hysteresis loops for a set of temperatures
belowTB , whereTB544 K. The inset shows the comparison of the
reduced coercivityhc ~see the text! with the superparamagnetic
theory.
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should lead to deviations from coherent rotation of the
atomic magnetic moments, particularly of the surface spins
which have less nearest neighbors and could fluctuate more.
The number of surface sites is considerable in such small
particles, and so the smaller coercivity may be due to surface
effects too.

Finally, the magnetization curves for three values of the
temperature aboveTB are shown in Fig. 5 again for
D/kB5648 K. These results show that the MC simulations
are consistent with the superparamagnetic behavior which is
illustrated by the overlap of the magnetization curves when
plotted vsH/T, the inset in this figure. The experiment also
shows superparamagnetic behavior but with approximately
half as large saturation magnetization at large external mag-
netic fields for the same values ofT/TB which is attributed to

a core-shell structure of the particles14 with a saturation mag-
netization of the shell of the particle much smaller than the
net magnetic moment of the atoms in the shell. Since the
small saturation magnetization of the particles at large fields
cannot be obtained assuming coherent rotation of the atomic
spins, it is of importance to consider the magnetic properties
of the particles with their internal structure taken into ac-
count when the surface starts to dominate their properties.

In conclusion, we carried out Monte Carlo simulations for
an assembly of particles with randomly oriented uniaxial an-
isotropy. The simulation recovers all of the results in the
superparamagnetic theory. The observation time in the
Monte Carlo simulations is much smaller than the corre-
sponding time in the experiments. The effect of the smaller
observation time leads to a higher blocking temperature in
the simulations and generally the superparamagnetic proper-
ties which are observed in the experiments for a given tem-
perature should be observed in the simulations at a higher
temperature. A comparison of the simulations with the ex-
periments on fcc Co particles 18 Å in diameter for the same
ratio of T/TB shows that while the properties of these par-
ticles are generally superparamagnetic there are two devia-
tions from the theory and from the simulations. The coerciv-
ity in the experiment is about an order of magnitude smaller
than the values of the coercivity in the superparamagnetic
theory and in the simulations, and the saturation magnetiza-
tion for T.TB is about half as large as in our simulations.
These deviations are assumed to be caused by the surface of
these particles which requires a study of such particles on an
atomic level. The method we have used suggests a possible
extension for simulations on a single particle with its atomic
structure considered and anisotropy included.
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