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In the recent literature, there have been discussions of nonlinear spin excitations in one-dimensional, aniso-
tropic Heisenberg spin chains. These have the character of localized excitations, which emerge from the
time-dependent classical equations of motion. We show that for a given frequency, in a finite spin chain one
has a hierarchy of nonlinear excitations, whose envelopes have the appearance of a one soliton, two soli-
ton, . . . , states. Also, we consider the nature of these nonlinear excitations in an applied magnetic field of
frequencyv, and explore aspects of the transient behavior of the system in response to a time varying external
field. @S0163-1829~96!05437-9#

I. INTRODUCTION

The elementary excitations out of the ground state of a
Heisenberg magnet have been understood for many decades.
These are spin waves1 and at low temperatures the thermal
excitation of low lying spin waves provides the dominant
contribution to those thermodynamic properties influenced
by the magnetic degrees of freedom.

It was argued some years ago2 that in one-dimensional
spin chains, solitons also appear as elementary excitations.
Before this was noted, in three-dimensional materials, a de-
scription of the classical Bloch wall in a ferromagnet
emerges from the static soliton solution of the well known
Sine-Gordon equation, formed here by seeking spin configu-
rations which render the energy an extremum.3 In three-
dimensional crystals, the area of such a Bloch wall is mac-
roscopic, with the consequence its excitation energy is
macroscopic, and is hence very large compared tokBT.
Thus, these entities make no contribution to the thermody-
namics of the material. But for a suitable one-dimensional
spin chain, one may have solitons whose excitation energy is
comparable tokBT, simply because their cross-sectional area
is microscopic.

The solitons just described, when at rest, emerge astime-
independentsolutions of the equations of motion. The soli-
tons may also move with some velocity;4 thus in one-
dimensional spin chains, at suitably low temperature, one
may view the thermal excitations as spin waves, supple-
mented by a dilute gas of thermally excited magnetic soli-
tons.

Recently, in the theoretical literature,5 a new nonlinear
spin excitation in one-dimensional spin systems has been
studied. These have envelope functions with a shape familiar
from the theory of solitonlike objects, but they emerge as
solutions of thetime-dependentclassical equations of mo-
tion. When such an entity is present, each spin in the system
engages in circular precession, with a frequencyV that lies
outside the spin wave band of linear theory. These states are
magnetic analogues of the intrinsic anharmonic localized
modes discussed very actively in literature on the vibrations
of one-dimensional anharmonic chains.6 At the time of this
writing, the means of exciting the new nonlinear magnetic

excitations, or their possible role in the thermodynamics, is
unclear.

In this paper, we examine the nature of such modes in
finite spin chains. It should be remarked that we have in
mind the possibility that these entities may exist in magnetic
superlattices, some of which are described by an energy
functional quite identical to that used earlier,5 and in the
present paper. The role of the single spin in the present paper
is played by the total magnetic moment of a ferromagnetic
film in a superlattice. Such superlattices are in fact a physical
realization of a finite spin chain. The system of ‘‘spins’’ is
truly classical here in that the total spin moment of each film
is macroscopic. We shall elaborate on these comments be-
low.

In the spin chain of infinite length, the intrinsic localized
spin modes have an envelope function that has the character
of a single soliton.7 We find here a hierarchy of solutions
associated with the finite chain. We have entities with enve-
lopes that have the appearance of one soliton, two soliton,
three soliton, . . . , states. We also show that if a circular
polarized field of frequencyv is applied perpendicular to the
Zeeman field, we still have such hierarchy of states and we
outline their properties. Finally, we inquire if a transient,
spatially uniform field can excite these states. We find the
answer is negative for the scheme investigated.

II. NONLINEAR SPIN EXCITATIONS IN FINITE CHAINS:
BASIC PROPERTIES

We consider a finite chain ofN spins, described by the
Hamiltonian

H522J( Sn•Sn111A( ~Sn
z!22H0( Sn

z

2( hn~Sn
x cosvt2Sn

y sin vt !. ~1!

The spins are ferromagnetically coupled through nearest-
neighbor exchange interactionJ. We have single site anisot-
ropy which renders thexy plane an easy plane. An external
fieldH0 is applied along thez direction. We shall assumeH0
is large enough that in the ground state, the spins are parallel
to H0 and thez axis, and thus are perpendicular to the easy
plane. This requiresH0.AS. Furthermore, we assume a cir-
cularly polarized field of frequencyv is applied in thexy
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plane. The strength of the field on siten is hn . This is the
Hamiltonian which formed the basis for a discussion of non-
linear spin excitations in the infinite chain if we sethn505.

As noted earlier, the spin Hamiltonian in Eq.~1! is appli-
cable to the quasi-one-dimensional material CsFeCl3.

8 A
rather large applied field, in the range of 40 T will be re-
quired to align the spins parallel to thez axis. There are also
a number of magnetic superlattice structures described by the
energy functional in Eq.~1!. Consider a superlattice fabri-
cated from very thin ferromagnetic Fe films, separated by
nonferromagnetic metal spacers. It is well known that mag-
netic couplings of exchange character between the Fe films
are transmitted through the spacer layer. These oscillate in
sign as the thickness of the spacer layer is varied9 and thus
may be arranged to be ferromagnetic. The Fe films often
have magnetization in plane with strong anisotropy of
uniaxial character. One may move the moments out of the
plane and align them perpendicular to it through application
of modest external fieldsH0, for suitable samples. We may
apply the Hamiltonian in Eq.~1! directly to such materials,
provided we associateSi with the total spin moment of a
particular Fe film, rather than that of a single atom, as one
does in the discussion of quasi-one-dimensional magnetic
materials. Such magnetic superlattices also have a finite
number of layers, and thus are a realization of a finite spin
chain. Notice that the dynamics of such a structure is de-
scribed quite precisely by theclassical, rather than the quan-
tum mechanical, equations of motion, since here the spinSi
is very large.

We consider, as before,5 the equation of motion for the
operatorSn

15Sn
x1 iSn

y. We have

i\
]Sn

1

]t
5H0Sn

112J@Sn
1~Sn11

z 1Sn21
z !2Sn

z~Sn11
1 1Sn21

1 !#

22ASn
zSn

12hne
2 ivtSn

z . ~2!

We have, for these classical spins,

Sn
z5AS22Sn

1Sn
25AS22Sn

1~Sn
1!. ~3!

The equation of motion admits time-dependent solutions
which we write, withsn real,

Sn
15Ssne

2 ivt, ~4!

where

Sn
z5SA12~sn!

2 ~5!

is in fact independent of time. Thus, all spins are engaging in
circular precession on a cone which makes the angle
un5sin21(sn) with the z axis.

We have the following time independent equation for the
amplitudesn :

Vsn5sn~A12sn11
2 1A12sn21

2 !2~sn111sn21!A12sn
2

22BsnA12sn
22cnA12sn

2, ~6!

where

V5
~v2H0!

2JS
, ~7!

B5
A

2J
, ~8!

and

cn5
hn
2JS

. ~9!

If we set cn to zero, and consider small amplitude solu-
tions, we have the standard spin waves. For these,
sn5s exp(ikn), and the spin wave dispersion relation has
the form, in the terms of the dimensionless variables in Eq.
~6!

V~k!522B12~12cosk!. ~10!

The spin wave bands thus occupy the frequency domain
22B<V<422B.

We have free ends on our finite chain, and the equations
of motion for the end spins differ from Eq.~6!. We call the
two end spinsn51, andn5N. For the spinn51 we have

Vs15s1A12s2
22s2A12s1

222Bs1A12s1
22c1A12s1

2.
~11!

A similar equation applies to the other end of the chain,
n5N.

The intrinsic localized spin excitations studied here occur
for frequencies which lie above the linear spin wave bands.
We discuss the various examples we have explored. We pro-
ceed by solving the above system of equations on a com-
puter.

In the numerical calculations, we proceed as follows. We
guess fors1 and use Eq.~11! to solve fors2. Then givens1
ands2, we may generates3 from Eq. ~6!. In this manner we
proceed through to the end of the chain and interrogate the
equation of motion for spinn5N to see if it is satisfied. We
generate solutions by scanning the initial value ofs1.

We now turn to the various cases we have explored.

A. Multi-soliton states in zero driving field

We begin with results for the homogeneous, nonlinear
equation of motion formed by settinghn5cn50 for all
spins. It is convenient to write, in some instances,

sn5~21!nf n , ~12!

where for frequenciesV above the linear spin wave bands,
we find f n to be a slowly varying envelope function. We
have selectedB54. The linear spin wave bands then extend
from V528 toV524, in our units. The numerical calcula-
tions reported here employV523.95, so we have a fre-
quency a bit above the linear spin wave band.

In Fig. 1, we show two examples of a one soliton state,
for a line of 101 spins. Here we displaysn . There are two
distinct solutions of different symmetry. For the first,sn is
odd under reflection through the midpoint of the line and for
the second,sn is even under this reflection. For the first case,
one hass15sN51.34531026 and for the second, one has
s15sN51.20331026. While we show two distinct solutions
in Fig. 1, each of these states is in fact twofold degenerate.
This is because Eq.~6! is left invariant under the transforma-
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tion sn→2sn , so long asc50. Notice this symmetry does
not hold in a driving field whencÞ0.

As stated above, for the same frequencyV used in Fig. 1,
we have a whole hierarchy of soliton states. We show ex-
amples in Fig. 2, for exactly the same frequencyV employed
in Fig. 1. Here we display the envelope functionsf n , rather
thansn .

Thus, for the finite chain and a given value of the fre-
quencyV, we find a hierarchy of multisoliton states, as re-
marked earlier. So far as we know, we could generate states
with five, six, or more solitons, though we have not explored
how far we can proceed with the hierarchy. Such a hierarchy
will exist for a finite chain to which periodic boundary con-
ditions are applied as well, though this sums to be a case of
primarily academic interest. For the infinitely long chain, and
the boundary conditionssn→0 asn→6`, we believe only
the even and odd parity one soliton states are present.

We have explored the stability of the states described here
and found them quite stable against small amplitude pertur-
bations. This has been done as follows. We imagine that at
some time,t50, the spins are frozen with a pattern like that
displayed in, say, Fig. 1~a! or Fig. 1~b!. We perturb this
pattern by adding small incrementsdsn to the various spin
deviations. We use the pattern so generated as an initial con-
dition for Eq. ~2!. We study numerical solutions after insert-
ing the form sn

15Ssn(t)e
2 ivt into these equations, where

now we allowsn(t) to be complex.@Whensn(t) is not real,
then in Eq.~6! and elsewhere,A12sn

2 and A12sn61
2 are

replaced byA12usnu2, etc.# We find sn(t) executes stable
small amplitude oscillations around the soliton states. One
may describe the subsequent behavior of the system by say-
ing that the soliton ‘‘pulses’’ execute stable periodic oscilla-
tions in amplitude. We see no evidence that the solitons
break up into spin waves, for example. The energy density
remains always concentrated in the solitonic peaks.

This situation is most intriguing, since we have a complex
hierarchy of states associated with any frequency. There is
nothing special about our choiceV523.95, as far as we can
see. We can generate similar hierarchies for any frequency
above the maximum linear spin wave frequency.

B. Nonlinear spin excitations in the presence
of a spatially uniform driving field

We next turn to the response of the system when a spa-
tially uniform, circularly polarized field is present, which
oscillates with frequencyv. We include its presence by
choosinghn in Eq. ~2! equal toh, independent of the site
index n. We are then able to solve Eq.~6! in combination
with Eq. ~11! for cn5c independent ofn.

FIG. 1. We show the functionsn for two one soliton states
associated with a chain of 101 spins. We have~a! an odd parity
state and~b! an even parity state. The calculations employV5
23.95 and we have takenB54. The externally applied fieldhn50.
For case ~a!, s15sN51.34531026, while for ~b! we have
s15sN51.20331026.

FIG. 2. For the frequency used in Fig. 1 and alsoB54, we show
the envelope functionf n for ~a! a two soliton state,~b! a three
soliton state, and~c! a four soliton state. For~a! we have
s15sN53.36531024, for ~b! s15sN52.17731023, and for ~c!
s15sN55.00031023.
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For any choice ofc we always have a uniform solution in
which sn is independent ofn. For this uniform precession of
all the spins the exchange couplings drop out and the equa-
tions for both interior and end spins degenerate into

Vs0522Bs0A12s0
22cA12s0

2. ~13!

If the amplitude of the driving fieldc is very small, linear-
ization of Eq.~13! gives

s052
c

~2B1V!
[

c

~Vm2V!
, ~14!

where in our units,Vm522B is the frequency of thek50
spin wave mode in linear spin wave theory. Notice if
V.Vm , the spins are precisely directed antiparallel to the
driving field which is the behavior characteristic of a har-
monic oscillator driven above its resonance frequency. Asc
is increased, one may follow this solution through use of Eq.
~13!.

Also whencÞ0, we find solitonlike states in the presence
of the external driving field, which, asc→0, degenerate into
the structures shown in the previous section. In Fig. 3~a!, for
the casec50.04, we showsn and in Fig. 3~b! we showf n .
One sees from Fig. 3~b! that the external driving field in-
duces an oscillatory modulation in the envelopesn . As the
amplitudec becomes larger these oscillations increase in am-
plitude, as we see from Fig. 4.

WhencÞ0, the solitonic feature remains near the center
of the chain, as we see from these figures. As we move out to
either end of the chain the amplitude of the end spins is very

close to, but distinctly different from, that associated with the
uniform state found from Eq.~13!.

Whenc50, as we noted earlier, each of the soliton states
illustrated in Fig. 1 is twofold degenerate, in a certain sense.
With c50, the equations are invariant under the transforma-
tion sn→2sn and we may form a distinct solution from, say,
Fig. 1~a!, by just reversing the sign ofsn everywhere.

The presence of the external field breaks this symmetry.
There is a sort of ‘‘splitting’’ of the two previously degen-
erate solitons, as follows. Forc50.2, we obtain two distinct
one soliton structures with even parity. We call these theA
state and theB state, respectively. For each, we illustrate the
functions f n in Fig. 5. For theA state, the value ofs1 re-

FIG. 3. We show the functions~a! sn and ~b! f n5(21)nsn for
a nonlinear spin excitation in the presence of in rf field. Here the
dimensionless field strengthc50.04 and the remaining parameters
are the same as in Figs. 1 and 2.

FIG. 4. The same as Fig. 3 but nowc50.20.

FIG. 5. For c50.20 we show a comparison between the two
solitons, the type A and type B structures discussed in the text. The
X’s are the type A excitation, and thes’s are the type B. We have
multiplied f n for the type A soliton by21, for clarity of presenta-
tion. As earlier we haveV523.95 andb54.00.
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quired to generate the state iss1
A520.049 456 59, while

s1
B520.049 426 92. The spatially uniform solution has

s0520.049 441 76, between these two values.
In the previous section, we discussed studies of the stabil-

ity of the one soliton states, whenc50. As remarked there,
we find these states stable over a long period of time when
we use the procedure described. ForcÞ0 the soliton struc-
ture appears to have a finite lifetime which decreases with
increasing field strengthc. We illustrate this in Fig. 6. We
have tested stability as follows, once again. At timet50, we
assign each spin a spin deviation precisely equal to that for a
one soliton state, such as those illustrated in Figs. 3–5. We
then add small amplitude incrementdsn to each of these spin
deviations. We take, in general,dsn to be complex. We then
solve the full equation of motion through use of the ansatz
sn

15Ssn(t)e
2 ivt and we studysn(t). Our dimensionless unit

of time is (2JS)21. We note that 2JS is the precession fre-
quency of a given spin, in the exchange field provided by

one of its nearest neighbors. In Fig. 6, we show the values of
sn(t0) at the timet05250/JS. This is quite a long time for
the spin system, in that it corresponds to roughly 100 preces-
sional periods in the above mentioned exchange field. In Fig.
6~a!, we seesn(t0) for a very small value of the external
field, c50.01. The solid line connects values of Re[sn(t0)],
and the dots illustrate Im[sn(t0)]. We see the localized, soli-
tonic structure is quite stable. Once the energy density is
localized att50, it remains there for quite some time. Our
simulations for c50 behave in a similar manner. For
c50.04, as we see from Fig. 6~b!, we still have a central
structure displayed prominently, but the soliton has clearly
shed energy in the form of spin waves which propagate out-
ward and reflect off the chain ends. By the timec50.15, we
see that whent05250/JS this effect is far more pronounced
and whenc50.20 we see no evidence left of the central
feature.

These simulations thus suggest that whenc50, the non-

FIG. 6. An illustration of the stability of the one soliton states in the external rf field. The structure, perturbed slightly as described in the
text, has been followed up to a timet05500/(2JS). We see that in strong external fields, the lifetime of the state shortens. Each figure
displays the response when the dimensionless timet5500. In ~a!, c50.01, in~b!, c50.04, in~c!, c50.15, and in~d!, c50.20. In all cases,
V523.95 andb54.00.
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linear excitation is very long lived and stable against diverse
small perturbations~we have explored several schemes for
selectingdsn!. When cÞ0, but not too large, it may be
viewed as a long-lived nonlinear resonance structure, which
decays to spin waves when perturbed slightly. Its lifetime
becomes quite short whenc50.2. In this case, even by the
time t055/JS, we can see evidence of decay in our simula-
tions.

In the next section we explore the possibility that suitably
applied fields may excite the nonlinear resonances. Clearly,
if this is to be done, the amplitude of the driving field cannot
be too large, though at the same time it must be large enough
to enter the domain where nonlinearities are significant.

C. Summary of a study of means
of exciting intrinsic localized modes

In the above discussion, we have presented studies of as-
pects of intrinsic nonlinear spin excitations in a finite spin
chain which, as we have argued, can serve as a model of a
magnetic superlattice.

A central question, not addressed explicitly in the litera-
ture on lattice dynamics so far as we know,6 is how one may
probe or excite these modes in an experiment. At least in
principle, one would like to expose the sample to an appro-
priate external driving field and possibly observe anomalous
absorption at high power levels for frequencies above the
linear spin wave band.

We have explored this possibility in two ways, each of
which proved unsuccessful. In the first, we imagine the line
of spins studied above is exposed to a uniform field of fre-
quencyv, circularly polarized inxy plane, as in Eq.~1!. We
apply a spatially uniform field to the system, where the
field felt by spin n has the form hn(t)e

2 ivt, with
hn(t)5h(12e2et). The field thus starts at very small ampli-
tude and builds up with time. In the early history of the time
evolution linear response theory holds and a spatially uni-
form disturbance is induced in the spin system. The question
is whether this remains stable at large final amplitudesh, or
whether it becomes unstable with respect to formation of a
nonlinear excitation. Our answer, based on the model used
above, is that the uniform state is stable. To achieve a stable
final state and damp out transients, we added phenomeno-
logical damping of the Landau-Lifshitz form2g~Sn3Ṡn! to
the equation of motion of each spin. This form has the virtue
that it preserves the length of eachSn .

In the literature on one-dimensional anharmonic lattices,
Kiselev and co-workers have explored the stability of vari-
ous normal modes, taken to large amplitude.10 They find the
uniform is made stable at large amplitude, as we do for the
spin system. We understand that Kiselev and a colleague
have also explored the stability of the uniform mode in the
spin system and find it stable, as we do.11

In the anharmonic problem, it has been demonstrated that
the out-of-phase optical mode, when driven to large ampli-
tude, is unstable and evolves into nonlinear intrinsic
modes.10 If we envision a one-dimensional line of ions, each
with alternating positive and negative charge, then a spatially
uniform electric field excites the out of phase mode. Unfor-
tunately, for the spin system, a uniform field of small ampli-
tude excites only thek50 acoustic spin wave, which is the
uniform mode.

This last statement is true only for the ideal line of ex-
change coupled spins, where spins located at each end of the
line are described by model parameters identical to those in
the interior. If we perturb the end spins, then for frequencies
above the spin wave band we induce an out-of-phase distur-
bance near the ends of the chain. We may imagine, for ex-
ample, that for the two end spins the anisotropy constantA in
Eq. ~1! differs from that in the interior. It will surely be the
case that this is so for any finite chain of magnetic moment
bearing atoms, sinceA is sensitive to the local site symme-
try. In a superlattice, one could synthesize a structure whose
end films have different anisotropy constants than the inte-
rior films. In Fig. 7, for a particular choice ofA for the two
end spins, we show the disturbance in the spin chain, as
calculated from linear response.

By the method outlined earlier in which the external field
is ramped up in strength, we have explored the stability of
this disturbance at large amplitude. We see no evidence of an
instability at large amplitudes.

III. CONCLUDING REMARKS

We have illustrated here that a finite chain of appropriate
spins possesses a rich spectrum of intrinsic nonlinear spin
excitations. These are stable against small perturbations, so

FIG. 7. ~a! The response of the model spin chain to a spatially
uniform driving field, as provided by linear response theory, when
the anisotropy strength A for the end spins is 1.5 that of those in the
bulk. ~b! For the chain considered in~a! we show the response at
time t5500, when the driving fieldc50.10. We have added damp-
ing for each spin of the Landau-Lifshitz form so at long times a
steady state is achieved.
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far as we can see. If an external rf field is applied, we still
find these states with properties modified from the zero field
case as described. As the strength of the external field is
increased, these states become unstable with respect to small
perturbations, but they have a lifetime that can be quite long,
even for appreciable field strengths. We may view these as
long-lived nonlinear resonances of the system.

There are analogies in our mind between the intrinsic
nonlinear spin excitations explored here and the gap solitons
described in the literature on nonlinear dielectric
superlattices.12–15These are soliton states which exist within
gaps of the dispersion curves for linear electromagnetic wave
propagation down the structure. The infinitely long structure
exhibits envelope solitons for such frequencies. The finite
superlattice has a sequence of multisoliton states at one
single frequency~with finite lifetime by virtue of radiative
damping from the ends. The analogue of radiative damping
is absent from our spin system!.

In the case of the nonlinear dielectric structure, with non-
linearity of the Kerr form, it has proved possible to solve the
Maxwell equations for a finite structure with nonlinear re-
sponse characteristics.12,14,15As the amplitude of the input is
increased, one finds a sequence of transmission resonances,

associated with the excitation of one soliton, two soli-
ton, . . . ,states.

We believe that similar behavior should be exhibited by
magnetic superlattices described by the effective Hamil-
tonian in Eq.~1!, provided the exciting field is rendered spa-
tially inhomogeneous either because its wavelength is com-
parable to the size of the unit cell or possibly by the presence
of a finite skin depth. To explore this question, one must
solve Eq.~2!, now with the field amplitudehn coupled to
Maxwell’s equations. This is a formidable problem, because
the spin system’s response is not only nonlinear, but nonlo-
cal in space by virtue of the exchange couplings.

We regard the question of generating or detecting the
nonlinear spin excitations discussed here as most fascinating.
It would be of interest to see experiments on magnetic su-
perlattices, but the metallic character of many systems stud-
ied presently renders studies with intense fields problemati-
cal unless a pulsed mode of operation could be employed.
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