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Nonlinear spin excitations in finite Heisenberg chains

S. Rakhmanova and D. L. Mills
Department of Physics and Astronomy, University of California, Irvine, California 92697
(Received 12 April 1996

In the recent literature, there have been discussions of nonlinear spin excitations in one-dimensional, aniso-
tropic Heisenberg spin chains. These have the character of localized excitations, which emerge from the
time-dependent classical equations of motion. We show that for a given frequency, in a finite spin chain one
has a hierarchy of nonlinear excitations, whose envelopes have the appearance of a one soliton, two soli-
ton, .. .,states. Also, we consider the nature of these nonlinear excitations in an applied magnetic field of
frequencyw, and explore aspects of the transient behavior of the system in response to a time varying external
field. [S0163-182696)05437-9

I. INTRODUCTION excitations, or their possible role in the thermodynamics, is

unclear.
The elementary excitations out of the ground state of a In this paper, we examine the nature of such modes in
Heisenberg magnet have been understood for many decad&8ite spin chains. It should be remarked that we have in

These are spin wavkand at low temperatures the thermal mind the possibility that these entities may exist in magnetic
excitation of low lying spin waves provides the dominant SUP€riattices, some of which are described by an energy
unctional quite identical to that used earlfegnd in the

contribution to. those thermodynamic properties mfluencec{)resent paper. The role of the single spin in the present paper
by the magnetic degrees of freedom. , , is played by the total magnetic moment of a ferromagnetic
It was argued some years dgthat in one-dimensional fiim in a superlattice. Such superlattices are in fact a physical
spin chains, solitons also appear as elementary excitationfealization of a finite spin chain. The system of “spins” is
Before this was noted, in three-dimensional materials, a detruly classical here in that the total spin moment of each film
scription of the classical Bloch wall in a ferromagnetis macroscopic. We shall elaborate on these comments be-
emerges from the static soliton solution of the well knownlow.
Sine-Gordon equation, formed here by seeking spin configu- In the spin chain of infinite length, the intrinsic localized
rations which render the energy an extremfuim three-  SPin modes have an envelope function that has the character
dimensional crystals, the area of such a Bloch wall is mac®f @ single solitorl. We find here a hierarchy of solutions
roscopic, with the consequence its excitation energy | ssociated with the finite chain. We have entities with enve-

macroscopic. and is hence verv large comparedkd® opes that have the appearance of one soliton, two soliton,
h h pIC, anc K y large ph hEI ' three soliton. . ., states. We also show that if a circular
Thus, these entities make no contribution to the thermodyy ) arized field of frequency is applied perpendicular to the

namics of the material. But for a suitable one-dimensionalzeeman field, we still have such hierarchy of states and we
spin chain, one may have solitons whose excitation energy isutline their properties. Finally, we inquire if a transient,
comparable t&gT, simply because their cross-sectional areaspatially uniform field can excite these states. We find the
is microscopic. answer is negative for the scheme investigated.

The solitons just described, when at rest, emergenaes-
independensolutions of the equations of motion. The soli-
tons may also move with some velocftythus in one-
dimensional spin chains, at suitably low temperature, one We consider a finite chain dfl spins, described by the
may view the thermal excitations as spin waves, suppleHamiltonian
mented by a dilute gas of thermally excited magnetic soli-
tons. H

Recently, in the theoretical literatutea new nonlinear
spin excitation in one-dimensional spin systems has been
studied. These have envelope functions with a shape familiar — 2 hy(S} coswt—$} sin wt). @
from the theory of solitonlike objects, but they emerge as
solutions of thetime-dependentlassical equations of mo- The spins are ferromagnetically coupled through nearest-
tion. When such an entity is present, each spin in the systemeighbor exchange interactidn We have single site anisot-
engages in circular precession, with a frequeficthat lies  ropy which renders thay plane an easy plane. An external
outside the spin wave band of linear theory. These states afield H is applied along the direction. We shall assuntg¢,
magnetic analogues of the intrinsic anharmonic localizeds large enough that in the ground state, the spins are parallel
modes discussed very actively in literature on the vibrationso H, and thez axis, and thus are perpendicular to the easy
of one-dimensional anharmonic chafhat the time of this  plane. This requirebl,>AS. Furthermore, we assume a cir-
writing, the means of exciting the new nonlinear magneticcularly polarized field of frequencw is applied in thexy

[I. NONLINEAR SPIN EXCITATIONS IN FINITE CHAINS:
BASIC PROPERTIES
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plane. The strength of the field on siteis h,,. This is the A
Hamiltonian which formed the basis for a discussion of non- B= 23 (8)
linear spin excitations in the infinite chain if we def=0°.
As noted earlier, the spin Hamiltonian in E4) is appli- and
cable to the quasi-one-dimensional material CsE&CA
rather large applied field, in the range of 40 T will be re- hy,
quired to align the spins parallel to tkeaxis. There are also anst' ©
a number of magnetic superlattice structures described by the
energy functional in Eq(1). Consider a superlattice fabri-  If we setc, to zero, and consider small amplitude solu-

cated from very thin ferromagnetic Fe films, separated bytions, we have the standard spin waves. For these,
nonferromagnetic metal spacers. It is well known that mags, =s exp(ikn), and the spin wave dispersion relation has
netic couplings of exchange character between the Fe filmge form, in the terms of the dimensionless variables in Eq.
are transmitted through the spacer layer. These oscillate i)
sign as the thickness of the spacer layer is varawl thus
may be arranged to be ferromagnetic. The Fe films often Q(k)=-2B+2(1-cosk). (10
have magnetization in plane with strong anisotropy of ) )
uniaxial character. One may move the moments out of thd '€ SPin wave bands thus occupy the frequency domain
plane and align them perpendicular to it through application_ZBgﬂgd'_ZB' . ) i
of modest external fieldsl,, for suitable samples. We may _ Ve have free ends on our finite chain, and the equations
apply the Hamiltonian in Eq(1) directly to such materials, °f motion for the end spins differ from E¢6). We call the
provided we associat§ with the total spin moment of a WO end spini=1, andn=N. For the spim=1 we have
particular Fe film, rather than that of a single atom, as one > 5 > >
does in the discussion of quasi-one-dimensional magnetic 05, =51/1 -8, 5,1 [~ 2Bs;y1—-s{—C1/1-s].
materials. Such magnetic superlattices also have a finite (12)
number of layers, and thus are a realization of a finite spil similar equation applies to the other end of the chain,
chain. Notice that the dynamics of such a structure is dep=N.
scribed quite precisely by thelassical rather than the quan-  The intrinsic localized spin excitations studied here occur
tum mechanical, equations of motion, since here the Spin  for frequencies which lie above the linear spin wave bands.
is very large. We discuss the various examples we have explored. We pro-
We ConSider, as befOPethe equation of motion for the ceed by So|ving the above System of equations on a com-
operatorS; =SX+iSY. We have puter.
oSt In the numerical calculations, we proceed as follows. We
9% + + oz z \_ oz ot + guess fors; and use Eq(11) to solve fors,. Then givens
=5 =HoSh #2005 (Shia+ S0 = Si(Spiat S0 ands,, Welmay generats; from Eq. (6). Inzthis manner V\lle
" ot proceed through to the end of the chain and interrogate the
—2ASS, —hpe 'St 2) equation of motion for spim=N to see if it is satisfied. We
We have, for these classical spins, generate solutions by scanning the initial valuespf
We now turn to the various cases we have explored.

S =V =58, =V -5, (S). 3
. . . . . A. Multi-soliton states in zero driving field
The equation of motion admits time-dependent solutions
which we write, withs,, real, We begin with results for the homogeneous, nonlinear
. equation of motion formed by setting,=c,=0 for all
S,T=Ss]e"“’t, 4) spins. It is convenient to write, in some instances,
where $h=(—1)"fy, (12
S, =SV1-(sp)* (5)  where for frequencie$) above the linear spin wave bands,

. . . . . .we find f, to be a slowly varying envelope function. We
IS in fact mdepen_dent of time. Thus, aI_I SPIns are engaging I e selecte@=4. The linear spin wave bands then extend
circular precession on a cone which makes the angl‘?rom 1 =-8to (}=—4, in our units. The numerical calcula-

—ain~1 ; ;
fh=sin (s,) with thez_ axis. . tions reported here emplo2=-3.95, so we have a fre-
We have the following time independent equation for the : ) ;
quency a bit above the linear spin wave band.

amplitudes, : In Fig. 1, we show two examples of a one soliton state,

_ — 2 2\ v for a line of 101 spins. Here we displa&y,. There are two
Qsn=50(V1=Shat V1= S0-0) = (Srat So-2)V1-sp distinct solutions of different symmetry. For the firs}, is

—2Bs\1-s2—c,/1-52, (6)  0dd under reflection through the midpoint of the line and for
the seconds, is even under this reflection. For the first case,
where one hass;=sy=1.345< 10 ® and for the second, one has
s;=sy=1.203x 10" . While we show two distinct solutions
0= (0—Ho) 7) in Fig. 1, each of these states is in fact twofold degenerate.
2JS '’ This is because E6) is left invariant under the transforma-
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FIG. 1. We show the functiors,, for two one soliton states o0
associated with a chain of 101 spins. We h&aean odd parity
state and(b) an even parity state. The calculations employ ~0.2f
—3.95 and we have takdB=4. The externally applied field,=0. -0.3
For case (a), s;=sy=1.345¢ 1078, while for (b) we have
s;=5y=1.203x 1076,
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L L L L L L L L L
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tion s,— —s,, so long asc=0. Notice this symmetry does FIG. 2. For the frequency used in Fig. 1 and dise4, we show
not hold in a driving field wherc#0. the envelope functiorf, for (a) a two soliton state(b) a three

As stated above, for the same frequesitysed in Fig. 1, Scliton state, and(c) a four soliton state. Fori@ we have
we have a whole hierarchy of soliton states. We show exS1~ SN~ 3-36¢ 10,:’ for (b) s1=sy=2.177<10"% and for (c)
- < s,=5y=5.000< 102,
amples in Fig. 2, for exactly the same frequeticgmployed
in Fig. 1. Here we display the envelope functidns rather
thans,. replaced by\1—|s,[?, etc] We find s,(t) executes stable
Thus, for the finite chain and a given value of the fre-small amplitude oscillations around the soliton states. One
guency{}, we find a hierarchy of multisoliton states, as re- may describe the subsequent behavior of the system by say-
marked earlier. So far as we know, we could generate statdsg that the soliton “pulses” execute stable periodic oscilla-
with five, six, or more solitons, though we have not exploredtions in amplitude. We see no evidence that the solitons
how far we can proceed with the hierarchy. Such a hierarchyreak up into spin waves, for example. The energy density
will exist for a finite chain to which periodic boundary con- remains always concentrated in the solitonic peaks.
ditions are applied as well, though this sums to be a case of This situation is most intriguing, since we have a complex
primarily academic interest. For the infinitely long chain, andhierarchy of states associated with any frequency. There is
the boundary conditions,—0 asn— =, we believe only nothing special about our choié®=—3.95, as far as we can
the even and odd parity one soliton states are present.  see. We can generate similar hierarchies for any frequency
We have explored the stability of the states described hergbove the maximum linear spin wave frequency.
and found them quite stable against small amplitude pertur-
bations. This has been done as follows. We imagine that at ) ] o )
some timet=0, the spins are frozen with a pattern like that B. Nonlinear spin excitations in the presence
displayed in, say, Fig. (& or Fig. 1(b). We perturb this of a spatially uniform driving field
pattern by adding small incremendis,, to the various spin We next turn to the response of the system when a spa-
deviations. We use the pattern so generated as an initial cotially uniform, circularly polarized field is present, which
dition for Eq.(2). We study numerical solutions after insert- oscillates with frequencyw. We include its presence by
ing the forms; =Ss,(t)e™'*" into these equations, where choosingh, in Eq. (2) equal toh, independent of the site
now we allows,(t) to be complex[Whens(t) is not real, indexn. We are then able to solve E() in combination
then in Eq.(6) and elsewhere;/l—szn and dl—sﬁil are  with Eq. (11 for ¢,=c independent oh.
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FIG. 3. We show the function®@) s, and(b) f,,=(—1)"s, for
a nonlinear spin excitation in the presence of in rf field. Here the

dimensionless field strengtt=0.04 and the remaining parameters o . . .
are the same as in Figs. 1 and 2. close to, but distinctly different from, that associated with the

uniform state found from Eq13).
For any choice ot we always have a uniform solution in Whenc=0, as we noted earlier, each of the soliton states
which s, is independent ofi. For this uniform precession of illustrated in Fig. 1 is twofold degenerate, in a certain sense.
all the spins the exchange couplings drop out and the equ;yVith ¢=0, the equations are invariant under the transforma-

FIG. 4. The same as Fig. 3 but naw0.20.

tions for both interior and end spins degenerate into tion s,— —s, and we may form a distinct solution from, say,
Fig. 1(a), by just reversing the sign &f, everywhere.
Qsy=—2Bs, /1—502—0 /1_302_ (13 The presence of the external field breaks this symmetry.

There is a sort of “splitting” of the two previously degen-
If the amplitude of the driving field is very small, linear- erate solitons, as follows. Far=0.2, we obtain two distinct

ization of Eqg.(13) gives one soliton structures with even parity. We call theseAhe
state and th® state, respectively. For each, we illustrate the
c c functionsf,, in Fig. 5. For theA state, the value o§; re-
0T T 2B1Q) (Q.—Q) (14)

where in our units{),,= — 2B is the frequency of th&=0 0.24 ; : .

spin wave mode in linear spin wave theory. Notice if o4

Q>Q,,, the spins are precisely directed antiparallel to the " o.18f *° S .

driving field which is the behavior characteristic of a har- R

monic oscillator driven above its resonance frequencycAs .12t .

is increased, one may follow this solution through use of Eq. JCEC

(13). 006 ™™ K
Also whenc#0, we find solitonlike states in the presence . .

of the external driving field, which, as—0, degenerate into 0.00[ ,

the structures shown in the previous section. In Fig),3or

the casec=0.04, we shows, and in Fig. 3b) we showf ,. B i R S R it i

One sees from Fig.(B) that the external driving field in- bonoa Mme i’imbefl et e

duces an oscillatory modulation in the envelape As the

amplitudec becomes larger these oscillations increase in am- F|G. 5. Forc=0.20 we show a comparison between the two

plitude, as we see from Fig. 4. solitons, the type A and type B structures discussed in the text. The
Whenc+#0, the solitonic feature remains near the centerx’s are the type A excitation, and tli@'s are the type B. We have

of the chain, as we see from these figures. As we move out tewltiplied f,, for the type A soliton by—1, for clarity of presenta-

either end of the chain the amplitude of the end spins is veryion. As earlier we havé)=—3.95 andb=4.00.
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FIG. 6. An illustration of the stability of the one soliton states in the external rf field. The structure, perturbed slightly as described in the
text, has been followed up to a tinig=500/(2]S). We see that in strong external fields, the lifetime of the state shortens. Each figure
displays the response when the dimensionless tin#00. In(a), c=0.01, in(b), c=0.04, in(c), c=0.15, and in(d), c=0.20. In all cases,
0=-3.95 andb=4.00.

quired to generate the state $§'=—0.049 456 59, while one of its nearest neighbors. In Fig. 6, we show the values of
s2=-0.049 426 92. The spatially uniform solution has s,(t,) at the timet,=2500S. This is quite a long time for
So=—0.049 441 76, between these two values. the spin system, in that it corresponds to roughly 100 preces-
In the previous section, we discussed studies of the stabikional periods in the above mentioned exchange field. In Fig.
ity of the one soliton states, when=0. As remarked there, 6(a), we sees,(t,) for a very small value of the external
we find these states stable over a long period of time whefield, c=0.01. The solid line connects values of Bef,)],
we use the procedure described. Eet0 the soliton struc- and the dots illustrate Ins[,(ty)]. We see the localized, soli-
ture appears to have a finite lifetime which decreases withonic structure is quite stable. Once the energy density is
increasing field strengtb. We illustrate this in Fig. 6. We localized att=0, it remains there for quite some time. Our
have tested stability as follows, once again. At titeed, we  simulations for c=0 behave in a similar manner. For
assign each spin a spin deviation precisely equal to that for @=0.04, as we see from Fig.(l), we still have a central
one soliton state, such as those illustrated in Figs. 3—5. Wstructure displayed prominently, but the soliton has clearly
then add small amplitude incremesg, to each of these spin shed energy in the form of spin waves which propagate out-
deviations. We take, in generals, to be complex. We then ward and reflect off the chain ends. By the tice0.15, we
solve the full equation of motion through use of the ansatzee that whemy=2500S this effect is far more pronounced
s, =Ss,(t)e ' and we studys,(t). Our dimensionless unit and whenc=0.20 we see no evidence left of the central
of time is (219 . We note that S is the precession fre- feature.
guency of a given spin, in the exchange field provided by These simulations thus suggest that wieerD, the non-
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linear excitation is very long lived and stable against diverse
small perturbationgwe have explored several schemes for
selecting 8s,). When c+#0, but not too large, it may be 0.0040
viewed as a long-lived nonlinear resonance structure, which 0.0032
decays to spin waves when perturbed slightly. Its lifetime 0:00%4
becomes quite short when=0.2. In this case, even by the o,
time t,=5/JS, we can see evidence of decay in our simula-

(a) initial configuration

0.0016

0.0008

0.0000

tionS. -0.0008
In the next section we explore the possibility that suitably —0.0016
applied fields may excite the nonlinear resonances. Clearly, -0t
if this is to be done, the amplitude of the driving field cannot -0.0032
be too large, though at the same time it must be large enough = 721 31 21 51 s %1 & o1 1ot
to enter the domain where nonlinearities are significant. site number

C. Summary of a study of means

- . . . . b fi ti f i t t=500
of exciting intrinsic localized modes (b) configuration of spins a

0.7

In the above discussion, we have presented studies of as-
pects of intrinsic nonlinear spin excitations in a finite spin .
chain which, as we have argued, can serve as a model of a I3

0.6

magnetic superlattice. s 01
A central question, not addressed explicitly in the litera- oo}

ture on lattice dynamics so far as we kn8is, how one may -0t

probe or excite these modes in an experiment. At least in -03

-0.4

principle, one would like to expose the sample to an appro-
priate external driving field and possibly observe anomalous o e
absorption at high power levels for frequencies above the touo2tost 4 5L 6L W8l 91 0L
linear spin wave band. site number

We have explored this possibility in two ways, each of . ) _
which proved unsuccessful. In the first, we imagine the line FIG- 7. (@ The response of the model spin chain to a spatially
of spins studied above is exposed to a uniform fled of fre3 T2 SEEEtR TE 08 Bt of tose Inth
g;gIr;lcyaw'Sg;igﬁ;lyuﬂﬁg%eﬁelg){Opl?r:‘ee’Sz;sstlgnliq%)ﬁgrvee theb.u”(' (b) For the chain cpnsidgred i@ we show the response at
field felt by spin n has the form hn(t)efi“’t, with _tlmet=500, wht_an the driving flelatfo.l_o. We have added d_amp-
hn(t)=h(1—efet). The field thus starts at very small ampli- ing for each spin qf the Landau-Lifshitz form so at long times a

. . . I~ steady state is achieved.

tude and builds up with time. In the early history of the time
evolution linear response theory holds and a spatially uni- _ ) i _
form disturbance is induced in the spin system. The question, 'S last statement is true only for the ideal line of ex-
is whether this remains stable at large final amplitudesr ~ Change coupled spins, where spins located at each end of the
whether it becomes unstable with respect to formation of An€ are described by model parameters identical to those in
nonlinear excitation. Our answer, based on the model useti® interior. If we perturb the end spins, then for frequencies
above, is that the uniform state is stable. To achieve a stab@?©Ve the spin wave band we induce an out-of-phase distur-
final state and damp out transients, we added phenomenB2nce near the ends of the chain. We may imagine, for ex-
logical damping of the Landau-Lifshitz form (S, xS,) to ~ ample, that for the two end spins the anisotropy constant
the equation of motion of each spin. This form has the virtug=d- (1) differs from that in the interior. It will surely be the
that it preserves the length of eash. case that this is so for any finite chain of magnetic moment

In the literature on one-dimensional anharmonic latticesP€@rng atoms, sinca is sensitive to the local site symme-
Kiselev and co-workers have explored the stability of vari-Uy- In a superlattice, one could synthesize a structure whose
ous normal modes, taken to large amplitd@@hey find the end films have different anisotropy constants than the inte-
uniform is made stable at large amplitude, as we do for th&l©r films. In Fig. 7, for a particular choice @ for the two
spin system. We understand that Kiselev and a colleagugnd SPins, we show the disturbance in the spin chain, as

have also explored the stability of the uniform mode in thec@lculated from linear response. .
spin system and find it stable, as we do. By the method outlined earlier in which the external field

In the anharmonic problem, it has been demonstrated thdf f@mped up in strength, we have explored the stability of
the out-of-phase optical mode, when driven to large amp"_f[hls dys;urbance at Iarge_ amplitude. We see no evidence of an
tude, is unstable and evolves into nonlinear intrinsiciNStability at large amplitudes.
modes'° If we envision a one-dimensional line of ions, each
Wit_h alternating p_ositive a_md negative charge, then a spatially Ill. CONCLUDING REMARKS
uniform electric field excites the out of phase mode. Unfor-
tunately, for the spin system, a uniform field of small ampli- We have illustrated here that a finite chain of appropriate
tude excites only th&=0 acoustic spin wave, which is the spins possesses a rich spectrum of intrinsic nonlinear spin
uniform mode. excitations. These are stable against small perturbations, so

-0.6 1
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far as we can see. If an external rf field is applied, we stillassociated with the excitation of one soliton, two soli-
find these states with properties modified from the zero fieldon, . . . ,states.
case as described. As the strength of the external field is We believe that similar behavior should be exhibited by
increased, these states become unstable with respect to snmalhgnetic superlattices described by the effective Hamil-
perturbations, but they have a lifetime that can be quite longtonian in Eq.(1), provided the exciting field is rendered spa-
even for appreciable field strengths. We may view these asally inhomogeneous either because its wavelength is com-
long-lived nonlinear resonances of the system. parable to the size of the unit cell or possibly by the presence
There are analogies in our mind between the intrinsicof a finite skin depth. To explore this question, one must
nonlinear spin excitations explored here and the gap solitonsolve Eq.(2), now with the field amplitudén, coupled to
described in the literature on nonlinear dielectric Maxwell's equations. This is a formidable problem, because
superlattice$? 2 These are soliton states which exist within the spin system’s response is not only nonlinear, but nonlo-
gaps of the dispersion curves for linear electromagnetic waveal in space by virtue of the exchange couplings.
propagation down the structure. The infinitely long structure We regard the question of generating or detecting the
exhibits envelope solitons for such frequencies. The finitenonlinear spin excitations discussed here as most fascinating.
superlattice has a sequence of multisoliton states at onlé would be of interest to see experiments on magnetic su-
single frequencywith finite lifetime by virtue of radiative perlattices, but the metallic character of many systems stud-
damping from the ends. The analogue of radiative dampindged presently renders studies with intense fields problemati-
is absent from our spin system cal unless a pulsed mode of operation could be employed.
In the case of the nonlinear dielectric structure, with non-
linearity of the Kerr form, it has proved possible to solve the
Maxwell equations for a finite structure with nonlinear re-
sponse characteristi¢$141°As the amplitude of the inputis ~ This research was supported by the Army Research Of-
increased, one finds a sequence of transmission resonancéise, under Contract No. CS0001028.
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