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Coherence tendencies in the transport of translationally invariant exciton-phonon systems
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The motion of an exciton in a translationally invariant exciton-phonon system is considered within the frame
of the generalized Fulton-Goutermd@RG) transformation, which diagonalizes the coupled exciton-phonon
Hamiltonian in the excitonic subspace and yields a set of exact equations for the purely oscillatory FG wave
functions. An exact expression for the second moment of the local excitonic occupation numbers is presented
in terms of the FG wave functions, for which two different sets of displaced phonon states are discussed. A
numerical computation of the second moment characterizes the exciton motion as a coherent process. This
result is also found in an improved calculation which is based on the application of the Goldberger-Adams
relation.[S0163-182€06)00137-3

[. INTRODUCTION with respect to the excitonic subspace. The evolving FG
equations are a rigorous substitute for the original Schro
The motion of an exciton in an elastic medium has beerdlinger equation and they pertain to the phonon subspace
intensively studied during the past decades. Various apenly. An exact expression for the second moment of the
proaches were developed to elucidate the question wheth€Kcitonic occupation probabilities then may be derived,
the exciton motion corresponds to a coherent, wavelikevhich allows for the characterization of the propagation pro-
propagation or to a diffusive process. cess. Two sets of appro?dma_tive solutions for t_he FG equa-
It can be eas"y shown that a bare exciton’ not Coup|ed t(§|0ns are introduced via different Un|tary dISp|acement
other modes, propagates coherently in a translationally inoperators. The numerical computation of the second mo-
variant chain. A frequently mentioned argument is that, if thement for both sets of wave functions hints at a coherent
exciton is coupled to the phonons in a nondiagonal mannegXciton motion. These findings are underlined by an im-
the interaction between the two subsystems generates sc@0ved calculation, which is based on the Goldberger-Adams
tering processes between various exciton-phonon states af@jation: o .
thus gives rise to a transition to a diffusive motion. Express- In Sec. Il the model system is introduced in the frame of
ing this more formally, it means that the nondiagonal part othe gFGT and an expression for the relevant transport quan-
the Coupled exciton_phonon Ham"tonian causes incoherﬂty iS formulated. SeCtion 1 Contains the deSCI’iptiOI’l Of the
ence. It must be Objected, however, that unitary transformaapp”ed wave functions and first results. These are confirmed
tions alter the definition of what is to be understood as “di-in Sec. IV by improved calculations. In Sec. V the method
agonal” and “nondiagonal” in the transformed and the results are summarized and the Appendix describes
Hamiltonian. Specifically, the scattering terms in the originalthe calculation of the exact short-time limit.
Hamiltonian may be partially diagonalized by a unitary
transformation. Then the question arises whether these diag- Il. THE GENERALIZED FULTON-GOUTERMAN
onal terms, which originally were connected with incoher- TRANSFORMATION
ence, now favor a coherent motion. From these consider-
ations it follows that a transport formalism must be devised,
which does not take recourse to semiphenomenological re- We consider the standard model of a Frenkel exciton in-
laxation times for scattering processes, because this approxiracting linearily with acoustic phonons
mation possibly leads to results which are artifacts. L p2
In the approach presented here transport quantities are |, m 2
calculated l|3r|1O terms pof the wave functiorr:s o19 the model -2 §m: ™ T H(Qm=Qme) _sz“ (Jm)(m=+1]
Hamiltonian. At a first glance this appears ineffective due to
the large number and the complexity of the involved wave
functions. However, this problem is drastically simplified by
the application of unitary transformations, by means of
which approximative forms for the eigenfunctions of the

A. The model system in the FG picture

+[m+1)(m) +D X Q1= Qnm-v)lm)(ml,

considered Hamiltonian are constructed. In this context it is m=0,= 1,....i§. 1)
essential that unitary transformations conserve orthonormal-
ity relations and expectation values. The first term is the acoustic phonon Hamilton{amlecular

The dominant mathematical tool of the paper is the genforce constanf, molecular mas#). The second term de-
eralized Fulton-Gouterman transformatit@=GT),>2 which  scribes the bare exciton band of widtf 4n the Wannier
exploits the group-theoretical properties of the model systemepresentation, and the third term models the exciton-phonon
and diagonalizes the coupled exciton-phonon Hamiltoniarinteraction, which is assumed as local with respect to the
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Wannier operatorgm){m| and linear in the oscillatory dis- 1 PN A a ~

. . . . . : (K)| (k)
placements. The pure vibrational Hamiltonian is diagonal-Hel#,")= > > QPP+ QQ_g)+ > Q¢D4Q-,
ized by normal coordinateB,,Q,, which are defined by a a

~T(e*RE"+ e KRPY) {4 (F)

Qn=(N+1)73 (MOg) Q™™ (2)

=E[¢)7). (10

Pm:(NJFl)fl/ZE (MQq)HIZPqefiqm’ (3 The form of the wave functions in the original, i.e., com-
a bined Hilbert space reads
_ 2 _oxl. =+ N 4
R NTOEh T @ ) U ()= (N ) S Em)RET6).
m
This yields for the Hamiltoniargl) (11

1 SN N Having introduced the gFGT, which establishes the math-
H=3 D QPP+ QQ-_g)— T (Im)(m+1] ematical framework for our treatment, we now turn to ques-
a " tions regarding the dynamical behavior of the model system.

~ —igm
F|m-+1)(ml)+ sz,q 2qPeQ g™ m)m|  (5) B. Transport calculations in the FG frame

with the phonon frequencie®, and the coupling function W€ assume that at tinte=0 the phonon subsystem is in &

D uniform equilibrium state, described py(t=0)=p,, and an
d exciton is created instantaneously at site=0 (excitonic
q 12 state |0)). Thus the initial exciton-phonon density matrix
Qq=Qp sin(i) , QDZZ(M) , (6) reads
t=0)=|0){0|® pyn- 12
q=—2i - , . C
JINFDTQ. |sin(a/2)| In the course of the temporal evolution of this initial local
( /1 excitation the lattice will be distorted and the exciton will be
D=-D_ .=—D* @ delocalized. The primary aim of the present paper is to ex-
a- -9~ g i i ion i
amine whether the exciton propagation is of a coherent or a

The exact diagonalization of this exciton-phonon Ham”_diffusive nature. This question can be clarified by calculating

tonian (5) in the excitonic subspace can be performed byth€ local occupation numbers

means of the generalized Fulton-Gouterman transformation

(gFGT), which exploits the translational invariance of the Ne(t) =Tr{{m){m|p(1)}, (13

model system. This procedure is described in previous | . . . ) )

publications**© so that we repeat only the basic formulas inwhlph measure the probability of finding the exciton _at site

the present paper. m, irrespective of th_e s_tate_ of th(aT phonons. We define the
Subjecting Hamiltoniar5) to the gFGT, which is defined Moments of the excitonic distributiamy(t),

by the unitary operator

M, ()= m'ny(t). (14)
Ure=(N+1)" Y2, e""my(K|REY, t) "

We are especially interested in the time dependence of the
(k=k[27/(N+1)], «=0,%x1,...=N/2, R%h: translational second momenM,(t), because it characterizes the specific
operator in the phonon subspacgields type of the propagation process. Coherent processes are con-
nected with a2 long-time limit of M (t),
Hee=UfcHUkG

1 o A tIim MEM(t) oct?, (15)
=3 }q} Qq(PqP,q+QqQ,q)+§q} QDQ
whereas a diffusive propagation pertains to a linear increase
i - f M,(t),
T [k)(kI(e*RE+ e R, 9 Of M)
limM9T(t)t. 16
where{|k)} denotes the orthonormal basis in the new exci- t'_m 2 (D= (16)

tonic subspace. The ansat¥ &)= |k)|¢®(Q)) for the
eigenfunctions oHyg results in a set ofN+1) oscillatory  For the calculation ofM,(t) we start with the Liouville
equations, which are denoted as FG equations, equation
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d .
i d_lizﬁp’ 17 nm(t)=k2V (kv|[|m){m|e”"p(0)]|kw), (19

where £ denotes the Liouville superoperatafA=[H,A].

Equation(17) is formally solved by where{|kv)} is an arbitrary complete orthonorm(akl) base. If
it  iht iHt we identify the basé|kv)} with the eigenbas¢|¥ ")}, as
ply=e p(0)=e Tp(0)e (18 defined by Eq.(11), the matrix elements in the excitonic
With this form the local occupation numbens,(t) of Eq.  subspace can be evaluated angt) is expressed in terms of
(13) are given by the solutiong#{¥) of the FG equations via

mn(D=(V+1) 722 X exp[ — ik =k )mlexpli(EY ~ Y )r]

kv k’,V’ -

m dependent

(#0165 (% 1ol 0).
— (20
;éﬁk,k'av,v’

It is important to note that the scalar pde'Q@i(Vk)W(Vkr’b is  This corresponds to the conservation of the exciton number.

W1 (k') For the formulation ofM,(t) in terms of the FG functions
not equal to( ¢, b, )= x5, , because the FG func- |9 we apply the relation

tions pertaining to two different irreducible representatikns

andk’ are eigenfunctions of two different FG Hamiltonians, N/2 y ik N(N+1)(N+2)
HX and HY), and therefore they are not necessarily or- m:Zle m-e = O - 12
thogonal to each other. As a second important feature of the

right-hand siddrhs) of Eq. (20), we note that it contains only 1 .
one factor, which depends on the site index +(1= ) —— (="
From this presentation ofi,(t) the moment of zeroth
orderM(t) is easily derived, cog(k—k")/2]
X — Vet (22)
sﬁ[(k—k )12]

Mo(t)= t)=(N+1)"* (k) (Ky=1,
ot ; Mim( ) =( ) kEV (6, lpprl#,7) (k= k[27/(N+1)], x intege), and with the initial condition
(21 M,(t=0)=0 we arrive at the final expression

(k) _ (k")
Ma(D)=—(N+1) 2 3 3 fo(ol 60 N ol >|pph|¢$k>>sin2<”+t), (23
kk' v
(k%K')
|

where therefore approximative forms of the phononic wave func-

tions | ) must be considered.
, cod (k—k')/2] For the calculations of the following sections we consider

frow=(=1)* (29 the initial phonon density matrix

Si[(k—k")/2]"

This formulation of the second momen,(t) is exact ppn=|@o)(ol, (25
and the knowledge of the complete set of the solut{gr¥)
of the FG equation$10) would allow for the accurate char- which means that at the moment of the creation of the exci-
acterization of the excitonic energy transfer. The FG equaton the lattice is in its ground staley). It would be possible
tions, however, in general cannot be solved exactly ando examine other initial conditions, such as a partially
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dressed excitdror the case of thermal equilibrium at a finite In the further proceeding we will discuss two different forms
temperaturé,but in this paper we want to discuss only the for the parametergd {9}
simple version of Eq(25).

IIl. CONSTRUCTION OF THE WAVE FUNCTIONS B. Simple choice for the mode displacements
A General method The first choice ford {9 is

In this section we construct approximative forms of the d®=p
FG wave functions. Our general philosophy will be as fol- d .
lows. We relate the choice d%¥) to unitary transforma- The unitary transformation defined by expED4P,) ex-
tions, i.e., we define these functions by the application of actly diagonalizes the FG Hamiltonian of EGLO) in the
unitary operatotU, which may depend on the irreducible limit of a vanishing excitonic band widtt; =0, and it may
representatiork, onto a given orthonormal sefte,)} of  be considered as a first step towards the explicit calculation
simple functions, of the second momeril ,(t).

The ansat231) means that the displacemerts{’} and
consequently the operatdg® are identical for alk values,

. (3D

Ky — (k)
|4,y =U%]e,). (28 (U Thus the wave functionigs(¥) are given by
The state vectorgp,) are assumed to be the eigenfunctions .
of the uncoupled phonon Hamiltonian |¢(Vk)>5|¢u)=U|gov>=eX[(i2 DqPq) lo), (32
q
1 A Aa irrespective of the irreducible representatlaror this case
H0:§ % Qg(PgP-q+QqQ-q)- (27) M,(t) assumes the simplified form
The unitary operatod ® may contain adjustable parameters — M,(t)=—(N+1) 1>, "> fi_(e,/UTppU]e,)
which can be optimized by means of a suitable variational kk'
principle. This procedure has the advantage that the ortho- ® (k)
normality between the FG functiog ) is warranted as a % sir? E, -E, t) (33
consequence of the orthonormality between the phonon 2 '

states|o, ).’ _ _ .
In t|he present paper we restrict our considerations to thihere the energy eigenvalug(? is approximated by the

case of an excitonic band that has a smaller energetic widtBnergy expectation value® = (¢ |H| ,).

than the phonon band, i.eT4&(Q)p . In this parameter regime

the FG functions are adequately described by displaced pho-

non state4;'° which can be generated by the application of C. Alternative choice

the unitary displacement operatdy;s onto the pure phonon

states e,). Thus we choose fod ® Besides the simple form E¢31) we also examine a more

complicated alternative faul (9. If the ansatz

U(k>EUdiS({dgk>})=exp(iZ dgk)f?q>. (28) |¢8‘)):exp<i2 dg")lADq)hpO), | ¢o): phonon vacuum state,
q q

(34)
If we transcribe the displacement transformation into the

original, not the FG transformed picture, it corresponds to> employed as a trial wave function for the ground-state

the the wel-known polardd or  Lang-Firsov solution of the FG equation€l0) an energy minimization
transformatiort? In a space where the excitonic coordinatesprocedure yields a set of seli-consistency equations for the

. ; : de displacemenis(® 615
are considered as continuous and not as discrete ones asrﬂ? P q

the present work, the transformation connected Wit is D

identified as second Lee-Low-Pinés_P) transformatiort3 (k) — + : (35)
In this context it should also be noted that there exists a close 1 1+4(T/Qp)L1({dg"} ) cosk[sin(a/2)]|
relationship between the first LLP transformation and the .

gFGTH with the Debye-Waller factor

From the transformation prescriptions
L1({d37}) = (@0l U iR+ 1U did o)

Tdis:éq: UI“S(AQqU diS: Qq_ dgk) y (29) — exr{ _ 2 2 S|n2< g) } (36)

d®
q q

Tgis:Pq=UisPqUgis= Pg. (30 as an integral quantity for the complete sfd {}). Replac-
in(% (4T/Qp)L, cok in Eq. (35) by a variational parameter
A

it follows thatd {9 is the Q-space displacement of mode the coefficientsd { are given by



D
Ny~
dq" () 1+ 1 W|sin(q/2)| S

and\® is determined by optimizing the energy expression

2
Egk)()\<k>)= —2TL, cosk— T (4I'1—2I'5)

with the sum quantities

(39
Ll<x<k>>=ex;{ _ cog(q/2)|sin(q/2)|

[1+A(k>lsin<q/2)l]2>’
(39

4D2%2 1 >
fOp N+1 4

cog(q/2)
[1+A®sin(g/2)[1™

The approximative forms for the FG functions read

>

q

Fm()\(k>) =

N+1 (40

|¢ik)>zudis<x<k>>|¢y>=exp(i% dgk)(w))ﬁ’q)lcp»
(41)
with d {9(A ™) defined in Eq(37).

D. First results

For the numerical computation M ,(t) we only take into
account those contributions (9| % ) %[ ppnl )
[see Eq.(23)], which are of zeroth to second order in the
coupling constanD . With this restriction it turns out that for
|,y in Eq. (33) or (41), respectively, we only need to con-
sider the phonon vacuum and the one-phonon states, whi
in terms of the generating operatdr$=2-"4Q! -iP) are
presented by

loo)

|§Dv>= bg|¢0> (42)

with g=ng[27/(N+1)].
ng=0,£1,..,=N/2.
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FIG. 1. Temporal evolution of the second derivativeMv§(t)
with respect to the timer. Chain lengthN+1=101 lattice sites,
coupling strengttD?/(fQp) =0.04, bandwidth ratio #/Q=0.8.
Exact short-time limit from Eq(59) (long dashes simple choice
Eq. (31) for mode displacementgshort dashes and improved
choice Eq.(37) (solid line).

crude approximation. It does not reproduce the finite time the
lattice needs to react upon the excitonic excitation.

Regarding this point the alternative choice of Sec. IlI C
for | (M) yields an improved description. It displays a quali-
tatively correct behavior in the short-time limit although the
guantitative values differ from the exact ongsg., ~0.52
versus 0.50 for=0). For largerr the k-dependent displace-
ment transformation of Eq4l) generates a curve which

ymptotically approaches a finite constatit.5. (For 7>35
effects due to the finite extension of the fundamental period-
icity interval make their appearan¢d&hus both approxima-
tive forms Egs.(32) and (41) for the solutions of the FG
equationg10) indicate a coherent exciton propagation with a
velocity which is smaller than that for the motion of an un-
coupled exciton.

Naturally the question arises, whether these findings are
artifacts of our approximations or whether they reflect actual
system properties. The confidence of the results in the long-
time limit certainly would be increased if we found a method

In Fig. 1 the results pertaining to the two different sets ofwhich allows for an accurate reproduction of the second mo-
FG functions are illustrated for the coupling strengthment for smallr. This is presented in the next section.

D2?/(fQp)=0.04 and thebandwidth ratio 4/Q;=0.8 de-
pending on scaled time which is defined via

T=2Tt. (43

For lucidity we do not show the second mom&h(7) itself,
but the second derivative & ,(7) with respect to the scaled
time 7,

1 d’My(7)

2 d? (44)

IV. IMPROVEMENT VIA GOLDBERGER-ADAMS
RELATION

A. Introduction of the Goldberger-Adams relation

The preceding considerations were based on the attempt
to find suitable approximative solutiorjg)!) of the FG
equations. As one possibility to improve the calculations one
could search for further unitary transformations, e.g., squeez-

In order to estimate the quality of the approximative resultsng transformations® which yield an improved diagonaliza-

the curve for the exact short-time limit E§59) (see the
Appendix is also sketchedong-dashed curye The simple
choice Eq.(32) for the FG functiong¢(¥) results in a finite
constant for(1/2)(d’M,/d7?) (short-dashed line what cor-
responds tdvl,<72. The comparison with the exact limiting
behavior for smallr reveals that the ansatz E(2) is a

tion of the FG Hamiltonian. It is illuminating, however, to
follow up also an alternative path.

Given a complete and orthonormal set of base functions
{|k»)}, which are not necessarily eigenfunctions of the con-
sidered HamiltonianH can be presented in the projective
form
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H=; EV: |kv><kle|kv)<kV|+; E’ |kv' Wkv'|H|kv){kv|.

. .y (45)
H diagonal H nondiagonal
|
Similarly, the Liouvillian £, appearing in the basic expres- vt iz (Y Cirty, oo
sion (19), may be written in a projective form. Writing e =g 't +f0dt’e Lt (—iLpge” . (49
L=Ly+ Lyg (46)  we start again with expressidf9), but rather than employ-
we have ing the exact eigenbaggl )} for {|kv)} we allow the lat-
ter to be different and make use of the GA transcription. In
L4A=[Hq4,A] this transcription the time evolution of the density matrix
p(t) reads
:; EV <kV|H|kV>(|kV><kV|A_A|kV><kV|), p(t):efiﬂtp(o):efiﬁdtp(o)
t , , o
(47) _if dt/e—lﬂd(t—t )Ende—lﬂdt p(O)
0

LngA=[Hpg,A]

t t : ’ ; ’_4m
_ ' na—iLy(t—t") —iLy(t"—t")
ZZK > (kv'|H|kv)(|kv'"){kv|A—=Alkv')}kv|), fodt jo dte £nde

vy Xﬁnde_wdt”p(O), (50)

(48) where the series expansion of the GA relation has been ap-
and we may introduce the Goldberger-Adani&A)  plied up to second order if, 4. This expression now is used
transcription in Eq. (19),

nm<t>=k2V <kv|(|m><m|e*iﬁd‘p<0>>|kv>—ikEV (kv|(m)(m| f;dt’e*”:d“*’>cnde*“dt’p<0>>|kv>

t ! . ’ . I Sl
—kE <|<VI(|m><m|f0dt’fOt dt’e 1 Lat-t) g e Lt =) £ o=l 5 0))| k). (51)
The second momem ,(t) [vid. Eqg. (14)] now is calculated B. Improved results
by choosing Figure 2 contains the results which are calculated via the
extended expressidn0) for the time-dependent density ma-
_ . N trix p(t). Analogously to Fig. 1 the quantity
_ 1/2 km phy (k)
[kvy=(N+1) % e"Mm)RR|¢,7), (52) (1/2[d*M,(7)/d7?] is presented for the simple ansatz Eq.

(32) (short-dashed lineand for the alternative set of wave

where{|<}b(v"))} is a complete orthonormal set of app;oximatef“nCtionS established by E.oi4.1) (sqlid ling). For smalla-.
eigenfunctions of the FG equations. Specifically, |f¢t(vk)> l:.)ot.h curves practlgally coincide with the e>'(act short—tlme
we make two particular choices. On the one hand we use fdimMit (long-dashed line, see the Appendikor intermediate
| () Eq. (32), on the other hand, E¢41). 7, 5<7<25, both lines display a qualitatively similar behav-
If this is done, the present approach amounts to an imior with small quantitative differences. For large times the
provement of the calculation in the preceding sections. Thi§wo curves asymptotically approach a finite constant, which
improvement is achieved via the second and third terms owithin the given accuracy is identical for both sets of ap-
the rhs of Eq(50). The calculation in the preceding sections proximative FG solutions. As from Fig. 1 we draw the con-
can be viewed as one in which only the first term of Exf) clusion that the exciton propagation corresponds to a coher-
is employed. We refrain from writing down the respectiveent process with a velocity which is reduced by the
expressions for the second moments, since they are lengtliyteraction with the acoustic lattice vibrations. The coinci-
but straightforward. dence of the results pertaining to different sets of wave func-
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tions both in the short-time limit as well as for largere-
duces the probability that our findings are artifacts of the
formalism.

V. SUMMARY

In the present paper we have developed a formalism for;f’f;
the calculation of transport quantities within the frame of the -
gFGT. It offers the advantage that no semiphenomenological
concepts such as relaxation times for scattering processes
must be introduced. Moreover there is no need for a separa-
tion of the considered degrees of freedom into relevant and
irrelevant sets, as in the approaches via generalized Master
equations. Therefore our formalism is easily extended from

L L \
0 10 20 30 40

the calculation of excitonic expectation values as presented time
here to the determination of quantities which pertain to the
oscillatory subsystem. FIG. 2. Temporal evolution of the second derivativeMv§(t)

As a first application we have derived an exact expressiof¥ith respect to the timer, corrected via the Goldberger-Adams
for the second moment of the local excitonic occupationrelation Eqg.(49). Chain lengthN+1=101 lattice sites, coupling
numbers in terms of the solutions of the FG equations. Twdtrength D/ (f(p)=0.04, bandwidth ratio #/Qp=0.8. Exact
different sets of approximative FG functions were estab-Short-time limit (long dasheg simple choice Eq(31) for mode
lished by the application of different unitary displacementdisPlacementsshort dashesand improved choice Ed37) (solid
operators onto the eigenstates of the uncoupled phondWe)'

Hamiltonian. With these base functions indications were

found that for periods of time, in which the wings of the esting whether a transition to a diffusive propagation is
excitonic distribution do not reach the border of the modelfound if the influences of finite temperature and lattice de-
system, the excitonic propagation can be considered as facts are included in the calculations. By this means the
coherent process. These findings are confirmed by transieBburce of finite diffusion constants in doped crystaiét
grating experiments of Burlanet al,'” who observed that could be investigated without introducing incohereageri-
exciton transport in pure crystals at low temperatures can bgyj py the application of effective transport equations or phe-
wavelike. Following the aforementioned argument the coheryomenological damping parameters. Moreover the energy
ence time in physical systems can be estimated by d'V'd'”%ropagation within the phonon degrees of freedom can be

the sample extension by the velocity of sound which resultgeataq which may be relevant with regards to the possible
in a coherence time of the order of microseconds. This esti-

P o existence of solitary modes in the considered coupled
mation is justified if one assumes the excitonic and theexciton-phonon model
phononic bandwidths of the same order of magnitude. '
In the present paper we treat a closed system with a finite
number of degrees of freedom. It might be objected that for
such a model the dynamics is coherent due to a finite recov-
ery time. A glance at Figs. 1 and 2, however, reveals that the
presented curves display no periodic behavior. Furthermore, In order to estimate the quality of the results obtained
the recovery time for a system with 202 degrees of freedomyith the FG formalism we derive an exact expression for the
as in our case, is remarkably larger than the evolution timeshort-time expansion d1,(t) in the original, not FG trans-
considered here. From that we conclude that our treatment formed frame. In the Schdinger picture this can be
also valid for an infinitely extended model. achieved by the expansion of the time-dependent density ma-
In conclusion we want to emphasize what we consider tdrix given in Eq.(18),
be the main outcome of the present investigation. In most
preceding theories of exciton transport the phonon subsystem _
is considered as a kind of bath, which somehow causes the  p(t)=e '*p(0)
excitonic propagation to become diffusive. Our main goal
has been to clarify whether this is true under the provision of =p(0)—it[H,p(0)]- 3 t*[H,[H,p(0)]] -
strict translational invarianceln our approximation we find (A1)
that there is no excitonic diffusivity under the assumed sym-
metry prerequisite, if the temperature is zero. Since our cal-
culation reproduces the exact short-time limit and is stable inith the initial condition
the long-time limit, our finding may seem to be a strong
indication that diffusive behavior must be due to other inter-
ac'gion processg$defec’gs, efc(). than fchose inherent in a p(0)=|m=0)(M=0|x®| o) @0l - (A2)
strictly translationally invariant exciton-phonon coupling
Hamiltonian.
For further theoretical studies it appears especially interThe second momen¥l ,(t) then reads

APPENDIX: EXACT SHORT-TIME LIMIT
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This form is more suitable for the determination Mf,(t),
My(t)= > m?{Tr(|m)(m|=p(0)) because it is easier to calculate the commutator of the
m exciton-phonon Hamiltoniafil) with the pure exciton opera-
tor |[my(m| than with the exciton-phonon density operator
p(0) of Eq. (A2).
The exact short-time limit foN>5 amounts to

—it Tr(fm){(m[®[H,p(0)]) (A3)

— 3 2 Tr(Im)(m[®[H,[H,p(0)]])---}.

(A4) 1, 1 D*Of , .
. ) My(r)=s 17— = 7 +0(7°). (A7)
Alternatively one can change to the Heisenberg representa- 2 457 fQp T
tion whereM,(t) amounts to In the limit of a vanishing couplin@ =0 the second moment
increases quadratically in time and the propagation process is
M,(t)= >, m{Tr(p(0)® |m)(m|) completely coherent. For finit® the exciton transfer is
m modified due to the interaction with the lattice. The short-

time limit, however, offers no possibility to determine

+it Tr(p(0)®[H,|m)(m|]) (A5)  whether the propagation process is coherent or diffusive, or
to calculate, e.g., diffusion coefficients, because these quan-
+ 3 2 Tr(p(0)®[H,[H,|m){(m[]])---}. tities are related with the long-time behavior of the excitonic
(AB) motion.
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