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The motion of an exciton in a translationally invariant exciton-phonon system is considered within the frame
of the generalized Fulton-Gouterman~FG! transformation, which diagonalizes the coupled exciton-phonon
Hamiltonian in the excitonic subspace and yields a set of exact equations for the purely oscillatory FG wave
functions. An exact expression for the second moment of the local excitonic occupation numbers is presented
in terms of the FG wave functions, for which two different sets of displaced phonon states are discussed. A
numerical computation of the second moment characterizes the exciton motion as a coherent process. This
result is also found in an improved calculation which is based on the application of the Goldberger-Adams
relation.@S0163-1829~96!00137-3#

I. INTRODUCTION

The motion of an exciton in an elastic medium has been
intensively studied during the past decades. Various ap-
proaches were developed to elucidate the question whether
the exciton motion corresponds to a coherent, wavelike
propagation or to a diffusive process.1

It can be easily shown that a bare exciton, not coupled to
other modes, propagates coherently in a translationally in-
variant chain. A frequently mentioned argument is that, if the
exciton is coupled to the phonons in a nondiagonal manner,
the interaction between the two subsystems generates scat-
tering processes between various exciton-phonon states and
thus gives rise to a transition to a diffusive motion. Express-
ing this more formally, it means that the nondiagonal part of
the coupled exciton-phonon Hamiltonian causes incoher-
ence. It must be objected, however, that unitary transforma-
tions alter the definition of what is to be understood as ‘‘di-
agonal’’ and ‘‘nondiagonal’’ in the transformed
Hamiltonian. Specifically, the scattering terms in the original
Hamiltonian may be partially diagonalized by a unitary
transformation. Then the question arises whether these diag-
onal terms, which originally were connected with incoher-
ence, now favor a coherent motion. From these consider-
ations it follows that a transport formalism must be devised,
which does not take recourse to semiphenomenological re-
laxation times for scattering processes, because this approxi-
mation possibly leads to results which are artifacts.

In the approach presented here transport quantities are
calculated in terms of the wave functions of the model
Hamiltonian. At a first glance this appears ineffective due to
the large number and the complexity of the involved wave
functions. However, this problem is drastically simplified by
the application of unitary transformations, by means of
which approximative forms for the eigenfunctions of the
considered Hamiltonian are constructed. In this context it is
essential that unitary transformations conserve orthonormal-
ity relations and expectation values.

The dominant mathematical tool of the paper is the gen-
eralized Fulton-Gouterman transformation~gFGT!,2,3 which
exploits the group-theoretical properties of the model system
and diagonalizes the coupled exciton-phonon Hamiltonian

with respect to the excitonic subspace. The evolving FG
equations are a rigorous substitute for the original Schro¨-
dinger equation and they pertain to the phonon subspace
only. An exact expression for the second moment of the
excitonic occupation probabilities then may be derived,
which allows for the characterization of the propagation pro-
cess. Two sets of approximative solutions for the FG equa-
tions are introduced via different unitary displacement
operators.4 The numerical computation of the second mo-
ment for both sets of wave functions hints at a coherent
exciton motion. These findings are underlined by an im-
proved calculation, which is based on the Goldberger-Adams
relation.5

In Sec. II the model system is introduced in the frame of
the gFGT and an expression for the relevant transport quan-
tity is formulated. Section III contains the description of the
applied wave functions and first results. These are confirmed
in Sec. IV by improved calculations. In Sec. V the method
and the results are summarized and the Appendix describes
the calculation of the exact short-time limit.

II. THE GENERALIZED FULTON-GOUTERMAN
TRANSFORMATION

A. The model system in the FG picture

We consider the standard model of a Frenkel exciton in-
teracting linearily with acoustic phonons

H5
1

2 (
m

H Pm
2

M
1 f ~Qm2Qm11!

2J 2T(
m

~ um&^m11u

1um11&^mu!1D(
m

~Qm112Qm21!um&^mu,

m50,61,...,6
N

2
. ~1!

The first term is the acoustic phonon Hamiltonian~molecular
force constantf , molecular massM !. The second term de-
scribes the bare exciton band of width 4T in the Wannier
representation, and the third term models the exciton-phonon
interaction, which is assumed as local with respect to the
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Wannier operatorsum&^mu and linear in the oscillatory dis-
placements. The pure vibrational Hamiltonian is diagonal-
ized by normal coordinatesP̂q ,Q̂q , which are defined by

Qm5~N11!21/2(
q

~MVq!
21/2Q̂qe

1 iqm, ~2!

Pm5~N11!21/2(
q

~MVq!
11/2P̂qe

2 iqm, ~3!

q5nq
2p

N11
, nq50,61,...,6

N

2
. ~4!

This yields for the Hamiltonian~1!

H5
1

2 (
q

Vq~ P̂qP̂2q1Q̂qQ̂2q!2T(
m

~ um&^m11u

1um11&^mu!1D(
m,q

VqDqQ̂2qe
2 iqmum&^mu ~5!

with the phonon frequenciesVq and the coupling function
Dq

Vq5VDUsinS q2D U, VD52S f

M D 1/2, ~6!

Dq522iD
cos~q/2!

A~N11! fVq
Usin~q/2!

sin~q/2!
U ,

Dq52D2q52Dq* . ~7!

The exact diagonalization of this exciton-phonon Hamil-
tonian ~5! in the excitonic subspace can be performed by
means of the generalized Fulton-Gouterman transformation
~gFGT!, which exploits the translational invariance of the
model system. This procedure is described in previous
publications,3,4,6 so that we repeat only the basic formulas in
the present paper.

Subjecting Hamiltonian~5! to the gFGT, which is defined
by the unitary operator

UFG5~N11!21/2(
k,m

eikmum&^kuRm
ph, ~8!

„k5k[2p/(N11)], k50,61,...,6N/2, Rm
ph: translational

operator in the phonon subspace…, yields

HFG5UFG
† HUFG

5
1

2 (
q

Vq~ P̂qP̂2q1Q̂qQ̂2q!1(
q

VqDqQ̂2q

2T(
k

uk&^ku~eikR1
ph1e2 ikR21

ph !, ~9!

where$uk&% denotes the orthonormal basis in the new exci-
tonic subspace. The ansatzuCFG

(k)&5uk&uf (k)(Q)& for the
eigenfunctions ofHFG results in a set of~N11! oscillatory
equations, which are denoted as FG equations,

HFG
~k!ufn

~k!&5H 12 (
q

Vq~ P̂qP̂2q1Q̂qQ̂2q!1(
q

VqDqQ̂2q

2T~eikR1
ph1e2 ikR21

ph !J ufn
~k!&

5En
~k!ufn

~k!&. ~10!

The form of the wave functions in the original, i.e., com-
bined Hilbert space reads

uCn
~k!&5UFGu~CFG

~k!!n&5~N11!21/2(
m

eikmum&Rm
phufn

~k!&.

~11!

Having introduced the gFGT, which establishes the math-
ematical framework for our treatment, we now turn to ques-
tions regarding the dynamical behavior of the model system.

B. Transport calculations in the FG frame

We assume that at timet50 the phonon subsystem is in a
uniform equilibrium state, described byrph~t50!5rph and an
exciton is created instantaneously at sitem50 ~excitonic
state u0&!. Thus the initial exciton-phonon density matrix
reads

r~ t50!5u0&^0u ^ rph. ~12!

In the course of the temporal evolution of this initial local
excitation the lattice will be distorted and the exciton will be
delocalized. The primary aim of the present paper is to ex-
amine whether the exciton propagation is of a coherent or a
diffusive nature. This question can be clarified by calculating
the local occupation numbers

nm~ t !5Tr$um&^mur~ t !%, ~13!

which measure the probability of finding the exciton at site
m, irrespective of the state of the phonons. We define the
moments of the excitonic distributionnm(t),

Mr~ t !5(
m

mrnm~ t !. ~14!

We are especially interested in the time dependence of the
second momentM2(t), because it characterizes the specific
type of the propagation process. Coherent processes are con-
nected with at2 long-time limit ofM2(t),

lim
t→`

M2
coh~ t !}t2, ~15!

whereas a diffusive propagation pertains to a linear increase
of M2(t),

lim
t→`

M2
dif~ t !}t. ~16!

For the calculation ofM2(t) we start with the Liouville
equation
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i
dr

dt
5Lr, ~17!

whereL denotes the Liouville superoperator,LA5[H,A].
Equation~17! is formally solved by

r~ t !5e2 iLtr~0!5e2 iHtr~0!eiHt . ~18!

With this form the local occupation numbersnm(t) of Eq.
~13! are given by

nm~ t !5(
k,n

^knu@ um&^mue2 iLtr~0!#ukn&, ~19!

where $ukn&% is an arbitrary complete orthonormal base. If
we identify the base$ukn&% with the eigenbase$uC n

(k)&%, as
defined by Eq.~11!, the matrix elements in the excitonic
subspace can be evaluated andnm(t) is expressed in terms of
the solutionsuf n

(k)& of the FG equations via

~20!

It is important to note that the scalar product^fn
(k)ufn8

(k8)& is

not equal tô fn
(k)ufn8

(k8)&5dk,k8dn,n8 , because the FG func-
tions pertaining to two different irreducible representationsk
andk8 are eigenfunctions of two different FG Hamiltonians,

HFG
(k) and HFG

(k8), and therefore they are not necessarily or-
thogonal to each other. As a second important feature of the
right-hand side~rhs! of Eq. ~20!, we note that it contains only
one factor, which depends on the site indexm.

From this presentation ofnm(t) the moment of zeroth
orderM0(t) is easily derived,

M0~ t !5(
m

nm~ t !5~N11!21(
k,n

^fn
~k!urphufn

~k!&51.

~21!

This corresponds to the conservation of the exciton number.
For the formulation ofM2(t) in terms of the FG functions
uf n

(k)& we apply the relation

(
m52N/2

N/2

m2e2 i ~k2k8!m5dk,k8
N~N11!~N12!

12

1~12dk,k8!
N11

2
~21!k2k8

3
cos@~k2k8!/2#

sin2@~k2k8!/2#
, ~22!

„k5k[2p/(N11)], k integer…, and with the initial condition
M2(t50)50 we arrive at the final expression

M2~ t !52~N11!21 (
k,k8

~kÞk8!

(
n,n8

f k2k8^fn
~k!ufn8

~k8!&^fn8
~k8!urphufn

~k!&sin2S En
~k!2En8

~k8!

2
t D , ~23!

where

f k2k85~21!k2k8
cos@~k2k8!/2#

sin2@~k2k8!/2#
. ~24!

This formulation of the second momentM2(t) is exact
and the knowledge of the complete set of the solutionsuf n

(k)&
of the FG equations~10! would allow for the accurate char-
acterization of the excitonic energy transfer. The FG equa-
tions, however, in general cannot be solved exactly and

therefore approximative forms of the phononic wave func-
tions uf n

(k)& must be considered.
For the calculations of the following sections we consider

the initial phonon density matrix

rph5uw0&^w0u, ~25!

which means that at the moment of the creation of the exci-
ton the lattice is in its ground stateuw0&. It would be possible
to examine other initial conditions, such as a partially

54 9215COHERENCE TENDENCIES IN THE TRANSPORT OF . . .



dressed exciton7 or the case of thermal equilibrium at a finite
temperature,8 but in this paper we want to discuss only the
simple version of Eq.~25!.

III. CONSTRUCTION OF THE WAVE FUNCTIONS

A. General method

In this section we construct approximative forms of the
FG wave functions. Our general philosophy will be as fol-
lows. We relate the choice ofuf n

(k)& to unitary transforma-
tions, i.e., we define these functions by the application of a
unitary operatorU (k), which may depend on the irreducible
representationk, onto a given orthonormal set$uwn&% of
simple functions,

ufn
~k!&5U ~k!uwn&. ~26!

The state vectorsuwn& are assumed to be the eigenfunctions
of the uncoupled phonon Hamiltonian

H05
1

2 (
q

Vq~ P̂qP̂2q1Q̂qQ̂2q!. ~27!

The unitary operatorU (k) may contain adjustable parameters
which can be optimized by means of a suitable variational
principle. This procedure has the advantage that the ortho-
normality between the FG functionsuf n

(k)& is warranted as a
consequence of the orthonormality between the phonon
statesuwn&.

9

In the present paper we restrict our considerations to the
case of an excitonic band that has a smaller energetic width
than the phonon band, i.e, 4T,VD . In this parameter regime
the FG functions are adequately described by displaced pho-
non states,4,10 which can be generated by the application of
the unitary displacement operatorUdis onto the pure phonon
statesuwn&. Thus we choose forU (k)

U ~k![Udis~$dq
~k!% !5expS i(

q
dq

~k!P̂qD . ~28!

If we transcribe the displacement transformation into the
original, not the FG transformed picture, it corresponds to
the the well-known polaron11 or Lang-Firsov
transformation.12 In a space where the excitonic coordinates
are considered as continuous and not as discrete ones as in
the present work, the transformation connected withUdis is
identified as second Lee-Low-Pines~LLP! transformation.13

In this context it should also be noted that there exists a close
relationship between the first LLP transformation and the
gFGT.14

From the transformation prescriptions

Tdis:Q̂q5Udis
† Q̂qUdis5Q̂q2dq

~k! , ~29!

Tdis: P̂q5Udis
† P̂qUdis5 P̂q , ~30!

it follows that d q
(k) is the Q̂-space displacement of modeq.

In the further proceeding we will discuss two different forms
for the parameters$d q

(k)%.

B. Simple choice for the mode displacements

The first choice ford q
(k) is

dq
~k![Dq . ~31!

The unitary transformation defined by exp(i(qDqP̂q) ex-
actly diagonalizes the FG Hamiltonian of Eq.~10! in the
limit of a vanishing excitonic band width,T50, and it may
be considered as a first step towards the explicit calculation
of the second momentM2(t).

The ansatz~31! means that the displacements$d q
(k)% and

consequently the operatorsU (k) are identical for allk values,
U (k)5U. Thus the wave functionsuf n

(k)& are given by

ufn
~k!&[ufn&5Uuwn&5expS i(

q
DqP̂qD uwn&, ~32!

irrespective of the irreducible representationk. For this case
M2(t) assumes the simplified form

M2~ t !52~N11!21(
k,k8

8(
n

f k2k8^wnuU†rphUuwn&

3sin2S En
~k!2En

~k8!

2
t D , ~33!

where the energy eigenvalueE n
(k) is approximated by the

energy expectation valueEn
(k)5^fnuHFG

(k)ufn&.

C. Alternative choice

Besides the simple form Eq.~31! we also examine a more
complicated alternative ford q

(k). If the ansatz

uf0
~k!&5expS i(

q
dq

~k!P̂qD uw0&, uw0&:phonon vacuum state,

~34!

is employed as a trial wave function for the ground-state
solution of the FG equations~10! an energy minimization
procedure yields a set of self-consistency equations for the
mode displacementsd q

(k),6,15

dq
~k!5

Dq

114~T/VD!L1~$dq
~k!% !coskusin~q/2!u

~35!

with the Debye-Waller factor

L1~$dq
~k!% !5^w0uUdis

† R61Udisuw0&

5expF2(
q

Udq~k!U2 sin2S q2D G ~36!

as an integral quantity for the complete set ($d q
(k)%). Replac-

ing (4T/VD)L1 cosk in Eq. ~35! by a variational parameter
l(k) the coefficientsd q

(k) are given by
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dq
~k!~l~k!!5

Dq

11l~k!usin~q/2!u
~37!

andl(k) is determined by optimizing the energy expression

E0
~k!~l~k!!522TL1 cosk2

D2

f
~4G122G2! ~38!

with the sum quantities

L1~l~k!!5expS 2
4D2

fVD

1

N11 (
q

cos2~q/2!usin~q/2!u
@11l~k!usin~q/2!u#2D ,

~39!

Gm~l~k!!5
1

N11 (
q

cos2~q/2!

@11l~k!usin~q/2!u#m
. ~40!

The approximative forms for the FG functions read

ufn
~k!&[Udis~l~k!!uwn&5expS i(

q
dq

~k!~l~k!!P̂qD uwn&

~41!

with d q
(k)(l (k)) defined in Eq.~37!.

D. First results

For the numerical computation ofM2(t) we only take into

account those contributions in̂fn
(k)ufn8

(k8)&^fn8
(k8)urphufn

(k)&
@see Eq.~23!#, which are of zeroth to second order in the
coupling constantD. With this restriction it turns out that for
uwn& in Eq. ~33! or ~41!, respectively, we only need to con-
sider the phonon vacuum and the one-phonon states, which
in terms of the generating operatorsbq

†5221/2(Q̂q
†2 iPq) are

presented by

uwn&5H uw0&

bq
†uw0&

~42!

with q5nq@2p/~N11!#.

nq50,61,...,6N/2.

In Fig. 1 the results pertaining to the two different sets of
FG functions are illustrated for the coupling strength
D2/( fVD)50.04 and thebandwidth ratio 4T/VD50.8 de-
pending on scaled timet, which is defined via

t52Tt. ~43!

For lucidity we do not show the second momentM2~t! itself,
but the second derivative ofM2~t! with respect to the scaled
time t,

1

2

d2M2~t!

dt2
. ~44!

In order to estimate the quality of the approximative results
the curve for the exact short-time limit Eq.~59! ~see the
Appendix! is also sketched~long-dashed curve!. The simple
choice Eq.~32! for the FG functionsuf n

(k)& results in a finite
constant for~1/2!(d2M2/dt2) ~short-dashed line!, what cor-
responds toM2}t2. The comparison with the exact limiting
behavior for smallt reveals that the ansatz Eq.~32! is a

crude approximation. It does not reproduce the finite time the
lattice needs to react upon the excitonic excitation.

Regarding this point the alternative choice of Sec. III C
for uf n

(k)& yields an improved description. It displays a quali-
tatively correct behavior in the short-time limit although the
quantitative values differ from the exact ones~e.g.,'0.52
versus 0.50 fort50!. For largert thek-dependent displace-
ment transformation of Eq.~41! generates a curve which
asymptotically approaches a finite constant,0.5. ~For t.35
effects due to the finite extension of the fundamental period-
icity interval make their appearance.! Thus both approxima-
tive forms Eqs.~32! and ~41! for the solutions of the FG
equations~10! indicate a coherent exciton propagation with a
velocity which is smaller than that for the motion of an un-
coupled exciton.

Naturally the question arises, whether these findings are
artifacts of our approximations or whether they reflect actual
system properties. The confidence of the results in the long-
time limit certainly would be increased if we found a method
which allows for an accurate reproduction of the second mo-
ment for smallt. This is presented in the next section.

IV. IMPROVEMENT VIA GOLDBERGER-ADAMS
RELATION

A. Introduction of the Goldberger-Adams relation

The preceding considerations were based on the attempt
to find suitable approximative solutionsuf n

(k)& of the FG
equations. As one possibility to improve the calculations one
could search for further unitary transformations, e.g., squeez-
ing transformations,16 which yield an improved diagonaliza-
tion of the FG Hamiltonian. It is illuminating, however, to
follow up also an alternative path.

Given a complete and orthonormal set of base functions
$ukn&%, which are not necessarily eigenfunctions of the con-
sidered Hamiltonian,H can be presented in the projective
form

FIG. 1. Temporal evolution of the second derivative ofM2(t)
with respect to the timet. Chain lengthN115101 lattice sites,
coupling strengthD2/( fVD)50.04, bandwidth ratio 4T/VD50.8.
Exact short-time limit from Eq.~59! ~long dashes!, simple choice
Eq. ~31! for mode displacements~short dashes!, and improved
choice Eq.~37! ~solid line!.
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~45!

Similarly, the LiouvillianL, appearing in the basic expres-
sion ~19!, may be written in a projective form. Writing

L5Ld1Lnd ~46!

we have

LdA5@Hd ,A#

5(
k

(
n

^knuHukn&~ ukn&^knuA2Aukn&^knu!,

~47!

LndA5@Hnd ,A#

5(
k

(
n,n8

nÞn8

^kn8uHukn&~ ukn8&^knuA2Aukn8&^knu!,

~48!

and we may introduce the Goldberger-Adams~GA!
transcription5

e2 iLt5e2 iLdt1E
0

t

dt8e2 iLd~ t2t8!~2 iLnd!e2 iLt8. ~49!

We start again with expression~19!, but rather than employ-
ing the exact eigenbase$uC n

(k)&% for $ukn&% we allow the lat-
ter to be different and make use of the GA transcription. In
this transcription the time evolution of the density matrix
r(t) reads

r~ t !5e2 iLtr~0!5e2 iLdtr~0!

2 i E
0

t

dt8e2 iLd~ t2t8!Lnde2 iLdt8r~0!

2E
0

t

dt8E
0

t8
dt9e2 iLd~ t2t8!Lnde2 iLd~ t82t9!

3Lnde2 iLdt9r~0!, ~50!

where the series expansion of the GA relation has been ap-
plied up to second order inLnd . This expression now is used
in Eq. ~19!,

nm~ t !5(
k,n

^knu„um&^mue2 iLdtr~0!…ukn&2 i(
k,n

^knu„um&^mu E
0

t

dt8e2 iLd~ t2t8!Lnde2 iLdt8r~0!…ukn&

2(
k,n

^knu~ um&^mu E
0

t

dt8E
0

t8
dt9e2 iLd~ t2t8!Lnde2 iLd~ t82t9!Lnde2 iLdt9r~0!…ukn&. ~51!

The second momentM2(t) @vid. Eq. ~14!# now is calculated
by choosing

ukn&5~N11!21/2(
m

eikmum&Rm
phuf̂n

~k!&, ~52!

where$uf̂ n
(k)&% is a complete orthonormal set of approximate

eigenfunctions of the FG equations. Specifically, foruf̂ n
(k)&

we make two particular choices. On the one hand we use for
uf̂ n

(k)& Eq. ~32!, on the other hand, Eq.~41!.
If this is done, the present approach amounts to an im-

provement of the calculation in the preceding sections. This
improvement is achieved via the second and third terms on
the rhs of Eq.~50!. The calculation in the preceding sections
can be viewed as one in which only the first term of Eq.~50!
is employed. We refrain from writing down the respective
expressions for the second moments, since they are lengthy
but straightforward.

B. Improved results

Figure 2 contains the results which are calculated via the
extended expression~50! for the time-dependent density ma-
trix r(t). Analogously to Fig. 1 the quantity
~1/2![d2M2(t)/dt2] is presented for the simple ansatz Eq.
~32! ~short-dashed line! and for the alternative set of wave
functions established by Eq.~41! ~solid line!. For small t
both curves practically coincide with the exact short-time
limit ~long-dashed line, see the Appendix!. For intermediate
t, 5,t,25, both lines display a qualitatively similar behav-
ior with small quantitative differences. For large times the
two curves asymptotically approach a finite constant, which
within the given accuracy is identical for both sets of ap-
proximative FG solutions. As from Fig. 1 we draw the con-
clusion that the exciton propagation corresponds to a coher-
ent process with a velocity which is reduced by the
interaction with the acoustic lattice vibrations. The coinci-
dence of the results pertaining to different sets of wave func-
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tions both in the short-time limit as well as for larget re-
duces the probability that our findings are artifacts of the
formalism.

V. SUMMARY

In the present paper we have developed a formalism for
the calculation of transport quantities within the frame of the
gFGT. It offers the advantage that no semiphenomenological
concepts such as relaxation times for scattering processes
must be introduced. Moreover there is no need for a separa-
tion of the considered degrees of freedom into relevant and
irrelevant sets, as in the approaches via generalized Master
equations. Therefore our formalism is easily extended from
the calculation of excitonic expectation values as presented
here to the determination of quantities which pertain to the
oscillatory subsystem.

As a first application we have derived an exact expression
for the second moment of the local excitonic occupation
numbers in terms of the solutions of the FG equations. Two
different sets of approximative FG functions were estab-
lished by the application of different unitary displacement
operators onto the eigenstates of the uncoupled phonon
Hamiltonian. With these base functions indications were
found that for periods of time, in which the wings of the
excitonic distribution do not reach the border of the model
system, the excitonic propagation can be considered as a
coherent process. These findings are confirmed by transient
grating experiments of Burlandet al.,17 who observed that
exciton transport in pure crystals at low temperatures can be
wavelike. Following the aforementioned argument the coher-
ence time in physical systems can be estimated by dividing
the sample extension by the velocity of sound which results
in a coherence time of the order of microseconds. This esti-
mation is justified if one assumes the excitonic and the
phononic bandwidths of the same order of magnitude.

In the present paper we treat a closed system with a finite
number of degrees of freedom. It might be objected that for
such a model the dynamics is coherent due to a finite recov-
ery time. A glance at Figs. 1 and 2, however, reveals that the
presented curves display no periodic behavior. Furthermore,
the recovery time for a system with 202 degrees of freedom,
as in our case, is remarkably larger than the evolution times
considered here. From that we conclude that our treatment is
also valid for an infinitely extended model.

In conclusion we want to emphasize what we consider to
be the main outcome of the present investigation. In most
preceding theories of exciton transport the phonon subsystem
is considered as a kind of bath, which somehow causes the
excitonic propagation to become diffusive. Our main goal
has been to clarify whether this is true under the provision of
strict translational invariance. In our approximation we find
that there is no excitonic diffusivity under the assumed sym-
metry prerequisite, if the temperature is zero. Since our cal-
culation reproduces the exact short-time limit and is stable in
the long-time limit, our finding may seem to be a strong
indication that diffusive behavior must be due to other inter-
action processes~defects, etc.! than those inherent in a
strictly translationally invariant exciton-phonon coupling
Hamiltonian.

For further theoretical studies it appears especially inter-

esting whether a transition to a diffusive propagation is
found if the influences of finite temperature and lattice de-
fects are included in the calculations. By this means the
source of finite diffusion constants in doped crystals18–21

could be investigated without introducing incoherencea pri-
ori by the application of effective transport equations or phe-
nomenological damping parameters. Moreover the energy
propagation within the phonon degrees of freedom can be
treated, which may be relevant with regards to the possible
existence of solitary modes in the considered coupled
exciton-phonon model.

APPENDIX: EXACT SHORT-TIME LIMIT

In order to estimate the quality of the results obtained
with the FG formalism we derive an exact expression for the
short-time expansion ofM2(t) in the original, not FG trans-
formed frame. In the Schro¨dinger picture this can be
achieved by the expansion of the time-dependent density ma-
trix given in Eq.~18!,

r~ t !5e2 iLtr~0!

5r~0!2 i t @H,r~0!#2 1
2 t

2@H,@H,r~0!##•••

~A1!

with the initial condition

r~0!5um50&^m50uex^ uw0&^w0uph. ~A2!

The second momentM2(t) then reads

FIG. 2. Temporal evolution of the second derivative ofM2(t)
with respect to the timet, corrected via the Goldberger-Adams
relation Eq. ~49!. Chain lengthN115101 lattice sites, coupling
strength D2/( fVD)50.04, bandwidth ratio 4T/VD50.8. Exact
short-time limit ~long dashes!, simple choice Eq.~31! for mode
displacements~short dashes!, and improved choice Eq.~37! ~solid
line!.
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M2~ t !5(
m

m2$Tr„um&^mu ^ r~0!…

2 i t Tr„um&^mu ^ @H,r~0!#… ~A3!

2 1
2 t

2 Tr„um&^mu ^ @H,@H,r~0!##…•••%.
~A4!

Alternatively one can change to the Heisenberg representa-
tion whereM2(t) amounts to

M2~ t !5(
m

m2$Tr„r~0! ^ um&^mu…

1 i t Tr„r~0! ^ @H,um&^mu#… ~A5!

1 1
2 t

2 Tr„r~0! ^ †H,@H,um&^mu#‡…•••%.
~A6!

This form is more suitable for the determination ofM2(t),
because it is easier to calculate the commutator of the
exciton-phonon Hamiltonian~1! with the pure exciton opera-
tor um&^mu than with the exciton-phonon density operator
r~0! of Eq. ~A2!.

The exact short-time limit forN.5 amounts to

M2~t!5
1

2
t22

1

45p

D2

fVD

VD
2

T2
t41O~t6!. ~A7!

In the limit of a vanishing couplingD50 the second moment
increases quadratically in time and the propagation process is
completely coherent. For finiteD the exciton transfer is
modified due to the interaction with the lattice. The short-
time limit, however, offers no possibility to determine
whether the propagation process is coherent or diffusive, or
to calculate, e.g., diffusion coefficients, because these quan-
tities are related with the long-time behavior of the excitonic
motion.
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