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We analyze the leading role of the electron-phonon interaction in promoting the structural distortion from
fluorite to orthorhombic FeSi2 by comparing a tight-binding calculation of the force constants and phonon
dispersion relations in FeSi2 to the ones in CoSi2, a related compound which is stable in fluorite phase.
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I. INTRODUCTION

Metallic CoSi2 and NiSi2 are stable in the fluorite struc-
ture and, due to the good matching to the silicon lattice, they
have been considered for epitaxial deposition of very sharp
Schottky junctions.1 On the contrary, a related compound
such as FeSi2 is not bulk stable in the CaF2 (g) phase,
which however displays a metallic density of states very
similar to CoSi2.

2 Actually, the room-temperature stable
phase,b-FeSi2, is a moderate distortion of the CaF2 struc-
ture, which has 48 atoms in the one-face-centered ortho-
rhombic cell.3 Still, recent experiments by molecular beam
epitaxy have demonstrated that fluoriteg-FeSi2 can be sta-
bilized at very low coverage on Si~111! ~Ref. 4! due to a
lower interface energy with respect to the orthorhombic
phase.5 By increasing the film thickness a structural transi-
tion to the b phase takes place, which is supposed to be
driven by the high electronic density of states~DOS! at the
Fermi level ing-FeSi2.

6

An important indication of the Fermi level position being
critically important for the distortion comes from a very re-
cent molecular dynamics simulation at variable cell shape for
bothg-FeSi2 and CoSi2,

7 showing that the former naturally
transforms into the semiconductingb phase, whereas the lat-
ter, which has the Fermi level in a region of lower density, is
substantially stable in the fluorite structure. If the actual
mechanism acting in the pretransformation stage is the size-
able coupling between the electronic bands and the lattice
distortion, a large electron-phonon coupling should be
present and its effects should result in the appearance of
phonon instabilities.

In order to check this point we have performed the calcu-
lation of the phonon dispersion relations both in CoSi2 and
FeSi2 fluorite phases. We adopt a semiempirical approach
for the estimation of the real-space force constants, where the
repulsive part of the interatomic potential is a phenomeno-
logical function to be fitted to available elastic and optical
data, whereas the attractive~covalent! part is given by a sum-
mation over the occupied one-electron states. To this end the
tight-binding method is particularly well suited, since it pro-
vides the electronic contributions to the force constant matrix
in a simple, still reliable way. Details about this method are
given in Sec. II, where the evaluation of the long range and
short range effects is performed separately by means of a

Green function perturbative scheme in the atomic displace-
ments.

Actually the inclusion of all the long-range interactions
produced by the electronic polarization is important even for
~stable! CoSi2, since large flat portions of the Fermi surface
generate a high susceptibility at 2kF (kF is the Fermi wave
vector!. This is a major effect in fluorite FeSi2 and in Sec. IV
we discuss the convergence of elastic and vibrational param-
eters within the parameterization outlined in Sec. III. In Sec.
V we report our results for the phonon bands which display
imaginary frequencies only in the case of FeSi2 indicating
the sensitivity of the lower optical branches to the position of
the Fermi level. Here we show that LO1 bears the most
important part of the electron-phonon interaction both in
CoSi2 and FeSi2. In our opinion, it is the phonon instability
mostly responsible for the structural distortion ing-FeSi2,
since it provides a displacement pattern in agreement with
the target phase.

II. CALCULATION PROCEDURE

In this work we adopt the orthogonal tight-binding~TB!
scheme for the calculation of the total energyEtot of the
crystal as a function of the atomic position$R%. It has been
very successful in the estimation of phonon dispersion rela-
tions for silicon,8 graphite,9 and transition metals.10 The po-
tential energy of the system, which includes the electronic
kinetic energy and the core-electron, core-core, and electron-
electron terms, can be rewritten as the sum of one band struc-
ture contribution plus one empirical repulsive term

E$R%5Ekin1Ec-e1Ec-c1Ee-e5Ebs$R%1Erep$R%. ~1!

The former is given by a sum over the one-electron occu-
pied states

Ebs5(
n,k

en,k f ~en,k2EF!, ~2!

wheren indicates the band index,k the wave vector, and
f (E) is the Fermi function. The TB eigenstatesen,k are im-
plicitly dependent on the atomic positions through a
Koster-Slater11 expansion of the hopping elements in the TB
Hamiltonian matrixHi j

ab ~wherea,b label the atomic orbital
symmetry andi , j the atomic sites!. In fact the latter can be
written in terms of the direction cosines (l ,m,n) of the in-
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teratomic vectorr i j and two-center integralsVi j
abp ~diatomic

molecular line! with p axial symmetry (p5s,p,d)

Hi j
ab5(

p
Wi j

p ~ lmn!Vi j
abp~r i j !. ~3!

For the radial dependence ofVi j
abp we used the Harrison

prescription12

Vi j
abp5Vi j

abp~r i j
0 !F r i j0r i j G

qab

, ~4!

where r i j
0 is the interatomic equilibrium distance with

qab52 for a,b5s,p; qab53.5 for a5s,p,b5d and
qab55 for a,b5d. Thesepower lawscalings are suitable in
the case of small atomic displacements from the equilibrium
structure~as in our case!, and particularly if the hopping
elementsHi j

ab are restricted to small shells of neighbors
~which are mostly responsible for the equilibrium structure
and lattice parameter!.

Erep$R% represents the effective interactions generated by
the incomplete cancellation of core-core and electron-
electron many body terms,

Erep5Ec-c2Ee-e . ~5!

In the case of nonpolar compounds, it is short ranged and can
be approximated by a sum of two-body potentialsf i j (r i j )

Erep5(
i. j

f i j ~r i j !. ~6!

In this application we use an exponential form off i j (r i j )

f i j ~r i j !5f i jexpF2a i j

ur i j u
d0

G , ~7!

which includes Si-metal~first neighbor! and Si-Si ~second
neighbor! pairs with differentf i j anda i j even if they dis-
play quite close interatomic distances in the fluorite structure
(d0 is the first neighbor distance!.

Actually, our expression forEbs does not take into ac-
count the modifications of the on-site termsHii

aa occurring
with the lattice deformation. They are mainly produced by~i!
changes in the orthogonalized basis set with orbital overlap,
as due to changes in atomic configuration; and~ii ! charge
transfer effects with atomic displacement, generating rigid
shifts in the onsite elements, due to intra-atomic Hartree re-
pulsion and interatomic crystal field potential.

A commonly accepted approximation13 is to include these
effects into the repulsive contributionErep, which conse-
quently requires a suitable fitting off i j anda i j depending
on the application~small deformations, as in our case, or
coordination changes, as it is in the case of cohesion ener-
gies, for example!. This is the reason why we perform here
an ad hocadjustment of the repulsive parameters for both
CoSi2 and FeSi2 on the available elastic and vibrational in-
formation, as reported in the next section.

The force constant matrixFx,x8( i , j ) is obtained as the
second derivative of the total energy with respect to the Car-
tesian components (x,x8) of the atomic displacementsui and
uj

Fx,x8~ i , j !5
]2E$R01u%

]ux
i ]ux8

j uu505
]2DEbs~u

i ,uj !

]ux
i ]ux8

j uui ,uj50

1
]2DErep~u

i ,uj !

]ux
i ]ux8

j uui ,uj50 , ~8!

where

DEbs~u
i ,uj !5Ebs~r0

i 1ui ,r0
j 1uj !2Ebs~r0

i ,r0
j !,

DErep~u
i ,uj !5Erep~r0

i 1ui ,r0
j 1uj !2Erep~r0

i ,r0
j !.

$R0% represents the set of the equilibrium lattice sites and
r0
i its i th element. The second term in the right-hand side of
Eq. ~8! can be obtained after a trivial analytic derivation once
the two body function describing the interatomic repulsive
potentials is known. The first term, on the contrary, has to be
calculated numerically, in the framework of a Green function
perturbation approach, as reported in Ref. 8

DEbs5E
2`

EF
E@N~E!2N0~E!#dE

5E
2`

EF
EH 2

1

p
Im Tr@G~E!2G0~E!#J dE, ~9!

whereN(E) andG(E) are, respectively, the electronic den-
sity of states and the Green function of the system as per-
turbed by two atomic displacements andN0(E) andG0(E)
the corresponding unperturbed quantities. Here we disregard
the variation ofEF with (ui ,uj ), since it provides a contri-
bution to any force constant in the system which is an infini-
tesimal, due to the nonlocal nature ofEF . The second de-
rivative of ~9! gives the contribution to the force constant
matrix generated by the band structure~attractive! term8

Fx,x8
bs

~ i , j !52
2

p(
a,b

ImE
2`

EF
^ iauG0~E!u jb&S ]2

]ux
i ]ux8

j ^ jbuHu ia& D dE2
2

p (
a,b,g,d

(
lÞ i ,mÞ j

ImE
2`

EF F ^ jbuG0~E!u ia&

3S ]

]ux
i ^ iauHu lg& D ^ lguG0~E!umd&S ]

]ux8
j ^mduHu jb& D 1^ iauG0~E!umd&S ]

]ux8
j ^mduHu jb& D ^ jbuG0~E!u lg&

3S ]

]ux
i ^ lguHu ia& D GdE. ~10!
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It is easy to see that, due to the limited range of TB interac-
tions, the first term in~10!, which we callFSR

bs , describes the
short range action of the covalent bonding whereas the sec-
ond term, which we callFLR

bs , provides the long range ef-
fects of the electronic susceptibility. The range ofFLR

bs criti-
cally depends on the DOS at the Fermi level and it is larger
in metallic silicides than in semiconductors like silicon.8 A
check of convergence is provided by the translational invari-
ance condition applied toFLR

bs

FLR
bs ~ i ,i !52(

jÞ i
FLR

bs ~ i , j !, ~11!

which relates the diagonal element, straightforwardly evalu-
ated through Eq.~10!, to all the others. The degree of ap-
proximation in fulfilling Eq. ~11! sets the force constant
range.

By taking advantage of crystal periodicity we calculate
G0(E) from its spectral formula ink vector space

G0~E!5 lim
e→01

(
n,k

unk&^nku
E2en,k1 i e

, ~12!

whereunk& are the electronic Hamiltonian eigenvectors, and
we also perform the Fourier transforms ofFLR

bs ,FSR
bs ,F rep.

From their sum the phonon dispersion relations in the irre-
ducible part of the Brillouin zone are finally obtained.

III. APPLICATION TO CoSi 2 AND FeSi2

In the fluorite structure, the metal atoms (M ) are tetrahe-
drally coordinated around the Si sites andM is inside a cubic
cage of first neighbor silicon atoms. The bulk lattice param-
etera0 of the ideal FeSi2 is obtained byab initio prediction

14

asa055.387 Å and 5.364 Å is the experimental value15 for
CoSi2. The interatomic distances aredM -Si5A3/4a0,
dSi -Si51/2a0 anddM -M51/A2a0, so that the first-neighbor
(M -Si! and second-neighbor~Si-Si! distances are not very
different, butdM -M is considerably larger. Therefore the re-
pulsive potential is limited toM -Si and Si-Si pairs, whereas
the TB hoppings include alsoM -M interactions, which are
important for a correct description of the density of states at
the Fermi level. As in our previous works16,17we use indeed
an extended basis set (sp3 for Si andsp3d5 for the metal
atom!, but here we also included-d hopping elements be-
tween metallic pairs, besidespps long range interactions. In
this way a better fit of theab initio band structure calcula-
tions for ~CsCl!FeSi, fluorite FeSi2 ~Refs. 6,14! and fluorite
CoSi2 is obtained,

2 and very satisfactory predictions of total
energy calculations for different crystal phases of iron and
cobalt silicides have been produced.5,18 In Table I we give
the tight-binding parameters employed in our calculation for
FeSi2 and in Table II we give those for CoSi2.

The electronic information which enters our method can
be well represented by the electronic DOS, as estimated by
the imaginary part of the Green function calculated over a
mesh of 1300k points in the irreducible part of the Brillouin
zone. In Fig. 1 we present the DOS for CoSi2 ~top! and
FeSi2 ~bottom!. One notes the similarity between the spectra
of the two crystals, but for the Fermi energy falling in a
region of higher density in the case of FeSi2.

As mentioned in the previous section, the repulsive poten-
tial adopted here is different in form and parameters with
respect to the one we used in Refs. 5 and 18. In that case we
requiredf i j (r i j ) to fulfill the equilibrium and stability con-
ditions with respect to isotropic deformations in different
crystal structures. This is a good procedure in order to obtain

TABLE I. TB parameters~eV! for FeSi2 in the CaF2 structure.

d (Å) sss sps pps ppp sds pds pdp dds ddp ddd

Fe-Si 2.332 21.087 1.598 3.493 20.458
Si-Fe 2.332 21.087 1.660 3.493 20.458 21.579 21.302 0.622
Si-Si 2.693 20.895 1.209 1.848 20.539
Fe-Fe 3.808 20.142 0.267 0.755 20.053 20.088 20.207 0.086 20.121 0.049 20.011

E(s) E(p) E(d)
Fe 4.730 6.029 21.582
Si 23.925 4.044

TABLE II. TB parameters~eV! for CoSi2 in the CaF2 structure.

d (Å) sss sps pps ppp sds pds pdp dds ddp ddd

Co-Si 2.323 21.140 1.460 2.940 20.800
Si-Co 2.323 21.140 2.090 2.940 20.800 21.210 21.180 0.700
Si-Si 2.682 20.975 1.140 1.540 20.580
Co-Co 3.794 20.136 0.270 0.783 20.054 20.084 20.205 0.087 20.081 0.046 0.012

E(s) E(p) E(d)
Co 2.986 8.476 22.254
Si 24.924 1.856
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a highly transferable potential, still it gives quite a poor re-
production of the shear deformations and the vibrational fre-
quencies of one particular phase@especially iff i j (r i j ) is a
purely central force constant, as in our case#. Therefore we
include here the elastic and optical data in the fitting proce-
dure, whenever they are experimentally available, as it is the
case of CoSi2.

Since the parametersf anda of Eq. ~7! are different for
Si-M and Si-Si interactions, we need at least four fitting data:
two of them are provided by the equilibrium and stability
relations, involving the first and second derivatives of the
total energy, with the equilibrium lattice parameter and the
bulk modulus.6 The remaining two parameters are fitted by
means of a multivaluedx2 minimization to the elastic con-
stantsc44, c11-c12, and to the Raman and infrared phonon
frequencies at theG point. Actually, we perform the fitting in
CoSi2 by assigning different weights to the reference data as
we have contrasting experimental estimations forB, c44, and
c11-c12,

19,20whereas the optical data21 are very accurate and
recently confirmed byab initio frozen phonon calculations.22

In the case of FeSi2 no optical nor elastic information is
available, since the films are too thin (,20 Å! and large
strain fields may also affect any possible measurement.
Therefore we have to rely on the theoretical information for
the ideal bulk structure. First principles calculations6,14 pro-
vide an affordable estimation ofa0 and B but no elastic
constants. However, previous calculations for NiSi2, CoSi2,
and FeSi2 within a tight-binding scheme with a reduced set
of attractive and repulsive parameters16 gave a very satisfac-
tory semiempirical estimation ofc11, c12, andc44 for NiSi2
and CoSi2. So we take these predictions forc11, c12, and
c44 of fluorite FeSi2 as input values for the fitting procedure,
with the additional requirement that the vibrational modes at
G are not higher in frequency than the corresponding modes
in stable, more compact,b phase. We are aware that this
estimation of the repulsive parameters seems barely qualita-
tive, still we will see in the following that the real difference
between CoSi2 and FeSi2 rests on the long range contribu-
tion of the band structure term. Moreover, the large similar-
ity in the repulsive parameters obtained for both materials
is not surprising on the basis of the physical argument
that they describe nearly atomic properties at short range,
which should not be affected by the different position

FIG. 1. Tight-binding density of states for CoSi2 ~top! and
FeSi2 ~bottom!. The vertical dotted line indicates the position of the
Fermi level.

FIG. 2. Variation of the diagonal force constant on the metallic
site with respect to the increasing cutoff radius for CoSi2 ~see text!.

TABLE III. Lattice constants and repulsive parametersf ana
for CoSi2 and FeSi2.

a0Å f ~eV! a

CoSi2 5.365 Co-Si 4590 8.05
Si-Si 165 4.12

FeSi2 5.387 Fe-Si 6150 8.23
Si-Si 635 5.47

TABLE IV. Calculated elastic constants and bulk modulus, as
compared to the existing experimental and theoretical data. The
values are expressed in Mbar.

B c11 c12 c44

CoSi2 Expt. ~Ref. 20! 1.69 2.28 1.40 0.83
This work 1.70 2.10 1.50 0.60

FeSi2 Theor.~Ref. 16! 2.06 2.64 1.77 0.78
This work 1.98 2.80 1.57 0.67
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of the Fermi level in the two materials. In Tables III and IV
we report, respectively, the repulsive parameters and the re-
production of the input elastic constants obtained by our fit-
ting. They have been calculated for a suitable cutoff radius in
the long range part of the attractive term, as will be discussed
in the next session.

IV. THE LONG RANGE INTERACTION

In Figs. 2 and 3~top panels! we report the difference
between the left and right side of Eq.~11! for a diagonal
force constant of the metallic site, in CoSi2 and FeSi2 re-
spectively, as a function of the increasing range in the off
diagonal elements. It is expressed as the percentage variation
with respect to the totalFxx( i ,i ), which includes
FLR

bs ( i , j ),FSR
bs ( i , j ) andF rep( i , j ), and indicates the conver-

gence behavior ofFLR
bs ( i , j ) at large distances, where it rep-

resents the only contribution to the total force constant ma-
trix. We note that, at variance to the case of semiconductors
like silicon,8 a slow convergence with sizeable oscillations is
obtained, especially in the case of FeSi2. These oscillations,
however, are not random fluctuations due to numerical er-
rors, but represent the Friedel oscillations in the charge
density of the system, originated by the perturbation induced
by the atomic displacement. In Figs. 2 and 3~bottom panels!
we show the same quantity weighted by the square of the
increasing interatomic distance, in order to amplify the long
range oscillations and to simulate their effect on the elastic
constants~ and bulk modulusB). We see that in the case of
CoSi2 one periodicity is present~indicated by the small ar-
rows!, whereas in FeSi2 at least two of them are superim-
posed, probably even more. Actually the progressive summa-

FIG. 3. Variation of the diagonal force constant on the metallic
site with respect to the increasing cutoff radius for FeSi2 ~see text!.

FIG. 4. Tight-binding electronic bands~left! and~001! cut of the
Fermi surface for the three topmost occupied bands~right! in
CoSi2.

FIG. 5. Tight-binding electronic bands~left! and~001! cut of the
Fermi surface for the three topmost occupied bands~right! in
FeSi2.

FIG. 6. Cutoff radius dependence of the calculated bulk modu-
lus for CoSi2 ~upper panel! and FeSi2 ~lower panel!.
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tion of the interatomic force constants for spherical shells
with increasing radius allows a rough estimate of the oscil-
lating behavior in the second derivative of the interatomic
potential, as produced by the enhanced electronic suscepti-
bility for virtual electronic transitions within the Fermi sur-
face. The presence of large flat portions of the Fermi surface
with nesting vectors of 2kF is in turn necessary for such an
effect. This occurs in CoSi2 and FeSi2 as reported in the
right panels of Figs. 4 and 5, respectively, where we show a
~001! cut of the Fermi surface for the three top occupied

bands~left panels!. We note that in CoSi2 only one nesting
vector for the topmost~square! band is relevant and corre-
sponds exactly to the periodicity in Fig. 2
(kosc51.032pa0

21). On the contrary three nesting vectors
are evident for the three topmost bands in FeSi2, in qualita-
tive agreement to Fig. 3 (k1

osc51.3832pa0
21,

k2
osc51.2332pa0

21, andk3
osc51.0432pa0

21).
In a real space picture these charge oscillations are pro-

duced by any structural defect within the system, and, in
turn, they provide some distortive force to the lattice. From
this point of view it is interesting to note that the oscillations
in Figs. 2 and 3 are, respectively, commensurate and incom-
mensurate with respect to the fluorite lattice, with a rough
phase shift byp extending down to the first and second

FIG. 7. Cutoff radius dependence of the calculated infrared and
Raman modes atG and of the lowest mode at theX point for
CoSi2 ~upper panel! and FeSi2 ~lower panel!.

FIG. 8. Phonon dispersion relations~upper panel! and density of
states~lower panel! in CoSi2.

FIG. 9. Phonon dispersion relations~upper panel! and density of
states~lower panel! in FeSi2.

FIG. 10. Effect of the exclusion ofFLR
bs from the total force

constant matrix on the dispersion curve of fluorite CoSi2 ~top! and
FeSi2 ~bottom!.

54 9201PHONON MECHANISM FOR THE ORTHORHOMBIC . . .



neighbor shells~not shown here!. We conclude that this
charge distribution, whatever originated in the real system,
plays a destabilizing action only in FeSi2, where larger flat
portions of the Fermi surface and a higher density of states at
the Fermi level even enhance this effect.

V. RESULTS

In Fig. 6 we display the behavior ofB as a function of the
cutoff radius for CoSi2 ~top panel! and FeSi2 ~bottom
panel!. It is calculated as function of the elastic constants
which, in turn, are obtained through the Born expansion at
long wavelengths in terms of the force constants.23 Therefore
it is reasonable to find the same large oscillations as in the
bottom panels of Figs. 2 and 3. When we selected the cutoff
radius for the fitting procedure of the repulsive potential we
had to balance the computational load with the convergent
behavior in the long range force constant. Our choice for
CoSi2 and FeSi2 is indicated by arrows in the top panels of
Figs. 2 and 3 and in Fig. 6, where the dotted line indicates
the fitting value ofB. We are aware that true convergence
cannot be achieved in the elastic constants, still the phonon
dispersion relations do not change appreciably, both in
CoSi2 and FeSi2, for larger values of the cutoff radius with
respect to the one we selected. In Fig. 7 we report the be-
havior of the infrared and Raman modes inG as a function of
the cutoff radius and we see that a converged value is ob-
tained within our choice~indicated by the vertical arrow!.
This is true even for vibrations outside theG point and the
behavior of the lowest mode at theX point, XLS in Fig. 7,
confirms our statement. For what concerns the latter, we see
that in the case of FeSi2 ~lower panel! the frequency con-
verges to an imaginary value~negative axis in our figure!,
pointing out that the fluorite structure displays phonon insta-
bilities.

This fact is clearly reported in Figs. 8 and 9 where phonon
dispersion relations~top panel! and the phonon DOS~bottom
panel! for CoSi2 and FeSi2, respectively, are displayed. In
the latter case we note that the LO1 and TO1 branches, giv-
ing rise to the Raman mode atG, are dramatically softened to
imaginary frequencies alongD and S directions, where a
relevant hybridization with the TA phonons is also present.

We can straightforwardly address the source of this phonon
instability in FeSi2 with respect to CoSi2 to FLR

bs . In fact, if
we compare the phonon dispersion relations originated by
FSR

bs1F rep both in CoSi2 and FeSi2 ~top and bottom panels
of Fig. 10, respectively! we note that no sizeable differences
exist. Therefore it is the long range contribution, no matter
how large is the cutoff radius, which destabilizes the TO1

and LO1 branches. In particular we analyzed all the displace-
ment patterns of the modes with zero frequency and we
found that the LO1 phonon atk'~1/2,1/2,0! alongS pro-
vides a displacement pattern which is qualitatively similar to
the one occurring in the structural distortion from fluorite to
orthorhombic FeSi2. In Fig. 11 we compare a~110! view of
the equilibrium fluorite structure@panel~a!#, the phonon dis-
torted fluorite structure@panel~b!# and theb structure@panel
~c!#. Several features of the latter are already present in the
second one. In the case of CoSi2 no imaginary frequency is
present, according to the fact that it is stable in the CaF2

phase. Still the dispersion of the LO1 and TO1 modes is very
sensitive to the description of the electronic states even in
this case and a previous calculation by some of the authors
with a reduced set of TB parameters and a smaller cutoff
radius17 provided a different behavior only for these modes.
Therefore we may conclude that the electron-phonon inter-
action is particularly effective for LO1 and TO1 modes even
in CoSi2. The different position of the Fermi level in FeSi2

is, however, the key feature to understand the instability of
the fluorite structure. In fact, this particular ratio ofd elec-
trons per atom provides a high density of states at the Fermi
level and a large electronic susceptibility at 2kF which, in
turn, give rise to charge density waves not commensurate
with the lattice. In the meantime the long range part of the
force constant matrix is modified to the extent that a phonon
instability is generated in the system. Finally, and apparently
not related to the instability of the pretransformation phase,
even in the target semiconducting structure, the Fermi level
is suitably positioned right in the gap, providing a Jahn-
Teller energy gain which is not allowed to an ideal
b-CoSi2, where the Fermi level would be shifted in the con-
duction band.

FIG. 11. Lattice configuration of fluorite~a!, b-FeSi2 ~c!, and LO soft mode configuration atk'(0.5,0.5,0)~b!. Si atoms are represented
by big, bright spheres.
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