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Resonant ultrasound spectroscopy has been used to measure the complete set of elastic constants of LIKSO
over the temperature range of 200 to 300 K including both the hexagonal room temperature phase and the
lower temperature trigonal phase. Large step changes are observed in all the elastic constantS, gxatept
213 K on cooling and at 243 K on warming. These step changes are associated with the hexagonal/trigonal
crystallographic phase transition. The bulk modulus is approximately 15% higher in the trigonal phase than in
the hexagonal phase. The hexagonal-phase elastic constants exhibit very little temperature dependence while
the trigonal-phase elastic constants show a stronger dependence on temperature. The transitions are noted to be
quite sluggish, taking a few hours to equilibrate. The results are described in terms of a Landau-type free
energy expansion using two Ising-like order parameters with strong coupling between the two parameters.
Biguadratic coupling between the order parameters and strains is shown to account for the step changes in the
elastic constants as well as the temperature dependence in the trigonal phase. Coupling linear in the strains is
shown to be insufficient to explain the resultS0163-182626)02237-(

[. INTRODUCTION transition occurs at approximately 210 K on cooling and 240
K on warming. The structure of the room temperature phase
Sulfate compounds of the form ABS@A,B=Li, Na, K, seems firmly established as hexagoria6{), but the struc-
Cs, Rb, Ag, H, and N have received much study in recent ture of the lower temperature phase has been difficult to de-
years due to their unusual physical properties and a richtermine. Early neutron diffraction measureméhshowed a
sequence of phase transitions. The differences between timeixture of P6; and P31c phases when LiIKSQis cooled
various phases are largely associated with thgt8@ahedra. below 205 K. More recent measureméfisupport the trigo-
At high temperatures the S@etrahedra undergo rapid rota- nal P31c phase below room temperature. A complication of
tion resulting in a relatively high-symmetry phase. Thesethe transition occurring near 210 K on cooling is its sluggish
phases are often superionic conductors due to the high mawature. There are reports of the transition taking place over
bility of the cations. This high mobility has been attributed totime frames ranging from several hours to more than a
an interaction between the cations and the rotating sulfatday*-*°
ions? As the temperature is lowered the rapid rotation The sequence of low temperature phase transitions in
freezes out and various tilts of the $®@trahedra give rise to  LiKSO, has been studied by a variety of metho@ish!’ =2
a series of phase transitions. Lithium potassium sulfaténcluding four studies of the elastic constants immediately
(LIKSO,) has been especially studied because large singleelow room temperature:'®?2>23Three of the elastic con-
crystals are relatively easy to grow, the material is stable, andtant studies were by means of Brillouin scattering and one
the crystals survive first-order structural phase transitionsitilized a low-frequency torsion pendulum. In general, the
without breaking. Although the structure of LIKg®as been various experiments are not in agreement with each other.
the subject of numerous investigatiohs? there is still con-  The two experiments which measured the elastic constant
troversy concerning some of the phases. Much of the probEgg both reported a softening as the crystal transformed into
lem stems from the fact that the phase transitions in LiKSO the trigonal phase. However, the results for other elastic con-
are first order. Single crystals are easy to grow at room temstants are qualitatively different for different experiments,
perature, but complicated domain structures or mixed phasgserhaps due to time-dependent effects.
often appear after the crystal undergoes a first order phase Despite experimental difficulties in dealing with LIKGO
transition!? These mixed phases lead to much controversyt remains a very interesting system to study. The presence of
over the actual crystalline structure. a hexagonal to trigonal transition just below room tempera-
The focus of the present study is on the transition betweeture provides an excellent opportunity to study a low sym-
the room temperature phase and the first phase appearing metry, first-order transition. Second order transitions have
the temperature is lowered from room temperature. Thigseceived much interest in the past, in large part due to an
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interest in studying systems exhibiting soft mo&&§he soft  tation during sample preparation. A rough cube approxi-
mode model requires the restoring force to vanish at the trammately 2 mm on each side was cut from the crystal. Two of
sition temperature, but this is not true in the case of firstthe faces of the cube were the t¢p01]) and one of the side
order transitions. Even though first-order transitions aréacets([100]) of the crystal. These two perpendicular sur-
much more numerous than second-order transitions, secongices were used to polish the cube into a parallelepiped suit-
order transitions have received much more attention. In pargple for measurement with RUS. The final dimensions of the
ticular, the elastic properties of a number of materials underparalielepiped were 0.134®.1528<0.1361 cm. For con-
going second-order transitions have been studied through thgsiency with previous publications, the density was assumed
temperature range corresponding to the transfidA.The {0 be 2.383 g/crh ’

situation is quite different regarding the elastic properties of RUS is a technique for determining the elastic constants

materials undergoing first-order transitions. It is rare thatof materials by measuring a set of macroscopic resonant
elastic constants are measured through the transition regiof}Equencie§7‘3gA sample of specified shape is balanced

although this has been achieved in a few cases for martensr'fetween two ultrasonic transducers. One transducer is used
tic transitions in alloy$’~3? Other than studies of the mar- :

tensitic transition with a cubic parent phase, there appear t excite vibrations in the sample at a specific frequency. The

be few detailed studies of elastic constants near a first-ordé?sumng .V|br.at|on 'T‘f’“ces a voltage on th? ;econd trans-
phase transition. ducer which is ampllfled'a'nd detected by'a Filgltal voltmeter.
Resonant ultrasound spectroscoUS) (Refs. 33—35 The frequency of the dnw_ng transducer is mcremented and
offers an attractive method for studying first-order phaséh€ process repeated until a range of frequencies has been
transitions for several reasons. RUS is a technique that afcanned. A more detailed scan is then made in the region of
lows the simultaneous determination of the complete set ofach of the resonant frequencies. The density, shape, dimen-
elastic constants for a material. In addition, RUS works quitesions and estimates for the elastic constants are used to cal-
well with samples as small as 1 mmvhich is more than two culate a set of resonant frequencies. This set of calculated
orders of magnitude smaller than samples volumes used iftequencies is compared to the set of experimentally deter-
typical ultrasonic or Brillouin scattering experiments. This mined frequencies and corrections to the elastic constants are
ability to use a small single crystal for the study means therenade. The iterations are repeated until a suitable fit between
is a much better chance to avoid domain formation duringhe calculated frequencies and measured frequencies is
the phase transition. An additional feature of RUS is thatachieved.
there is no need to attach ultrasonic transducers to the The temperature was controlled through the use of a gas
sample. A parallelepiped is simply balanced along a bodyiow cryostat. The temperature was typically held to within
diagonal between two ultrasonic transducers. The absence afp 04 K of the target temperature for approximately 30 min
a bonding agent between the transducers and crystal algghile the data were being taken. Except near the transitions,
eliminates alstram being applied to.the surface of the cryst%e temperature was changed by approximately 0.2 K/min.
due to the different thermal expansions of the two materialsyy,q sy stem was allowed to stabilize at each temperature for

Elastic constants, being the second derivative of the fre%pproximately 30 min before data were taken. The tempera-
energy with respect to strain, are usually strongly affected b¥ure cycle from room temperature to 200 K and back to room
structural phase transitions. In view of the disagreement in

the literature over the values of the elastic constants near tl:i Z?ﬁﬁ;ﬂ:;ﬁg;ﬁ? %isorg %psgzxé?ﬂi:sﬁﬁi spent in

hexagonal/trigonal transition in LIKSQand also in view of

the possibility of obtaining the complete set of elastic con-
stants on both sides of the transition using RUS, we report
below the results of elastic constant measurements in this . RESULTS

material over the temperature range of 200-300 K. Representative RUS scans showing the lowest five reso-

nances in both the hexagonal and trigonal phases of LIKSO
are presented in Fig. 1. As can be seen, there is a large
difference in the resonant frequencies between the two
The LIKSQ, single crystal used for this study was grown phases. The lowest resonant frequency for a sample of the
by slow evaporation of an equimolar aqueous solution okize and shape described above is about 0.800 MHz in the
Li,SOH,0(99.9% and K,SO,(99%). The solution was al- hexagonal phase. It is only slightly temperature dependent,
lowed to evaporate at room temperature and the crystddeing 0.795 MHz at 296 K and increasing to 0.803 MHz at
grown over a period of approximately one month. The crys-215 K. As the sample is cooled through the transition at 213
tal used in this study grew in the shape of a hexagonal prisrK, the resonant frequencies are observed to decrease sharply.
with a clearly defined sixfold axis. The orientation of the For example, the frequency of the lowest resonance dropped
crystal was determined from the morphology based on thabruptly by more than a factor of 2 and continued decreasing
description by Pimentat al3® An initial optical examination  slowly for 2—3 h. The temperature was maintained to within
of the crystal revealed excellent clarity with no signs of the+0.5 K of the temperature at which the transition was first
cloudy regions common in this material. Examination with observed until the resonant frequencies stabilized. The crys-
polarizing filters and a low power microscope showed thetal was then cooled to 200 K and allowed to stabilize for an
crystal was uniformly optically active. No defects were ob-additional 6 h. The temperature dependence of the resonant
served. frequencies in the trigonal phase is greater than in the hex-
Two of the original crystal surfaces were used for orien-agonal phase. The lowest resonant frequency is 0.3518 MHz

Il. EXPERIMENTAL DETAILS
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FIG. 1. Representative RUS spectra for a LiKSfarallelepiped
in the hexagonafa) and trigonal(b) phases.

The elastic constants in the hexagonal phase were deter-
mined from the measured frequencies using an iterative
method described by Visschet al3® and Ohnd*! The Viss-
cher FORTRAN code was modified for trigonal crystalline
symmetry using results of Ohnet al*> Approximately 40
frequencies were fit to a set of elastic constants with a typical
rms error of 0.16% in the hexagonal phase and 0.35% in the
trigonal phase.

The results for the hexagonal and trigonal elastic con-
stants are shown in Figs. 2 and 3. Our room temperature
results for the hexagonal elastic constants are in good agree-
ment with previous Brillouif?*® and ultrasoni® measure-
ments. The present results are in especially good agreement
with the recent ultrasonic measurements except @gg
where our results are 8% higher; howev@rg is especially
difficult to determine with conventional ultrasonic tech-
niques. As the figures show, the elastic constants are nearly
temperature independent within the hexagonal phase, in
agreement with the Brillouin resulfé At 213 K on cooling,
all the elastic constants excePt; show large changes. On
warming from 200 K the elastic constants abruptly return to
the high temperature values at 243 K. Our resultfgyare
in qualitative agreement with those of Aet al,?® although
the 80% reduction ofC4; observed in the present work is
much greater than that observed previously. In general our
results are in disagreement with those of Metzal }® and
Ganotet al® who observed no large changes above 200 K
for any elastic constants. We observe an increase of about

0.6 |- °
at 204 K and increases to 0.4426 MHz at 240 K. At 243 K on 5 ° @
warming the frequencies return abruptly to the hexagonal & 05|
phase values. g v
The elastic constant matrix can be represented by S 041
03 - L oo °
Cu Cio Ciz Ciy —Cx O —_— L
c c Co. —C c 0 200 220 240 260 280 300
12 11 13 14 25
Ciz Ci3 Gz O 0 0 016 .
C= ,
C14 _C14 O C44 0 C25 = 012 (b)
a
—Cxs Cx 0 0 Cas Cus o o008
0 0 0 Cyx Cyy Ceg 2
© 004
1 0.00 L | L | r | L 1 L
Ces—75 (C11~Cu2), 1) 200 220 240 260 280 300
0.020
whereC,,=C,s=0 for the hexagonal case. Thus there are
five independent elastic constants for hexagonal symmetry. 5 %0151 ©
For the most general trigonal case, there are seven indepen- & 0.010
dent elastic constants. Fedetbghows that a rotation of the e T
crystal about the-axis can be made such that eitl@y,# 0 & 0.005 |-
andC,5=0, orC,,=0 andC,s# 0. For the general trigonal
case, one can either specify seven elastic constants, or six 0000  “opeee—eoo—mto——om————o—
elastic constants and the angle of thaxis from the crys- 200 220 240 260 280 300

talline a axis. For trigonal crystals such as LiKgOwhich
possess a mirror plane parallel to thexis, only six elastic

Temperature (K)

constants are needed. These can be taken as the five hexagoFIG. 2. Elastic constant§;,, Cgs andCy4 Vs temperature for

nal elastic constants and eith@s, or C,5 with the angle of
the x axis from thea axis as 0° or 90°, respectively.

LiKSO,. The circles are the experimental values; the solid lines
represent theoretical fits to the data discussed in the text.
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© FIG. 4. Bulk modulus vs temperature for LIKOThe circles
T o024 represent the data; the solid line represents a fit to the data discussed
= in the text.
=)
G 02r IV. DISCUSSION
o o
0.20 N Y A common theory used to treat phase transitions was de-
200 220 240 260 280 300 veloped by Landa* An expansion of the thermodynamic
Temperature (K) potential for the system is made in a power series of some

order parameterQ. This order parameter is assumed to be
FIG. 3. Elastic constant€,5 C;3 andC,, vs temperature for some quantity that differentiates the two phases involved. In
LiKSO,. The circles are the experimental values; the solid linesthe original development of the theory, the transition is as-
represent theoretical fits to the data discussed in the text. sumed to occur in such a manner that the crystal always
possesses one of two symmetries. The parent phase pos-
10% in C4, on entering the trigonal phase, while &nal?®  sesses all the symmetry elements of the daughter phase, plus

observed a decrease of about the same magnitude. one or more additional symmetry elements. As longQas
The expression for the bulk modulus for both hexagonafakes on a value of zero, the crystal symmetry is that of the
and trigonal symmetry can be shown to be parent phase. As soon &3 takes on any arbitrarily small

value, the symmetry is reduced to that of the daughter phase.

Transformations such as the hexagonal/trigonal phase
~ C3Cept CaC1o— Cls I I P

~ Cy3~2Cy3+Ca3+Ce’

)

0.014

Using the data of Figs. 2 and 3, the bulk modulus was com- -10.36
puted. The results are shown in Fig. 4. As can be seen from o012
the figure, the bulk modulus is approximately 15% higher in
the trigonal phase than in the hexagonal phase. 0.010 ® rms ermor (%)
To check the sensitivity of RUS to the form of the elastic
constant matrix used, data taken at 296 K were analyzed
using the trigonal elastic constant code. The values of the
elastic constants determined by the hexagonal analysis along
with the value ofC,,=0.012< 10! Pa obtained from ana- 0.006 |-
lyzing data in the trigonal phase were used as initial values in
the computer program. The program was allowed to iterate
and the resulting computation &, and rms error for the
overall fit were noted as a function of iteration number. The
results are plotted in Fig. 5. As can be se€y, is driven 0002 o 0 °
toward its hexagonal value of zero and the rms error de- ltesation #
creases. An attempt was made to analyze data in the trigonal
phase using the hexagonal elastic constant matrix. It was not F|G. 5. Values ofC,, and rms error vs iteration number result-
possible to get a good fit to the data. The resulting rms erroihg from using a trigonal elastic constant matrix to fit data in the
was approximately 0.8%. hexagonal phase.

C

14

-1 0.32

-10.28
0.008

rms error (%)

C,, (10" Pa)

0.004
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FIG. 6. lllustration of the structure of LiIKS{as viewed along
the [001] direction. The solid lines represent the hexagonal phas
The dashed lines illustrate the reorientation of one of thg 6
rahedra characterizing the transition to the trigonal phase.

FIG. 7. Diagram showing the relationship between the crystal-
line phases and order parameters. Pt and theP31c phases are
described in terms of a prototypicBb;mc phase. The orientations

€of the SQ tetrahedra are described by the paramesgrand s,
where the subscripts 1 and 2 correspond to the two sides of the unit
cell as shown. The values1 and—1 correspond to the orientations
illustrated.

change in LIKSQ must be treated differently. THe6; and

the P31c phases do not satisfy a group-subgroup relationA, thes for that SQ tetrahedron would be greater than zero.

ship. These transformations are of the reconstructivgikewise, if a SQ tetrahedron has a higher probability of
type>*® However, it is still possible to make an expansion being found a®, its s would be less than zero. As the value
of the free energy of the two phases in terms of deviations 0bf s approaches zero, there would be an equal probability of
the order parameter from a parent ph&s#/e use such an finding the SQ tetrahedron in either state. This case of
approach for LIKSQ. We take the parent phase as hexagos,=s,=0 is represented by the dashed lines in the unit cell
nal P6;mc. The P65 and theP31c phases are subgroups of corresponding to th6;mc phase. To differentiate between
the P6;mc phase. TheP6;mc phase apparently does not the two phases, it is easy to see in Fig. 7 that the swill
exist in LIKSQ,. As the crystal is cooled from high have different signs in the hexagonal phdsetiparalle],
temperatures the sequence of phase transitions isnd the same sign in the trigonal phaparalle). Therefore,

P63/mmc—modulated phase P6;—P31c. Nevertheless, for convenience, we define two order parameters as

we can still useP6;mc as a parent phase from which to Q,=(s,—s,)/2 andQ,=(s;+5,)/2. The hexagonal phase is

expand the free energy. then specified by@,,Q,) = (=*x,0) and the trigonal phase is
A drawing emphasizing the differences between the hexspecified by Q;,Q,)=(0,+y). The P6;mc phase would

agonal and trigonal phases of LIKg® shown in Fig. 6. correspond to @,,Q,)=(0,0). This phase might be ex-

The orientations of the SQetrahedra in the hexagonal phase pected at sufficiently high temperatures, but is not observed.

are represented by the triangles with solid lines. The trigonah modulated phase is observed instead.

phase differs from the hexagonal phase by the rotation of one The free energy expansion for systems with two coupled

of the SQ tetrahedra as illustrated with the dashed lines ororder parameters has been described by ffirffor the

the right. The two S@tetrahedra are displaced from each present case, we expand the free energy in tern@,cénd

other byc/2 along thec axis. LIKSQ, transforms from the Q, and include coupling between these two order parameters

hexagonalP6; phase to the trigonaP31c phase when one and coupling between the order parameters and the srain

of the two SQ tetrahedra in each unit cell rotates 108° about

one of three axes perpendicular to thexis!’18-3¢

We use Fig. 7 to introduce order parameters for this sysg, (Q,,Q,,e)=a,Q%+ ; b,Q%+a,Q2+ % b,Q4+\Q%Q2
tem. One unit cell for each phase is drawn in Fig. 7. Consider

the unit cell shown on the lower left for tHe6; phase. We 1

make an arbitrary assignment sf to the left SQ tetrahe- +F:(Q1,Q5,6)+ = E Cijee;, (3

dron (A) ands, to the right SQ tetrahedron B) in that unit 2 17

cell. If the SQ tetrahedron is found oriented such Aaswe

assign itss a value of+1. If the SQ tetrahedron is found wherea; andb; are the usual Landau expansion coefficients
oriented such aB, we assign its a value of—1. These two and\ characterizes the strength of the coupling between the
orientations differ only by a rotation of the S@trahedron two order parameters: (Q,e) describes the coupling be-
about an axis in the basal plane. We now let the two inditween the order parameters and the strains. The last term
vidual s be the difference in the probability of finding the represents the usual elastic energy. firshows that for
SO, tetrahedron in the two states, &P ,— Pyg). If the unit ~ A>(b4b,) 12 Eq. (3) describes a first-order phase transition,
cell has a larger probability of having a $&trahedron as which is of interest for LIKSQ.
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The effect on the elastic constants due to coupling be- We now proceed with coupling quadratic in the strain.
tween the strains and the order parameters can be shown tsing theF,.(Q,e) of Eqg. (6) in Eq. (4), its easy to see that

be®:50 the effects of the coupling between the order parameters and
) 5 strains on the elastic constants in the hexagonal and trigonal
o —c 4 Fe JF phases are
mnoEM T dende, 1 | 0Qden
PF \ 7Y PF CETT:?X): Cmnt klan%v
X .
7| | e, @ ®

. : CM9=Cn+ KomnQ3-
We now invoke symmetry arguments to constrain the mn mnt KomnQ2

form of F.(Q,e). As discussed above, reversal of eitlqgy ) i
or Q, will not change the symmetry of the crystal. Thus theAS d!scussed abovg,,, has the form of the elastic constant
free energy must be invariant under the reversal of the sighf!@trix for hexagonal symmetry whilk,, has the form of
of eitherQ; or Q,. F.(Q,e) must then be of the form the elas_tlc constant matrix for trigonal symmetry. Thus bi-
quadratic coupling of the order parameters and strains per-
Fo(Q1,Q,,6)=F1.(Q1,Q,,6)+F,.(Q;,Q,,8), (5 mits a change in the entire set of elastic constants at the
phase transition.
We now examine the nature of the phase transition de-
scribed by the free energy expansion of E). In the usual
Flc(leQZvei):Qiz kliei+Q§2 K€, Landau theory with a single order parameter, a phase transi-
i i tion is obtained by letting the coefficient of the quadratic

with

o2 o2 term thanhgehsign at some tem[raleratlrjlre. A mir]:ir?]um ex(ijsts at
1 2 Q=0 for high temperatures, when the sign of the quadratic
Fac(Q1,Qz2.8)= 7~ .E, Kuij€i€+ 5 ,EJ Kai€i€; 6 termis positive. Ag the temperature drops below sgme criti-

. ] . cal value, the sign of the quadratic term becomes negative
and possible higher order terms@ande. The sums in Eq.  and the minimum moves away from the origin to a nonzero
(6) run over the six strains; ...eg. value ofQ. The two phases are distinguished®y: 0 in the

The free energy must be invariant under the symmetnphigher symmetry phase an@#0 in a lower symmetry
operations of the crystal. Because the order parameter Wehase.
of the elastic constant matrix;;; , assures that the elastic coupled is more complicated. Inffydescribes in detail the
energy is invariant. It only remains to exami&(Q.6).  phase diagram of a system with two order parameters such as
F2c(Q.€), coupling quadratic in the strain, has the same format in Eq.(3). With two order parameters, there exists the
as the elastic energy. This term will be invariankif; and  possibility that two terms can change signs. As in the case of
kzij have the form of the elastic constant matrix. We nowa second order transition described by a single order param-
examine F;.(Q.e) which involves coupling linear in the eter, the high temperature phase of a two order parameter
strain. We require invariance under a rotation af2about  system exists with a single minimum found at the origin of
the ¢ axis. Carrying out this transformati$hshows that the Q space, withQ,;=Q,=0 and botha, anda, positive. As
terms linear in the strain must be of the form the temperature falls below some vallig, a second order
F1c(Q1,Q2.8) =k11QF (€1 +€p) + k1zQies+ka1Q3(er + ) g;rs]SI'tllﬁlr; c(;((::(c::ltjjrrss \?vigr:ethrglgligmnu:{ r:ho;f;egﬁioﬂoggsqilt}\?e
+kys02es 77 1 negatixéa whilea, remains positive. Following Land4t
and Imry;° we let the sign of; change by including only a
in order thatF,.(Q,e) be invariant under the symmetry op- linear term for its temperature dependence as in(By.
erations ofP31c. This form is also invariant under the op-
erations ofP6;. ay(T—T,)
Using Eq.(7) in Eq. (4) shows that, at the transition, the 12;,
changes inC;; and C,, are identical. The only other pre- T
dicted changes are f@,; andC,4, all other elastic constants
are predicted to have zero changes at the transition, includingith «; andT, constants. The value €}, at the minimum is
Cee These predictions are in strong disagreement with thgiven by
experimental results. In addition we observe no change in
C,3which requires at least one of the coupling coefficients in
Eg. (7) to vanish for each phase leadingA&€,,=AC;,=0, Qi=——. (10)
or AC33=0. This follows from applying Eq(4) to Eqgs.(3) b,
and (7). The change irC43 is proportional tok,.k;5 in the
hexagonal phase arig k.5 in the trigonal phase. No change The minimum that develops along tl@g, axis deepens and
in C,5 thus requires one of the two constants be zero in eachontinues to move to larger values @f as the temperature
phase, resulting in no change@, andC,,, or no change in decreases. If onlg, is allowed to change sign, only this one
Css. Thus we conclude that coupling linear in the strain can{ransition can occur, despite having two order parameters. In
not explain the experimental results. order for more interesting changes to occur, we must also let

€)
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T a= 2Pz (11)
A a
T, Below this temperature, a second minima develops along the
T Q, axis, but is energetically unfavorable. As the temperature
2 continues to decrease, the difference in the value of the free

energy at the two minima decreases. Eventually a tempera-
ture, Ty, is reached at which the free energies at the two
minima are equal. For temperatures beldy, the free en-
ergy at the minimum along th@, axis is lower than the free
energy at theQ,; minimum, but a potential barrier prevents
the system from changing states. The system continues to
remain in the state corresponding to a nonzero valu®pf
until the height of the barrier becomes small enough and the
difference of the free energy becomes great enough that a
first-order phase transition occurs. This is the observed tran-
sition temperature on cooling and two minima will likely
exist for a finite temperature interval below the observed
transition temperature. As the temperature continues to de-
crease, the minimum along th@, axis becomes a saddle

Q2 (T) Q2 (T) point atT,, given by the solution of
azh;
1. (a) T, (b) A= a (12
Ts

The temperature range fromy to Ty is often referred to as

the coexistence region and these temperatures are the limits
S between which two minima exist. The temperature depen-
T, Q2(T Te T Q2(m dence as the system is warmed from belbyis exactly the

< same as during cooling with the roles@f andQ,, reversed.
The system starts at low temperatures in a phase with a non-
. ) zero value 0fQ,. The minimum along th€), axis moves in
_FIG. 8. Two types of phase transitions can develop in systemgqards the origin as the temperature increases. As the tem-

with biquadratic coupling b(_etween two orde_r parameters depend'ngerature warms to a value aboVg given by the solution of
on the strength of the coupling. Weak coupling(\ .) is shown in Eq. (12), the second minima develops along eaxis. The

(&) and strong couplingX>X\) is shown in(b). The two vertical .system remains in the low temperature phase until changing

lines in (c) correspond to the temperature dependencies shown in’ . .
(a) and (b), respectively. alscontlnuously back to the phase along Q¢ axis at a
temperaturesTg.

It was experimentally observed during the measurements

a, change sign at some temperatuiig, Once again, we reported here that there is only a slight temperature depen-
choose the simplest means todgtchange sign, as was done dence of the elastic constants in the hexagonal region. The
for a, in Eq. (9). slight changes are no more than what one normally expects

There are two different types of phases diagrams possiblgs a material is cooled. Therefore, we choose to ignore any
depending on the strength of the coupling between the ordeemperature dependence of tilg order parameter, corre-
parameters as shown in Fig. 8. If the coupling is weak;sponding to the hexagonal phase and takéo be a negative
N <(b4b,)", three second order transitions occur. The firstconstant. This situation could be interpretedras: T for the
occurs as described above. The second occurs as the milfémperature range of our measurements. We do observe a
mum moves off theQ, axis to a phase with both order pa- |larger than normal temperature dependence for the elastic
rameters having nonzero values. The minimum then movegonstants in the trigonal phase, so we dgthave the tem-
throughQ space to th&, axis. A third continuous transition perature dependence specified above. The behavior of the
occurs as the system undergoes a transformation to a phasgstic constants are then given by
corresponding to a minimum along tlgg, axis. If the cou-

anjeradway)

a
«

-
Temperature Temperature

pling is strong)\ > (b,b,)2, a second-order and a first-order (hex Kimns

transition occur. The second-order transition is as described Cmn = Cmn— b, = Cmn=const,

above when the system moves away frQy=Q,=0. The (13)
first-order transition, which is of interest for LIKSQwill be (trig) Komn@z T .

treated in more detail below. Con’ =Crnt b, 1- T_z) =Crn—KzmnT-

Simply lettinga, change sign at, does not immediately
create additional minima for either type of coupling. For We then see that all the elastic constants must have the same
strong coupling, the minimum along tlag, axis continues to temperature dependence, the magnitude and direction of the
be the only minimum until the temperature drops belbyv  step at the transition being the only difference. The expres-
given by the solution of sions forT, and Tg now reduce to
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a;b, higher on warming than on cooling. The transitions were
1+ H)' (14)  found to be very sluggish, taking hours to equilibrate.
2 The changes of the elastic constants at the phase transition
re explained in terms of a Landau-type expansion of the free
nergy. Two Ising-like order parameters with strong, biqua-
'éj{atic coupling between the parameters accounts for the first-

(13). As can be seen, there is excellent agreement betwe L P ; .
the fits toCqg and C,, and the data obtained. Fits between Order nature of the transition including the hysterisis. The
66 12 ) symmetry of the crystal is compatible with either an order

thneorr); ?:S de::]atLor rt:e othre;]elﬁftlcTi]onstanntts gtre c\i,v":hlrrrmgg rameter-strain coupling which is quadratic in the order pa-
uncertainties in the measurements. 1he constants dete eters and linear in the strains, or a coupling biquadratic in

from fitting Eqs.(_13) to the data were used to calculate t_hethe order parameters and the strains. However, the quadratic-
bulk modulus using Eq(2). The result is shown as the solid jinear order parameter-strain coupling permits changes in
line in Fig. 4 . . only Cy4;, Cq, Cis3 and C,; whereas large changes were
The vertical lines with arrows are drawn at the temperaypgerved in all elastic constants excelt; especially large
tures at which the transitions were seen to occur. These Vefhanges were observed g for which quadratic-linear
tical lines are probably not at exactly the temperaturgs o piing predicts no change at the transition. The biquadratic
and Tg. As mentioned abovel, and Tg are the limits of  4er parameter-strain coupling permits step changes in all
stability; the hexagonal phase can exist dowrTjoand the e glastic constants at the transition and hence is in agree-

trigonal phase can exist up ;. We do not have enough ment with the experimental results. The temperature depen-
information to calculatdl, andTg from Eqgs.(14). The ob-  yence of the elastic constants in the trigonal phase is ac-

a\
1+ ——|, Tg=T,

TA:T2 a2b1

The elastic constants determined from measurement
RUS are plotted in Figs. 2 and 3 along with the fit of Eqs

served transition temperatures indicate that- T,=30 K. counted for by the model.
Data in the room temperature phase are fit well with a
V. CONCLUSIONS hexagonal form of the elastic constant matrix. An attempt to

g[ the data in this phase with a trigonal elastic constant ma-
trix resulted inC,, being driven toward zero. Data in the

sured in the temperature region of 200 to 300 K includinglower temperature phase required using a nonzero value for

both the hexagonal and trigonal phases. The values of thg14 to obtain a good fit. Qur data thus support the phase
elastic constants in the room temperature hexagonal phaggcurlng below 213 K as trigonal.

are in excellent agreement with earlier results. Large step
changes in all elastic constants exc€pt are observed at
the hexagonal-trigonal transition. For examplye drops to We are indebted to Dr. M. P. Gelfand for helpful sugges-
15% of its hexagonal value on entering the trigonal phasetions. One of the authord.K.) wishes to express his thanks
The bulk modulus is about 15% higher in the trigonal phaseéo Dr. K. Nobugai of Osaka University for supplying the
than in the hexagonal phase. A large hysterisis is observedrystal. This work was supported by the National Science
the abrupt change in elastic constants occurs about 30 Koundation under Grant No. DMR-9501550.

Using resonant ultrasound spectroscopy, the complete s
of elastic constants for single-crystal LiKg®as been mea-
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