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Resonant ultrasound spectroscopy has been used to measure the complete set of elastic constants of LiKSO4

over the temperature range of 200 to 300 K including both the hexagonal room temperature phase and the
lower temperature trigonal phase. Large step changes are observed in all the elastic constants, exceptC13, at
213 K on cooling and at 243 K on warming. These step changes are associated with the hexagonal/trigonal
crystallographic phase transition. The bulk modulus is approximately 15% higher in the trigonal phase than in
the hexagonal phase. The hexagonal-phase elastic constants exhibit very little temperature dependence while
the trigonal-phase elastic constants show a stronger dependence on temperature. The transitions are noted to be
quite sluggish, taking a few hours to equilibrate. The results are described in terms of a Landau-type free
energy expansion using two Ising-like order parameters with strong coupling between the two parameters.
Biquadratic coupling between the order parameters and strains is shown to account for the step changes in the
elastic constants as well as the temperature dependence in the trigonal phase. Coupling linear in the strains is
shown to be insufficient to explain the results.@S0163-1829~96!02237-0#

I. INTRODUCTION

Sulfate compounds of the form ABSO4 ~A,B5Li, Na, K,
Cs, Rb, Ag, H, and NH4! have received much study in recent
years1 due to their unusual physical properties and a rich
sequence of phase transitions. The differences between the
various phases are largely associated with the SO4 tetrahedra.
At high temperatures the SO4 tetrahedra undergo rapid rota-
tion resulting in a relatively high-symmetry phase. These
phases are often superionic conductors due to the high mo-
bility of the cations. This high mobility has been attributed to
an interaction between the cations and the rotating sulfate
ions.2 As the temperature is lowered the rapid rotation
freezes out and various tilts of the SO4 tetrahedra give rise to
a series of phase transitions. Lithium potassium sulfate
~LiKSO4! has been especially studied because large single
crystals are relatively easy to grow, the material is stable, and
the crystals survive first-order structural phase transitions
without breaking. Although the structure of LiKSO4 has been
the subject of numerous investigations,3–11 there is still con-
troversy concerning some of the phases. Much of the prob-
lem stems from the fact that the phase transitions in LiKSO4
are first order. Single crystals are easy to grow at room tem-
perature, but complicated domain structures or mixed phases
often appear after the crystal undergoes a first order phase
transition.12 These mixed phases lead to much controversy
over the actual crystalline structure.

The focus of the present study is on the transition between
the room temperature phase and the first phase appearing as
the temperature is lowered from room temperature. This

transition occurs at approximately 210 K on cooling and 240
K on warming. The structure of the room temperature phase
seems firmly established as hexagonal (P63), but the struc-
ture of the lower temperature phase has been difficult to de-
termine. Early neutron diffraction measurements13 showed a
mixture of P63 and P31c phases when LiKSO4 is cooled
below 205 K. More recent measurements14 support the trigo-
nal P31c phase below room temperature. A complication of
the transition occurring near 210 K on cooling is its sluggish
nature. There are reports of the transition taking place over
time frames ranging from several hours to more than a
day.14–16

The sequence of low temperature phase transitions in
LiKSO4 has been studied by a variety of methods,12,14,17–21

including four studies of the elastic constants immediately
below room temperature.15,16,22,23Three of the elastic con-
stant studies were by means of Brillouin scattering and one
utilized a low-frequency torsion pendulum. In general, the
various experiments are not in agreement with each other.
The two experiments which measured the elastic constant
C66 both reported a softening as the crystal transformed into
the trigonal phase. However, the results for other elastic con-
stants are qualitatively different for different experiments,
perhaps due to time-dependent effects.

Despite experimental difficulties in dealing with LiKSO4,
it remains a very interesting system to study. The presence of
a hexagonal to trigonal transition just below room tempera-
ture provides an excellent opportunity to study a low sym-
metry, first-order transition. Second order transitions have
received much interest in the past, in large part due to an
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interest in studying systems exhibiting soft modes.24 The soft
mode model requires the restoring force to vanish at the tran-
sition temperature, but this is not true in the case of first-
order transitions. Even though first-order transitions are
much more numerous than second-order transitions, second-
order transitions have received much more attention. In par-
ticular, the elastic properties of a number of materials under-
going second-order transitions have been studied through the
temperature range corresponding to the transition.25,26 The
situation is quite different regarding the elastic properties of
materials undergoing first-order transitions. It is rare that
elastic constants are measured through the transition region,
although this has been achieved in a few cases for martensi-
tic transitions in alloys.27–32 Other than studies of the mar-
tensitic transition with a cubic parent phase, there appear to
be few detailed studies of elastic constants near a first-order
phase transition.

Resonant ultrasound spectroscopy~RUS! ~Refs. 33–35!
offers an attractive method for studying first-order phase
transitions for several reasons. RUS is a technique that al-
lows the simultaneous determination of the complete set of
elastic constants for a material. In addition, RUS works quite
well with samples as small as 1 mm3, which is more than two
orders of magnitude smaller than samples volumes used in
typical ultrasonic or Brillouin scattering experiments. This
ability to use a small single crystal for the study means there
is a much better chance to avoid domain formation during
the phase transition. An additional feature of RUS is that
there is no need to attach ultrasonic transducers to the
sample. A parallelepiped is simply balanced along a body
diagonal between two ultrasonic transducers. The absence of
a bonding agent between the transducers and crystal also
eliminates a strain being applied to the surface of the crystal
due to the different thermal expansions of the two materials.

Elastic constants, being the second derivative of the free
energy with respect to strain, are usually strongly affected by
structural phase transitions. In view of the disagreement in
the literature over the values of the elastic constants near the
hexagonal/trigonal transition in LiKSO4, and also in view of
the possibility of obtaining the complete set of elastic con-
stants on both sides of the transition using RUS, we report
below the results of elastic constant measurements in this
material over the temperature range of 200–300 K.

II. EXPERIMENTAL DETAILS

The LiKSO4 single crystal used for this study was grown
by slow evaporation of an equimolar aqueous solution of
Li 2SO4H2O~99.9%! and K2SO4~99%!. The solution was al-
lowed to evaporate at room temperature and the crystal
grown over a period of approximately one month. The crys-
tal used in this study grew in the shape of a hexagonal prism
with a clearly defined sixfold axis. The orientation of the
crystal was determined from the morphology based on the
description by Pimentaet al.36 An initial optical examination
of the crystal revealed excellent clarity with no signs of the
cloudy regions common in this material. Examination with
polarizing filters and a low power microscope showed the
crystal was uniformly optically active. No defects were ob-
served.

Two of the original crystal surfaces were used for orien-

tation during sample preparation. A rough cube approxi-
mately 2 mm on each side was cut from the crystal. Two of
the faces of the cube were the top~@001#! and one of the side
facets ~@100#! of the crystal. These two perpendicular sur-
faces were used to polish the cube into a parallelepiped suit-
able for measurement with RUS. The final dimensions of the
parallelepiped were 0.134930.152830.1361 cm3. For con-
sistency with previous publications, the density was assumed
to be 2.383 g/cm3.

RUS is a technique for determining the elastic constants
of materials by measuring a set of macroscopic resonant
frequencies.37–39 A sample of specified shape is balanced
between two ultrasonic transducers. One transducer is used
to excite vibrations in the sample at a specific frequency. The
resulting vibration induces a voltage on the second trans-
ducer which is amplified and detected by a digital voltmeter.
The frequency of the driving transducer is incremented and
the process repeated until a range of frequencies has been
scanned. A more detailed scan is then made in the region of
each of the resonant frequencies. The density, shape, dimen-
sions and estimates for the elastic constants are used to cal-
culate a set of resonant frequencies. This set of calculated
frequencies is compared to the set of experimentally deter-
mined frequencies and corrections to the elastic constants are
made. The iterations are repeated until a suitable fit between
the calculated frequencies and measured frequencies is
achieved.

The temperature was controlled through the use of a gas
flow cryostat. The temperature was typically held to within
60.04 K of the target temperature for approximately 30 min
while the data were being taken. Except near the transitions,
the temperature was changed by approximately 0.2 K/min.
The system was allowed to stabilize at each temperature for
approximately 30 min before data were taken. The tempera-
ture cycle from room temperature to 200 K and back to room
temperature required 85 h. Approximately 3 h was spent in
the immediate vicinity~60.5 K! of each transition.

III. RESULTS

Representative RUS scans showing the lowest five reso-
nances in both the hexagonal and trigonal phases of LiKSO4
are presented in Fig. 1. As can be seen, there is a large
difference in the resonant frequencies between the two
phases. The lowest resonant frequency for a sample of the
size and shape described above is about 0.800 MHz in the
hexagonal phase. It is only slightly temperature dependent,
being 0.795 MHz at 296 K and increasing to 0.803 MHz at
215 K. As the sample is cooled through the transition at 213
K, the resonant frequencies are observed to decrease sharply.
For example, the frequency of the lowest resonance dropped
abruptly by more than a factor of 2 and continued decreasing
slowly for 2–3 h. The temperature was maintained to within
60.5 K of the temperature at which the transition was first
observed until the resonant frequencies stabilized. The crys-
tal was then cooled to 200 K and allowed to stabilize for an
additional 6 h. The temperature dependence of the resonant
frequencies in the trigonal phase is greater than in the hex-
agonal phase. The lowest resonant frequency is 0.3518 MHz
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at 204 K and increases to 0.4426 MHz at 240 K. At 243 K on
warming the frequencies return abruptly to the hexagonal
phase values.

The elastic constant matrix can be represented by

C5S C11 C12 C13 C14 2C25 0

C12 C11 C13 2C14 C25 0

C13 C13 C33 0 0 0

C14 2C14 0 C44 0 C25

2C25 C25 0 0 C44 C14

0 0 0 C25 C14 C66

D ,

C665
1

2
~C112C12!, ~1!

whereC145C2550 for the hexagonal case. Thus there are
five independent elastic constants for hexagonal symmetry.
For the most general trigonal case, there are seven indepen-
dent elastic constants. Federov40 shows that a rotation of the
crystal about thec-axis can be made such that eitherC14Þ0
andC2550, orC1450 andC25Þ0. For the general trigonal
case, one can either specify seven elastic constants, or six
elastic constants and the angle of thex axis from the crys-
talline a axis. For trigonal crystals such as LiKSO4, which
possess a mirror plane parallel to thec axis, only six elastic
constants are needed. These can be taken as the five hexago-
nal elastic constants and eitherC14 or C25 with the angle of
the x axis from thea axis as 0° or 90°, respectively.

The elastic constants in the hexagonal phase were deter-
mined from the measured frequencies using an iterative
method described by Visscheret al.33 and Ohno.41 The Viss-
cher FORTRAN code was modified for trigonal crystalline
symmetry using results of Ohnoet al.42 Approximately 40
frequencies were fit to a set of elastic constants with a typical
rms error of 0.16% in the hexagonal phase and 0.35% in the
trigonal phase.

The results for the hexagonal and trigonal elastic con-
stants are shown in Figs. 2 and 3. Our room temperature
results for the hexagonal elastic constants are in good agree-
ment with previous Brillouin22,36 and ultrasonic43 measure-
ments. The present results are in especially good agreement
with the recent ultrasonic measurements except forC13
where our results are 8% higher; however,C13 is especially
difficult to determine with conventional ultrasonic tech-
niques. As the figures show, the elastic constants are nearly
temperature independent within the hexagonal phase, in
agreement with the Brillouin results.22 At 213 K on cooling,
all the elastic constants exceptC13 show large changes. On
warming from 200 K the elastic constants abruptly return to
the high temperature values at 243 K. Our results forC66 are
in qualitative agreement with those of Anet al.,23 although
the 80% reduction ofC66 observed in the present work is
much greater than that observed previously. In general our
results are in disagreement with those of Mrozet al.16 and
Ganotet al.15 who observed no large changes above 200 K
for any elastic constants. We observe an increase of about

FIG. 1. Representative RUS spectra for a LiKSO4 parallelepiped
in the hexagonal~a! and trigonal~b! phases.

FIG. 2. Elastic constantsC12, C66, andC14 vs temperature for
LiKSO4. The circles are the experimental values; the solid lines
represent theoretical fits to the data discussed in the text.
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10% inC11 on entering the trigonal phase, while Anet al.23

observed a decrease of about the same magnitude.
The expression for the bulk modulus for both hexagonal

and trigonal symmetry can be shown to be

B5
C33C661C33C122C13

2

C1222C131C331C66
. ~2!

Using the data of Figs. 2 and 3, the bulk modulus was com-
puted. The results are shown in Fig. 4. As can be seen from
the figure, the bulk modulus is approximately 15% higher in
the trigonal phase than in the hexagonal phase.

To check the sensitivity of RUS to the form of the elastic
constant matrix used, data taken at 296 K were analyzed
using the trigonal elastic constant code. The values of the
elastic constants determined by the hexagonal analysis along
with the value ofC1450.01231011 Pa obtained from ana-
lyzing data in the trigonal phase were used as initial values in
the computer program. The program was allowed to iterate
and the resulting computation ofC14 and rms error for the
overall fit were noted as a function of iteration number. The
results are plotted in Fig. 5. As can be seen,C14 is driven
toward its hexagonal value of zero and the rms error de-
creases. An attempt was made to analyze data in the trigonal
phase using the hexagonal elastic constant matrix. It was not
possible to get a good fit to the data. The resulting rms error
was approximately 0.8%.

IV. DISCUSSION

A common theory used to treat phase transitions was de-
veloped by Landau.44 An expansion of the thermodynamic
potential for the system is made in a power series of some
order parameter,Q. This order parameter is assumed to be
some quantity that differentiates the two phases involved. In
the original development of the theory, the transition is as-
sumed to occur in such a manner that the crystal always
possesses one of two symmetries. The parent phase pos-
sesses all the symmetry elements of the daughter phase, plus
one or more additional symmetry elements. As long asQ
takes on a value of zero, the crystal symmetry is that of the
parent phase. As soon asQ takes on any arbitrarily small
value, the symmetry is reduced to that of the daughter phase.

Transformations such as the hexagonal/trigonal phase

FIG. 3. Elastic constantsC33, C13, andC44 vs temperature for
LiKSO4. The circles are the experimental values; the solid lines
represent theoretical fits to the data discussed in the text.

FIG. 4. Bulk modulus vs temperature for LiKSO4. The circles
represent the data; the solid line represents a fit to the data discussed
in the text.

FIG. 5. Values ofC14 and rms error vs iteration number result-
ing from using a trigonal elastic constant matrix to fit data in the
hexagonal phase.
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change in LiKSO4 must be treated differently. TheP63 and
the P31c phases do not satisfy a group-subgroup relation-
ship. These transformations are of the reconstructive
type.45,46 However, it is still possible to make an expansion
of the free energy of the two phases in terms of deviations of
the order parameter from a parent phase.47 We use such an
approach for LiKSO4. We take the parent phase as hexago-
nal P63mc. TheP63 and theP31c phases are subgroups of
the P63mc phase. TheP63mc phase apparently does not
exist in LiKSO4. As the crystal is cooled from high
temperatures the sequence of phase transitions is
P63/mmc→modulated phase→P63→P31c. Nevertheless,
we can still useP63mc as a parent phase from which to
expand the free energy.

A drawing emphasizing the differences between the hex-
agonal and trigonal phases of LiKSO4 is shown in Fig. 6.
The orientations of the SO4 tetrahedra in the hexagonal phase
are represented by the triangles with solid lines. The trigonal
phase differs from the hexagonal phase by the rotation of one
of the SO4 tetrahedra as illustrated with the dashed lines on
the right. The two SO4 tetrahedra are displaced from each
other byc/2 along thec axis. LiKSO4 transforms from the
hexagonalP63 phase to the trigonalP31c phase when one
of the two SO4 tetrahedra in each unit cell rotates 108° about
one of three axes perpendicular to thec axis.17,18,36

We use Fig. 7 to introduce order parameters for this sys-
tem. One unit cell for each phase is drawn in Fig. 7. Consider
the unit cell shown on the lower left for theP63 phase. We
make an arbitrary assignment ofs1 to the left SO4 tetrahe-
dron (A) ands2 to the right SO4 tetrahedron (B) in that unit
cell. If the SO4 tetrahedron is found oriented such asA, we
assign itss a value of11. If the SO4 tetrahedron is found
oriented such asB, we assign itss a value of21. These two
orientations differ only by a rotation of the SO4 tetrahedron
about an axis in the basal plane. We now let the two indi-
vidual s be the difference in the probability of finding the
SO4 tetrahedron in the two states (sk[PkA2PkB). If the unit
cell has a larger probability of having a SO4 tetrahedron as

A, thes for that SO4 tetrahedron would be greater than zero.
Likewise, if a SO4 tetrahedron has a higher probability of
being found asB, its s would be less than zero. As the value
of s approaches zero, there would be an equal probability of
finding the SO4 tetrahedron in either state. This case of
s15s250 is represented by the dashed lines in the unit cell
corresponding to theP63mc phase. To differentiate between
the two phases, it is easy to see in Fig. 7 that the twos will
have different signs in the hexagonal phase~antiparallel!,
and the same sign in the trigonal phase~parallel!. Therefore,
for convenience, we define two order parameters as
Q15(s12s2)/2 andQ25(s11s2)/2. The hexagonal phase is
then specified by (Q1 ,Q2)5(6x,0) and the trigonal phase is
specified by (Q1 ,Q2)5(0,6y). The P63mc phase would
correspond to (Q1 ,Q2)5(0,0). This phase might be ex-
pected at sufficiently high temperatures, but is not observed.
A modulated phase is observed instead.

The free energy expansion for systems with two coupled
order parameters has been described by Imry.48 For the
present case, we expand the free energy in terms ofQ1 and
Q2 and include coupling between these two order parameters
and coupling between the order parameters and the straine,

FL~Q1 ,Q2 ,ei !5a1Q1
21

1

2
b1Q1

41a2Q2
21

1

2
b2Q2

41lQ1
2Q2

2

1Fc~Q1 ,Q2 ,ei !1
1

2 (
i , j

Ci j eiej , ~3!

whereai andbi are the usual Landau expansion coefficients
andl characterizes the strength of the coupling between the
two order parameters.Fc~Q,e! describes the coupling be-
tween the order parameters and the strains. The last term
represents the usual elastic energy. Imry48 shows that for
l.(b1b2)

1/2 Eq. ~3! describes a first-order phase transition,
which is of interest for LiKSO4.

FIG. 6. Illustration of the structure of LiKSO4 as viewed along
the @001# direction. The solid lines represent the hexagonal phase.
The dashed lines illustrate the reorientation of one of the SO4 tet-
rahedra characterizing the transition to the trigonal phase.

FIG. 7. Diagram showing the relationship between the crystal-
line phases and order parameters. TheP63 and theP31c phases are
described in terms of a prototypicalP63mc phase. The orientations
of the SO4 tetrahedra are described by the parameterss1 and s2
where the subscripts 1 and 2 correspond to the two sides of the unit
cell as shown. The values11 and21 correspond to the orientations
illustrated.
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The effect on the elastic constants due to coupling be-
tween the strains and the order parameters can be shown to
be49,50

Cmn8 5Cmn1
]2Fc

]em]en
2(

k,l
S ]2F

]Qk]em
D

3S ]2F

]Qk]Ql
D 21S ]2F

]en]Ql
D . ~4!

We now invoke symmetry arguments to constrain the
form of Fc~Q,e!. As discussed above, reversal of eitherQ1
or Q2 will not change the symmetry of the crystal. Thus the
free energy must be invariant under the reversal of the sign
of eitherQ1 or Q2 . Fc~Q,e! must then be of the form

Fc~Q1 ,Q2 ,e!5F1c~Q1 ,Q2 ,ei !1F2c~Q1 ,Q2 ,ei !, ~5!

with

F1c~Q1 ,Q2 ,ei !5Q1
2(

i
k1iei1Q2

2(
i
k2iei ,

F2c~Q1 ,Q2 ,ei !5
Q1
2

2 (
i , j

k1i j eiej1
Q2
2

2 (
i , j

k2i j eiej ~6!

and possible higher order terms inQ ande. The sums in Eq.
~6! run over the six strainse1 ...e6 .

The free energy must be invariant under the symmetry
operations of the crystal. Because the order parameter we
have chosen is a scalar it is automatically invariant. The form
of the elastic constant matrix,Ci j , assures that the elastic
energy is invariant. It only remains to examineFc~Q,e!.
F2c~Q,e!, coupling quadratic in the strain, has the same form
as the elastic energy. This term will be invariant ifk1i j and
k2i j have the form of the elastic constant matrix. We now
examineF1c~Q,e! which involves coupling linear in the
strain. We require invariance under a rotation of 2p/3 about
the c axis. Carrying out this transformation40 shows that the
terms linear in the strain must be of the form

F1c~Q1 ,Q2 ,ei !5k11Q1
2~e11e2!1k13Q1

2e31k21Q2
2~e11e2!

1k23Q2
2e3 ~7!

in order thatF1c~Q,e! be invariant under the symmetry op-
erations ofP31c. This form is also invariant under the op-
erations ofP63 .

Using Eq.~7! in Eq. ~4! shows that, at the transition, the
changes inC11 andC12 are identical. The only other pre-
dicted changes are forC33 andC13, all other elastic constants
are predicted to have zero changes at the transition, including
C66. These predictions are in strong disagreement with the
experimental results. In addition we observe no change in
C13 which requires at least one of the coupling coefficients in
Eq. ~7! to vanish for each phase leading toDC125DC1150,
or DC3350. This follows from applying Eq.~4! to Eqs.~3!
and ~7!. The change inC13 is proportional tok11k13 in the
hexagonal phase andk21k23 in the trigonal phase. No change
in C13 thus requires one of the two constants be zero in each
phase, resulting in no change inC11 andC12, or no change in
C33. Thus we conclude that coupling linear in the strain can-
not explain the experimental results.

We now proceed with coupling quadratic in the strain.
Using theF2c~Q,e! of Eq. ~6! in Eq. ~4!, its easy to see that
the effects of the coupling between the order parameters and
strains on the elastic constants in the hexagonal and trigonal
phases are

Cmn
~hex!5Cmn1k1mnQ1

2,
~8!

Cmn
~ trig!5Cmn1k2mnQ2

2.

As discussed above,k1mn has the form of the elastic constant
matrix for hexagonal symmetry whilek2mn has the form of
the elastic constant matrix for trigonal symmetry. Thus bi-
quadratic coupling of the order parameters and strains per-
mits a change in the entire set of elastic constants at the
phase transition.

We now examine the nature of the phase transition de-
scribed by the free energy expansion of Eq.~3!. In the usual
Landau theory with a single order parameter, a phase transi-
tion is obtained by letting the coefficient of the quadratic
term change sign at some temperature. A minimum exists at
Q50 for high temperatures, when the sign of the quadratic
term is positive. As the temperature drops below some criti-
cal value, the sign of the quadratic term becomes negative
and the minimum moves away from the origin to a nonzero
value ofQ. The two phases are distinguished byQ50 in the
higher symmetry phase andQÞ0 in a lower symmetry
phase.

The present situation with two order parameters which are
coupled is more complicated. Imry48 describes in detail the
phase diagram of a system with two order parameters such as
that in Eq.~3!. With two order parameters, there exists the
possibility that two terms can change signs. As in the case of
a second order transition described by a single order param-
eter, the high temperature phase of a two order parameter
system exists with a single minimum found at the origin of
Q space, withQ15Q250 and botha1 anda2 positive. As
the temperature falls below some valueT1 , a second order
transition occurs as the minimum moves out along theQ1
axis. This occurs when the sign ofa1 changes from positive
to negative whilea2 remains positive. Following Landau44

and Imry,48 we let the sign ofa1 change by including only a
linear term for its temperature dependence as in Eq.~9!,

a15
a1~T2T1!

T1
, ~9!

with a1 andT1 constants. The value ofQ1 at the minimum is
given by

Q1
252

a1
b1
. ~10!

The minimum that develops along theQ1 axis deepens and
continues to move to larger values ofQ1 as the temperature
decreases. If onlya1 is allowed to change sign, only this one
transition can occur, despite having two order parameters. In
order for more interesting changes to occur, we must also let
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a2 change sign at some temperature,T2 . Once again, we
choose the simplest means to leta2 change sign, as was done
for a1 in Eq. ~9!.

There are two different types of phases diagrams possible
depending on the strength of the coupling between the order
parameters as shown in Fig. 8. If the coupling is weak,
l,(b1b2)

1/2, three second order transitions occur. The first
occurs as described above. The second occurs as the mini-
mum moves off theQ1 axis to a phase with both order pa-
rameters having nonzero values. The minimum then moves
throughQ space to theQ2 axis. A third continuous transition
occurs as the system undergoes a transformation to a phase
corresponding to a minimum along theQ2 axis. If the cou-
pling is strong,l.(b1b2)

1/2, a second-order and a first-order
transition occur. The second-order transition is as described
above when the system moves away fromQ15Q250. The
first-order transition, which is of interest for LiKSO4, will be
treated in more detail below.

Simply lettinga2 change sign atT2 does not immediately
create additional minima for either type of coupling. For
strong coupling, the minimum along theQ1 axis continues to
be the only minimum until the temperature drops belowTB
given by the solution of

l5
a1b2
a2

. ~11!

Below this temperature, a second minima develops along the
Q2 axis, but is energetically unfavorable. As the temperature
continues to decrease, the difference in the value of the free
energy at the two minima decreases. Eventually a tempera-
ture, T0 , is reached at which the free energies at the two
minima are equal. For temperatures belowT0 , the free en-
ergy at the minimum along theQ2 axis is lower than the free
energy at theQ1 minimum, but a potential barrier prevents
the system from changing states. The system continues to
remain in the state corresponding to a nonzero value ofQ1
until the height of the barrier becomes small enough and the
difference of the free energy becomes great enough that a
first-order phase transition occurs. This is the observed tran-
sition temperature on cooling and two minima will likely
exist for a finite temperature interval below the observed
transition temperature. As the temperature continues to de-
crease, the minimum along theQ1 axis becomes a saddle
point atTA , given by the solution of

l5
a2b1
a1

. ~12!

The temperature range fromTA to TB is often referred to as
the coexistence region and these temperatures are the limits
between which two minima exist. The temperature depen-
dence as the system is warmed from belowTA is exactly the
same as during cooling with the roles ofQ1 andQ2 reversed.
The system starts at low temperatures in a phase with a non-
zero value ofQ2 . The minimum along theQ2 axis moves in
towards the origin as the temperature increases. As the tem-
perature warms to a value aboveTA given by the solution of
Eq. ~12!, the second minima develops along theQ1 axis. The
system remains in the low temperature phase until changing
discontinuously back to the phase along theQ1 axis at a
temperature<TB .

It was experimentally observed during the measurements
reported here that there is only a slight temperature depen-
dence of the elastic constants in the hexagonal region. The
slight changes are no more than what one normally expects
as a material is cooled. Therefore, we choose to ignore any
temperature dependence of theQ1 order parameter, corre-
sponding to the hexagonal phase and takea1 to be a negative
constant. This situation could be interpreted asT1@T for the
temperature range of our measurements. We do observe a
larger than normal temperature dependence for the elastic
constants in the trigonal phase, so we leta2 have the tem-
perature dependence specified above. The behavior of the
elastic constants are then given by

Cmn
~hex!5Cmn2

k1mna1
b1

5Cmn8 5const,

~13!

Cmn
~ trig!5Cmn1

k2mna2

b2
S 12

T

T2
D5Cmn9 2k2mn8 T.

We then see that all the elastic constants must have the same
temperature dependence, the magnitude and direction of the
step at the transition being the only difference. The expres-
sions forTA andTB now reduce to

FIG. 8. Two types of phase transitions can develop in systems
with biquadratic coupling between two order parameters depending
on the strength of the coupling. Weak coupling (l,lc) is shown in
~a! and strong coupling (l.lc) is shown in~b!. The two vertical
lines in ~c! correspond to the temperature dependencies shown in
~a! and ~b!, respectively.
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TA5T2S 11
a1l

a2b1
D , TB5T2S 11

a1b2
a2l

D . ~14!

The elastic constants determined from measurement by
RUS are plotted in Figs. 2 and 3 along with the fit of Eqs.
~13!. As can be seen, there is excellent agreement between
the fits toC66 andC12 and the data obtained. Fits between
theory and data for the other elastic constants are within the
uncertainties in the measurements. The constants determined
from fitting Eqs.~13! to the data were used to calculate the
bulk modulus using Eq.~2!. The result is shown as the solid
line in Fig. 4.

The vertical lines with arrows are drawn at the tempera-
tures at which the transitions were seen to occur. These ver-
tical lines are probably not at exactly the temperaturesTA
andTB . As mentioned above,TA andTB are the limits of
stability; the hexagonal phase can exist down toTA and the
trigonal phase can exist up toTB . We do not have enough
information to calculateTA andTB from Eqs.~14!. The ob-
served transition temperatures indicate thatTB2TA>30 K.

V. CONCLUSIONS

Using resonant ultrasound spectroscopy, the complete set
of elastic constants for single-crystal LiKSO4 has been mea-
sured in the temperature region of 200 to 300 K including
both the hexagonal and trigonal phases. The values of the
elastic constants in the room temperature hexagonal phase
are in excellent agreement with earlier results. Large step
changes in all elastic constants exceptC13 are observed at
the hexagonal-trigonal transition. For example,C66 drops to
15% of its hexagonal value on entering the trigonal phase.
The bulk modulus is about 15% higher in the trigonal phase
than in the hexagonal phase. A large hysterisis is observed;
the abrupt change in elastic constants occurs about 30 K

higher on warming than on cooling. The transitions were
found to be very sluggish, taking hours to equilibrate.

The changes of the elastic constants at the phase transition
are explained in terms of a Landau-type expansion of the free
energy. Two Ising-like order parameters with strong, biqua-
dratic coupling between the parameters accounts for the first-
order nature of the transition including the hysterisis. The
symmetry of the crystal is compatible with either an order
parameter-strain coupling which is quadratic in the order pa-
rameters and linear in the strains, or a coupling biquadratic in
the order parameters and the strains. However, the quadratic-
linear order parameter-strain coupling permits changes in
only C11, C12, C13, and C33 whereas large changes were
observed in all elastic constants exceptC13; especially large
changes were observed inC66 for which quadratic-linear
coupling predicts no change at the transition. The biquadratic
order parameter-strain coupling permits step changes in all
the elastic constants at the transition and hence is in agree-
ment with the experimental results. The temperature depen-
dence of the elastic constants in the trigonal phase is ac-
counted for by the model.

Data in the room temperature phase are fit well with a
hexagonal form of the elastic constant matrix. An attempt to
fit the data in this phase with a trigonal elastic constant ma-
trix resulted inC14 being driven toward zero. Data in the
lower temperature phase required using a nonzero value for
C14 to obtain a good fit. Our data thus support the phase
occuring below 213 K as trigonal.
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