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Valence-bond crystal phase of a frustrated spin- square-lattice antiferromagnet
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We propose a magnetically disordered ground state for a frustrated quantum antiferromagnet. This disor-
dered state is an array of spin singlets spontaneously formed on four spin plaquettes. Both perturbation results
and bond-operator calculations show that this phase has lower energy than the columnar dimer state. Analysis
of available numerical data on finite clusters also supports the conclusion that this state is realized at interme-
diate frustrations[S0163-182¢06)06837-3

Frustrated two-dimensional quantum magnets have beenexcitation spectrum. Investigation of a nearest-neighbor SU
fascinating topic of numerous studies over the past decadéN) antiferromagnet in th&>1 limit has led to the conclu-
The interest has primarily focused on melting of long-rangesion about spontaneous columnar dimerization in the ground
magnetic order and the appearance of disordered phasesssate’ Subsequent calculations for the sgirHamiltonian
T=0 as a result of enhanced quantum fluctuations. The simEq. (1) using series expansiv@mnd boson techniqugsup-
plest spin system having such a type of behavior is a frusported stability of this phase arourdd=0.5J,. Cluster re-
trated square-lattice Heisenberg model with the nearessults for dimerized susceptibility also yield its noticeable in-
neighbor antiferromagnetic exchande and the second- crease in the intermediate region.
neighbor couplingl, In this paper we propose a valence-bond crystal ground

state of a frustrated spih-antiferromagnet Eq(1). This is

the plaquette state shown in Figial We calculate its en-

Hz‘]l% S|~Sj+322%N S-S 1) ergy by two methods and find that it is lower than for the

columnar dimerizatiorfFig. 1(b)] in the same approxima-
Analysis within the linear spin-wave theory reveals that fortion. Then, by considering relevant order parameters, we
weak frustration the model has a &lground state, while for show that the existing numerical data on the & cluste?
strong frustration spins are ordered at wave vectol0f or  are, as a matter of fact, in favor of this state.
(0,7) (stripe or collinear staje For any finiteS there is a Two types of magnetically disordered singlet ground
region around the classical critical poid4/J;=0.5 where states have been widely discussed for a quantum square-
sublattice magnetization vanishe$his result raises a ques- lattice antiferromagnet. The first one is a featureless
tion about the ground state for intermediate frustrationgesonating-valence-bon(RVB) spin-liquid with long- or
which may be nonmagnetic and represent a kind of twoshort-range correlation!S. The second proposal is a spin-
dimensional spin liquid. Pierls order of valence bonds which are frozen and break

Subsequent theoretical works have considered the pro[battice symmetrieé.There is also an intermediate situation:
lem of the intermediate phase of the frustrated antiferromagvalence bonds resonate in finite spin blocks, which in the
net Eq.(1) mainly from three different points of view. The Simplest case contain four lattice sites. This type of a disor-
first group includes exact diagonalization studies on finitedered spin phase has earlier appeared as an unstable solution
clusters, which clearly show existence of a disordered spin
state in the region 04J,/J,<0.65, though a final conclu-
sion about its nature has not been reaché@he second
group of works address the problem by calculating higher-
order 15 corrections either in the framework of the modified
spin-wave theory or using the Schwinger boson mean-field
calculations"® Both approaches predict enhanced stabilities

for the Neel and the collinear states resulting in a finite over- J2

lap of the magnetically ordered phases. Second-order correc-

tions to the mean-field solution, on the other hand, suggest a \Jl

small window 0.52J,/J;<<0.57 between the two ordered

states forS=3.° (a) (b)

The third group of works explore one particular possibil-
ity for the disordered ground state—a valence-bond crystal FIG. 1. (a) plaquette-RVB and(b) columnar dimer ground
with broken translational symmetry and a finite gap in thestates; bold lines denote stronger spin bonds.
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for the nearest-neighbor SNJ antiferromagnet which be- elements in a subspace of the ground-state singlet and the

comes degenerate with the columnar dimer state in théowest triplet states. These states form a complete set for

N—oo limit only.'* Considering the physical @)-spin  dimers, whereas for plaquettes this is only a part of the local

model with frustration Eq(1) we come to the opposite con- basis. Later, we partially take into account higher-energy

clusion about the energies of the two valence-bond crystalstates of plaquettes. Rotational invariance in spin space and
Similarly to discussion of dimerized phases, the first stegime-reversal symmetry give

is to investigate a restricted Hamiltonian of four spins on a

square plaquette: (s|Sils)=0, (s|Slte)=dapAq:

Hpq=J1(S1+S5) - (S 84) +32(S1- S+ 5+ S). (2 (to|SE|t,)y =ie“BYAL,

This Hamiltonian is easily diagonalized. The ground levelwheree®?” is the totally antisymmetric tensor aml, Af,

for J,<<J, is a singlet characterized by the quantum numbersire real constants. Using the explicit forms of singlet and

S13=Sy4=1 with the energyE,= —2J, + 3J,. Its wave func-  triplet wave functions one straightforwardly gets

tion is |s)=(1/v/3) ([1,2][4,3]+[1,4][2,3]), where square Al=(—1)"2, Aj=1/2 for dimers, and Al=(—1)"

brackets denote the singlet bond of a spin pair. This state ca{i6, Al,=1/4 for plaquettes. Let us now define the vacuum

be considered as a RVB-like state in a four-spin subsysterfo) and four boson operators which yield the four physical

with energy lower than for a frozen dimer configuration, e.g.,states byis)=s"|0), |ta)=t2|0>. The projection operators

[1.2][4.3]. Excited levels are three tripleltsa>, [Pa)s [9a)  are expressed &'te=s't,, Zlats=tt,, and so on. Block

(a=xy,2), Ei=—Jd1it3d; Ep=Eq=—3Jp a quintet gpins represented via these boson operators are

[d,) (v=1,...,5), Eq=J1+3J5, asnd another singlet

|s’y=[1,2][4,3]-[1,4][2,3], Eg=—3J,, which crosses L, (=" i .

with |s) and becomes the ground state gt J;. Sn:T(S+ta+t;S)_ Eeaﬁytgtv’ for dimers,
Four spin singlets form a plaquette covering of a two-

dimensional lattice. Previously, the plaquette-RVB state has

been predicted for the disordered two-dimensional magnet =~ (—-1)" N i N

CaV,0,, which is described by a spiiiHeisenberg model ~ Sh= 7 (s"tatt,s)— Zeaﬁytﬁtw for plaguettes.

on a 1/5-depleted square lattiteln that case singlets corre-

spond to spin blocks chosen by the lattice geometry. For th€pin commutation relations are satisfied in the chosen sub-

translationally invariant Hamiltonian Eq1) periodic array space as long as the boson representation preserves the alge-

of plaguette singlets appears spontaneously. The ground sta{g; of the projection operator@“*z*'*' = 5,uvz’”,- This

has in this case fourfold degeneracy determined by brokepsquirement restricts the boson occupation numbers:
translations along two sides and diagonal of an elementary

square. Using simple rules for products of dimer coverifigs .
one can show that the overlap between the two states in Fig. sts+ 2 tht,=1. 4
1 formed by pure singlets decreases to zero\@/Z)"V'* with “
increasing number of spind. Consequently, the plaquette With this constraint the Hamiltonian of a single block, a
state cannot be represented as a superposition of two coluntimer or a plaquette, takes a form{g=Es*s+E it t,.
states rotated by 90° with respect to each other. Later, w&he simplest way to deal with E¢4) is to impose it as “a
consider spin order parameters, which have different valuesonstraint in average” enforced by a chemical potential.
for the two disordered phases. Further calculations follow closely the work by Sachdev
Since the Hamiltonian Eq(1) includes interaction of and Bhatt’ Using Eq.(3) we rewrite the Hamiltonian Ed1)
spins from different blocks, the ground state does not coinin terms of bond operators for each of the two phases and
cide with a simple product of block singlets and nonzeroassume a site-independent chemical poteptiahd conden-
expectation values(S-S;) appear between all nearest- sate of singlets(s;)=s. Interaction terms in the boson
neighbor pairs. To compare energies of the columnar dimeHamiltonian are classified by the number of triplet operators
and the plaquette-RVB phases we use a boson techniqug, . It can be shown that the terms with three and four triplet
suited for perturbative analytical expansion around the locabperators affect the results only slighBlitherefore, we omit
spin singlets. It was used previously to study dimerizedthem and after diagonalization of the quadratic form deter-
phases. We first generalize this method by deriving simul- mine the parameterg ands through the saddle-point equa-
taneously boson representations for dimer and plaquettiéons
spins and then calculate energies of the two states in the .
mean-field approximation. 0Bgs/du=0, JEg4/ds=0. (5)
Let us consider an arbitrary spin block with singlet
ground state and excited levels denoted py. A spin§, in
a block is expressed in terms of the basis states by

©)

The system is in a magnetically disordered phase if the gap

in the excitation spectrum is positive. Vanishing of the gap

leads to a condensation of triplet excitatiofis;,) # 0. Note,

S,=(u|Sh|v)Z+, that thi; does not mean tr_ansit.ion,. e.g., to the u_su'ail Ne

state, since spontaneous dimerization of bonds will be pre-

whereZ*" is the projection operatdu){v|, n is a local spin  served in such an ordered phase.

index inside the block, and the global block index in the For the columnar dimer state we recover the results of

lattice i is omitted for brevity. We derive first the matrix Ref. 9. This state is stable in the region 0<18,/J,<0.66.
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wider region of stability, the plaquette phase has lower en-
ergy than the dimerized state fd§<0.58],. At J,=0.5];

the difference between the two energigs,,= —0.466 and
Egm=—0.456, is about 2%.(Without higher triplets
Epiq= —0.458) Thus, the bond-operator formalism predicts
the plaquette-RVB state instead of the columnar dimer state
as the intermediate phase of the frustrated antiferromagnet
Eq. (2).

Another way to estimate analytically the energies of the
two valence-bond states is the second-order perturbation ex-
pansion starting from the singlets either on dimers or on
plaguettes. This approximation corresponds to the first two
nonzero terms in the series expansion meth@tie results
are shown in Fig. 2 by dashed lines. /t=0.5J, the differ-

-0.8 < : . L L ence betweelk = —0.63 andEym,~= —0.492 is much big-
. J(}; 05 0.6 0.7 ger than in the bond-operator scheme. Though significant
21 corrections are expected in higher orders of series expan-
sions, these calculations agree with our proposal of the

FIG. 2. Energiesin units ofJ;) of (a) columnar dimerized and  plaquette state for the ground state of the Hamiltonian Eq.
(b) plaquette-RVB phases calculated by bond-operator techniquq;l)_

(c) and (d) for the same phases by the second-order perturbation pqth results for the energies of the two disordered phases
theory. have been obtained by approximate analytical methods and,

hence, may be questioned. We, therefore, now discuss how

Eor the plaquette phase analogous treatmgnt would “”.defel%' distinguish the column and the plaguette phases in exact
timate the energy because of the neglection of the hlgherr'1umerica| diagonalization studies. The key step is to con-

lying states of the plaguette. Among the other excited level truct appropriate order parameters, which measure non-

th_el mosthgi%n;]ficant energy corrgcticlnns are giyﬁnhby highe quivalence of spin bonds in a disordered state. A set of such
triplets which have nonzero matrix elements with the groun pin operators have been proposed by Sach@ne ap-

state for spin operators. Extending calculations preceding E?Jearance of the column phase has been #3teglusing the
(3) to these excited triplets we find the following representa-

) o parameter
tion of spins in each plaquette:

Energy per site

V=S [(— 1S5~ S+ H (- DS 5= S+p]- @

1 1
§,3:_6(S+ta+t;rs) i_g(s+ Pt p;rs),

V6 2.3 This operator is proportional to 1, — 1, and—i for the four
1 1 (6) degenerate column states. On the other hand, for the four
imld Ai3wld _ Aiwld _ Ai37/4
SY,=— —=(s"t,+tis)= (st Q,+q.s), plaquette state¥; equalse'. ) e_' , e'. ,and- e' N
V6 23 up to a constant factor. Since in numerical studies on finite

systems one measures only the correlation function
x,=1N?(|=W|?), it is impossible to distinguish the two
states by observing an anomalyy(J,). To overcome this
problem another order parameter should be considered

with the constraint Eq. (4) being changed to
sts+3,(tit,+pip.+0/q,)=1. According to the qua-
dratic approximation we have omitted in E&) products of
two triplet operators. The boson Hamiltonian obtained with
this substitution can be further simplified by keeping inter- D=S-(S4+S 5= S:5—S_2- (8)
action terms with only one of the higher triplefs, and
q,. Physically, this means that we take account of higherFor the four column state®; has values 1;1,1, and—1,
lying triplets only via scattering of lowest excitations on whereas it becomes zero for each of the plaquette states.
them. As a result, one mode in the upper band remains cor=onsequently, the two crystalline valence-bond states can be
stant, while the other acquires a finite dispersion. distinguished by measuring two quantatigsandy , simul-
Solution of the saddle-point equatio(® gives us param- taneously. The paramet@p; coincides with the magnetic
etersu ands, from which we calculate energy and spin gap structure factor at the wave vectorr0) and has been stud-
of the plaguette-RVB phase. This disordered state is locallyed to check the difference between the two ordered mag-
stable forJ,>0.08);. For large frustrations the stability netic phases®;=0 in the Neel state,®;# 0 in the collinear
boundary of this phase lies 45>0.8J;, well inside the re- state. Thus, numerical results for bot) and x, are cur-
gion where the collinear state is expected to appear. Thigently available. We refer to the most reliable data obtained
boundary cannot be determined correctly in our approximaen the 6<6 cluster. Figure 3 of Ref. 3 plots two correlation
tion as it depends crucially on the behavior of the neglectedunctions x,(J,) and x4(J,). It is clearly seen that at the
higher singlet. Therefore, we restrict ourselves to the regiopeak point ofy,(J,) the other function differs only slightly
J,=<0.7];. At J,=0.5],, the gap of the plaquette state is from its value atJ,=0, whereasy,(J,) starts to increase
Apiq=0.85];, while for the column staté 4, =0.74];. The  simultaneously with the decreasing pf,. This observation
results for the energies of these two phases in units @fre  is direct evidence of the plaquette-RVB ground state for the
presented in Fig. 2 by solid lines. In addition to significantly model(1) at intermediate frustrations.
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We now turn to physical consequences of the translationgbhase vanishes, the order parameter is a soft Ising-type quan-
symmetry breaking in a magnetically disordered groundity ®; having valuest1 and—1 on each lattice site. In this
state. The first property we address is a nature of the phasgse only the rotational lattice symmetry is broken in the
transitions aff =0. If transformation from}such a disordered low-temperature phase. Singlet formation in the bond crys-
state to a spin ordered state, e.g., to thelNgate, is con- talline phases is accompanied by translational symmetry
tinuous, the usual group-subgroup relations should be satigyeaking and corresponds o 0. Bond strength modula-
fied for symmetry groups of the two phases. However, this igjons appear at wave vectors Q) or (0;7) for the columnar
gi?:le;[gest;?esse sfic:wrcctehr?eilf:e??r?etfk(;?mﬂ?ﬂ:gt;éﬁirgﬁzlrusr?/rr;ariletrdimerization and the spin bond order parameter has two
than the latterbecause of the absence of rotational invari—i??lzopoir;tscil'uﬁa Xphisz(i zgﬂlsc;rgj Eém?gry])e.nlt:(i)sr ﬁzc:;ero.

ance in spin spagenor 1S the latter more symmetric than the The plaquette state also corresponds to these wave vectors
former (due to translational symmetry breaking\nalogous having both components nonzero at the same time. One can

arguments are applied to the transition into the collinear

state. Thus, the magnetically disordered ground-state regioﬂraghtforwardly construct a two-component Landau free-

of the model(1) is bounded by two points of first-order energy functional_ for this irreducible representation _anc_i
transitions. This conclusion explains diverse estimates of itShOW that the choice between (1,0) and (1,1) symmetries is
width*=582 found by studyingstabilities of the different determined by minimization of the “anisotropic” fourth-
phases. order term. Our calculations for the energies of these two
Finally, we comment on the finite temperature behavior ofstates atT=0 suggest that the minimum occurs for
valence bond crystals. As they break only the discrete latticé* 1,= 1) states.
symmetries, there should be transition from the symmetric
paramagnetic phase with decreasing temperature. An analo- We thank O. A. Starykh and M. Troyer for helpful dis-
gous conclusion for the collinear state has been reached gussions and S. Sachdev for bringing Ref. 11 to our atten-
Ref. 14. The difference between these two cases lies in thiégon. This work has been financially supported by a Grant-
symmetry properties of the corresponding order parameterin-Aid from the Ministry of Education, Science and Culture
At T#0, when sublattice magnetization of the collinearof Japan.
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