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We propose a magnetically disordered ground state for a frustrated quantum antiferromagnet. This disor-
dered state is an array of spin singlets spontaneously formed on four spin plaquettes. Both perturbation results
and bond-operator calculations show that this phase has lower energy than the columnar dimer state. Analysis
of available numerical data on finite clusters also supports the conclusion that this state is realized at interme-
diate frustrations.@S0163-1829~96!06837-3#

Frustrated two-dimensional quantum magnets have been a
fascinating topic of numerous studies over the past decade.
The interest has primarily focused on melting of long-range
magnetic order and the appearance of disordered phases at
T50 as a result of enhanced quantum fluctuations. The sim-
plest spin system having such a type of behavior is a frus-
trated square-lattice Heisenberg model with the nearest-
neighbor antiferromagnetic exchangeJ1 and the second-
neighbor couplingJ2

H5J1(
NN

Si•Sj1J2(
2NN

Si•Sj . ~1!

Analysis within the linear spin-wave theory reveals that for
weak frustration the model has a Ne´el ground state, while for
strong frustration spins are ordered at wave vector (p,0) or
(0,p) ~stripe or collinear state!. For any finiteS there is a
region around the classical critical pointJ2 /J150.5 where
sublattice magnetization vanishes.1 This result raises a ques-
tion about the ground state for intermediate frustrations
which may be nonmagnetic and represent a kind of two-
dimensional spin liquid.

Subsequent theoretical works have considered the prob-
lem of the intermediate phase of the frustrated antiferromag-
net Eq.~1! mainly from three different points of view. The
first group includes exact diagonalization studies on finite
clusters, which clearly show existence of a disordered spin
state in the region 0.4,J2 /J1,0.65, though a final conclu-
sion about its nature has not been reached.2,3 The second
group of works address the problem by calculating higher-
order 1/S corrections either in the framework of the modified
spin-wave theory or using the Schwinger boson mean-field
calculations.4,5 Both approaches predict enhanced stabilities
for the Néel and the collinear states resulting in a finite over-
lap of the magnetically ordered phases. Second-order correc-
tions to the mean-field solution, on the other hand, suggest a
small window 0.52,J2 /J1,0.57 between the two ordered
states forS5 1

2.
6

The third group of works explore one particular possibil-
ity for the disordered ground state—a valence-bond crystal
with broken translational symmetry and a finite gap in the

excitation spectrum. Investigation of a nearest-neighbor SU
(N) antiferromagnet in theN@1 limit has led to the conclu-
sion about spontaneous columnar dimerization in the ground
state.7 Subsequent calculations for the spin-1

2 Hamiltonian
Eq. ~1! using series expansion8 and boson techniques9 sup-
ported stability of this phase aroundJ250.5J1. Cluster re-
sults for dimerized susceptibility also yield its noticeable in-
crease in the intermediate region.2,3

In this paper we propose a valence-bond crystal ground
state of a frustrated spin-12 antiferromagnet Eq.~1!. This is
the plaquette state shown in Fig. 1~a!. We calculate its en-
ergy by two methods and find that it is lower than for the
columnar dimerization@Fig. 1~b!# in the same approxima-
tion. Then, by considering relevant order parameters, we
show that the existing numerical data on the 636 cluster3

are, as a matter of fact, in favor of this state.
Two types of magnetically disordered singlet ground

states have been widely discussed for a quantum square-
lattice antiferromagnet. The first one is a featureless
resonating-valence-bond~RVB! spin-liquid with long- or
short-range correlations.10 The second proposal is a spin-
Pierls order of valence bonds which are frozen and break
lattice symmetries.7 There is also an intermediate situation:
valence bonds resonate in finite spin blocks, which in the
simplest case contain four lattice sites. This type of a disor-
dered spin phase has earlier appeared as an unstable solution

FIG. 1. ~a! plaquette-RVB and~b! columnar dimer ground
states; bold lines denote stronger spin bonds.
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for the nearest-neighbor SU(N) antiferromagnet which be-
comes degenerate with the columnar dimer state in the
N→` limit only.11 Considering the physical SU(2)-spin
model with frustration Eq.~1! we come to the opposite con-
clusion about the energies of the two valence-bond crystals.

Similarly to discussion of dimerized phases, the first step
is to investigate a restricted Hamiltonian of four spins on a
square plaquette:

Hplq5J1~S11S3!•~S21S4!1J2~S1•S31S2•S4!. ~2!

This Hamiltonian is easily diagonalized. The ground level
for J2,J1 is a singlet characterized by the quantum numbers
S135S2451 with the energyEs522J11

1
2J2. Its wave func-

tion is us&5(1/A3) (@1,2#@4,3#1@1,4#@2,3#), where square
brackets denote the singlet bond of a spin pair. This state can
be considered as a RVB-like state in a four-spin subsystem
with energy lower than for a frozen dimer configuration, e.g.,
@1,2#@4,3#. Excited levels are three tripletsuta&, upa&, uqa&
(a5x,y,z), Et52J11

1
2J2, Ep5Eq52 1

2J2, a quintet
udn& (n51, . . . ,5), Ed5J11

1
2J2, and another singlet

us8&5@1,2#@4,3#2@1,4#@2,3#, Es852 3
2J2, which crosses

with us& and becomes the ground state forJ2.J1.
Four spin singlets form a plaquette covering of a two-

dimensional lattice. Previously, the plaquette-RVB state has
been predicted for the disordered two-dimensional magnet
CaV4O9, which is described by a spin-1

2 Heisenberg model
on a 1/5-depleted square lattice.12 In that case singlets corre-
spond to spin blocks chosen by the lattice geometry. For the
translationally invariant Hamiltonian Eq.~1! periodic array
of plaquette singlets appears spontaneously. The ground state
has in this case fourfold degeneracy determined by broken
translations along two sides and diagonal of an elementary
square. Using simple rules for products of dimer coverings10

one can show that the overlap between the two states in Fig.
1 formed by pure singlets decreases to zero as (A3/2)N/4 with
increasing number of spinsN. Consequently, the plaquette
state cannot be represented as a superposition of two column
states rotated by 90° with respect to each other. Later, we
consider spin order parameters, which have different values
for the two disordered phases.

Since the Hamiltonian Eq.~1! includes interaction of
spins from different blocks, the ground state does not coin-
cide with a simple product of block singlets and nonzero
expectation valueŝ Si•Sj& appear between all nearest-
neighbor pairs. To compare energies of the columnar dimer
and the plaquette-RVB phases we use a boson technique
suited for perturbative analytical expansion around the local
spin singlets. It was used previously to study dimerized
phases.9 We first generalize this method by deriving simul-
taneously boson representations for dimer and plaquette
spins and then calculate energies of the two states in the
mean-field approximation.

Let us consider an arbitrary spin block with singlet
ground state and excited levels denoted byum&. A spinSn in
a block is expressed in terms of the basis states by

Sn5^muSnun&Zmn,

whereZmn is the projection operatorum&^nu, n is a local spin
index inside the block, and the global block index in the
lattice i is omitted for brevity. We derive first the matrix

elements in a subspace of the ground-state singlet and the
lowest triplet states. These states form a complete set for
dimers, whereas for plaquettes this is only a part of the local
basis. Later, we partially take into account higher-energy
states of plaquettes. Rotational invariance in spin space and
time-reversal symmetry give

^suSn
aus&50, ^suSn

autb&5dabAst
n ,

^tauSn
butg&5 ieabgAtt

n ,

whereeabg is the totally antisymmetric tensor andAst
n Att

n

are real constants. Using the explicit forms of singlet and
triplet wave functions one straightforwardly gets
Ast
n 5(21)n/2, Att

n51/2 for dimers, and Ast
n 5(21)n/

A6, Att
n51/4 for plaquettes. Let us now define the vacuum

u0& and four boson operators which yield the four physical
states byus&5s1u0&, uta&5ta

1u0&. The projection operators
are expressed asZsta5s1ta , Z

tatb5ta
1tb , and so on. Block

spins represented via these boson operators are

Sn
a5

~21!n

2
~s1ta1ta

1s!2
i

2
eabgtb

1tg , for dimers,

~3!

Sn
a5

~21!n

A6
~s1ta1ta

1s!2
i

4
eabgtb

1tg , for plaquettes.

Spin commutation relations are satisfied in the chosen sub-
space as long as the boson representation preserves the alge-
bra of the projection operators:ZmnZm8n85dm8nZ

mn8. This
requirement restricts the boson occupation numbers:

s1s1(
a

ta
1ta51. ~4!

With this constraint the Hamiltonian of a single block, a
dimer or a plaquette, takes a form,HB5Ess

1s1Etta
1ta .

The simplest way to deal with Eq.~4! is to impose it as ‘‘a
constraint in average’’ enforced by a chemical potential.

Further calculations follow closely the work by Sachdev
and Bhatt.9 Using Eq.~3! we rewrite the Hamiltonian Eq.~1!
in terms of bond operators for each of the two phases and
assume a site-independent chemical potentialm and conden-
sate of singlets^si&5 s̄. Interaction terms in the boson
Hamiltonian are classified by the number of triplet operators
tak . It can be shown that the terms with three and four triplet
operators affect the results only slightly.9 Therefore, we omit
them and after diagonalization of the quadratic form deter-
mine the parametersm and s̄ through the saddle-point equa-
tions

]Egs/]m50, ]Egs/] s̄50. ~5!

The system is in a magnetically disordered phase if the gap
in the excitation spectrum is positive. Vanishing of the gap
leads to a condensation of triplet excitations:^t ia&Þ0. Note,
that this does not mean transition, e.g., to the usual Ne´el
state, since spontaneous dimerization of bonds will be pre-
served in such an ordered phase.

For the columnar dimer state we recover the results of
Ref. 9. This state is stable in the region 0.19,J2 /J1,0.66.
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For the plaquette phase analogous treatment would underes-
timate the energy because of the neglection of the higher-
lying states of the plaquette. Among the other excited levels
the most significant energy corrections are given by higher
triplets which have nonzero matrix elements with the ground
state for spin operators. Extending calculations preceding Eq.
~3! to these excited triplets we find the following representa-
tion of spins in each plaquette:

S1,3
a 5

1

A6
~s1ta1ta

1s!6
1

2A3
~s1pa1pa

1s!,

~6!

S2,4
a 52

1

A6
~s1ta1ta

1s!6
1

2A3
~s1qa1qa

1s!,

with the constraint Eq. ~4! being changed to
s1s1(a(ta

1ta1pa
1pa1qa

1qa)51. According to the qua-
dratic approximation we have omitted in Eq.~6! products of
two triplet operators. The boson Hamiltonian obtained with
this substitution can be further simplified by keeping inter-
action terms with only one of the higher tripletspa and
qa . Physically, this means that we take account of higher-
lying triplets only via scattering of lowest excitations on
them. As a result, one mode in the upper band remains con-
stant, while the other acquires a finite dispersion.

Solution of the saddle-point equations~5! gives us param-
etersm and s̄, from which we calculate energy and spin gap
of the plaquette-RVB phase. This disordered state is locally
stable for J2.0.08J1. For large frustrations the stability
boundary of this phase lies atJ2.0.8J1, well inside the re-
gion where the collinear state is expected to appear. This
boundary cannot be determined correctly in our approxima-
tion as it depends crucially on the behavior of the neglected
higher singlet. Therefore, we restrict ourselves to the region
J2<0.7J1. At J250.5J1, the gap of the plaquette state is
Dplq50.85J1, while for the column stateDdmr50.74J1. The
results for the energies of these two phases in units ofJ1 are
presented in Fig. 2 by solid lines. In addition to significantly

wider region of stability, the plaquette phase has lower en-
ergy than the dimerized state forJ2,0.58J1. At J250.5J1
the difference between the two energies,Eplq520.466 and
Edmr520.456, is about 2%.~Without higher triplets
Eplq520.458.! Thus, the bond-operator formalism predicts
the plaquette-RVB state instead of the columnar dimer state
as the intermediate phase of the frustrated antiferromagnet
Eq. ~1!.

Another way to estimate analytically the energies of the
two valence-bond states is the second-order perturbation ex-
pansion starting from the singlets either on dimers or on
plaquettes. This approximation corresponds to the first two
nonzero terms in the series expansion method.8 The results
are shown in Fig. 2 by dashed lines. AtJ250.5J1 the differ-
ence betweenEplq520.63 andEdmr520.492 is much big-
ger than in the bond-operator scheme. Though significant
corrections are expected in higher orders of series expan-
sions, these calculations agree with our proposal of the
plaquette state for the ground state of the Hamiltonian Eq.
~1!.

Both results for the energies of the two disordered phases
have been obtained by approximate analytical methods and,
hence, may be questioned. We, therefore, now discuss how
to distinguish the column and the plaquette phases in exact
numerical diagonalization studies. The key step is to con-
struct appropriate order parameters, which measure non-
equivalence of spin bonds in a disordered state. A set of such
spin operators have been proposed by Sachdev.13 The ap-
pearance of the column phase has been tested2,3 by using the
parameter

C i5Si•@~21! i x~Si2 x̂2Si1 x̂!1 i ~21! i y~Si2 ŷ2Si1 ŷ!#.
~7!

This operator is proportional to 1,i , 21, and2 i for the four
degenerate column states. On the other hand, for the four
plaquette statesC i equalse

ip/4, ei3p/4, 2eip/4, and2ei3p/4

up to a constant factor. Since in numerical studies on finite
systems one measures only the correlation function
xc51/N2^u( iC iu2&, it is impossible to distinguish the two
states by observing an anomaly inxc(J2). To overcome this
problem another order parameter should be considered

F i5Si•~Si1 ŷ1Si2 ŷ2Si1 x̂2Si2 x̂!. ~8!

For the four column statesF i has values 1,21,1, and21,
whereas it becomes zero for each of the plaquette states.
Consequently, the two crystalline valence-bond states can be
distinguished by measuring two quantatiesxc andxf simul-
taneously. The parameterF i coincides with the magnetic
structure factor at the wave vector (p,0) and has been stud-
ied to check the difference between the two ordered mag-
netic phases:F i[0 in the Néel state,F iÞ0 in the collinear
state. Thus, numerical results for bothxc and xf are cur-
rently available. We refer to the most reliable data obtained
on the 636 cluster. Figure 3 of Ref. 3 plots two correlation
functionsxc(J2) and xf(J2). It is clearly seen that at the
peak point ofxc(J2) the other function differs only slightly
from its value atJ250, whereasxf(J2) starts to increase
simultaneously with the decreasing ofxc . This observation
is direct evidence of the plaquette-RVB ground state for the
model ~1! at intermediate frustrations.

FIG. 2. Energies~in units ofJ1) of ~a! columnar dimerized and
~b! plaquette-RVB phases calculated by bond-operator technique;
~c! and ~d! for the same phases by the second-order perturbation
theory.
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We now turn to physical consequences of the translational
symmetry breaking in a magnetically disordered ground
state. The first property we address is a nature of the phase
transitions atT50. If transformation from such a disordered
state to a spin ordered state, e.g., to the Ne´el state, is con-
tinuous, the usual group-subgroup relations should be satis-
fied for symmetry groups of the two phases. However, this is
not the case for the Ne´el and the plaquette~or columnar
dimer! states, since neither the former has a higher symmetry
than the latter~because of the absence of rotational invari-
ance in spin space!, nor is the latter more symmetric than the
former ~due to translational symmetry breaking!. Analogous
arguments are applied to the transition into the collinear
state. Thus, the magnetically disordered ground-state region
of the model ~1! is bounded by two points of first-order
transitions. This conclusion explains diverse estimates of its
width4–6,8,9 found by studyingstabilities of the different
phases.

Finally, we comment on the finite temperature behavior of
valence bond crystals. As they break only the discrete lattice
symmetries, there should be transition from the symmetric
paramagnetic phase with decreasing temperature. An analo-
gous conclusion for the collinear state has been reached in
Ref. 14. The difference between these two cases lies in the
symmetry properties of the corresponding order parameters.
At TÞ0, when sublattice magnetization of the collinear

phase vanishes, the order parameter is a soft Ising-type quan-
tity F i having values11 and21 on each lattice site. In this
case only the rotational lattice symmetry is broken in the
low-temperature phase. Singlet formation in the bond crys-
talline phases is accompanied by translational symmetry
breaking and corresponds tokÞ0. Bond strength modula-
tions appear at wave vectors (p,0) or (0,p) for the columnar
dimerization and the spin bond order parameter has two
components:Si•(Si2 x̂2Si1 x̂) andSi•(Si2 ŷ2Si1 ŷ). For each
of the four column phases only one component is nonzero.
The plaquette state also corresponds to these wave vectors
having both components nonzero at the same time. One can
straightforwardly construct a two-component Landau free-
energy functional for this irreducible representation and
show that the choice between (1,0) and (1,1) symmetries is
determined by minimization of the ‘‘anisotropic’’ fourth-
order term. Our calculations for the energies of these two
states at T50 suggest that the minimum occurs for
(61,61) states.
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