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The equation for the charge vertexg of the t-J model is derived and solved in leading order of a 1/N
expansion, working directly in terms of Hubbard operators. Various quantities which depend crucially ong are
then calculated, such as the lifetime and the transport lifetime of electrons due to a charge coupling to other
degrees of freedom and the charge-charge correlation function. Our results show that the static screening of
charges and the dynamics of charge fluctuations depend only weakly onJ and are mainly determined by the
constraint of having no double occupancies of sites.@S0163-1829~96!06737-9#

The charge-fluctuation spectrum and the screening prop-
erties of thet-J model are largely determined by the charge
vertexg(k,q). Here,k denotes both the momentumk of an
electron and the Matsubara frequencyivn . Similarly, q
stands for the transferred momentumq and the frequency
inn . A simple interpretation ofg has been given in Ref. 1: It
multiplies the bare electron-phonon interactiong(k,q) to
yield an effective electron-phonon interaction which takes
into account screening effects due to the constraint of no
double occupancies of sites. Another property ofg is that its
poles in the second frequency argument determine the dis-
persion of collective density waves and thus is an important
ingredient for the density-density correlation functionD(q).
For the caseJ50 the properties of the static vertexg has
been investigated in Refs. 1 and 2. In particular, it has been
shown thatg exhibits a strong momentum dependence inq
at low frequencies and small and intermediate dopings which
tends to suppress the effective electron-phonon interaction in
the tt8 model ~t and t8 denote hopping integrals between
nearest- and second-nearest neighbor sites, respectively!.
This effect is especially pronounced in transport quantities.
The frequency dependence ofg andD has been investigated,
again forJ50, in Ref. 3. There it has been shown thatD is
nearly exclusively determined by collective effects and has
an energy scale substantially larger than the effective band-
width, in agreement with computer simulations.4 The pur-
pose of this communication is to extend the above results to
the t-J model and to investigate to what extent the above
properties ofg andD depend onJ.

The Hamiltonian of thet-J model reads
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The subscriptsi , j stand for lattice sites; the superscriptsp,q
denote forp50 the unoccupied and forp51, . . . ,N singly
occupied states with a spin indexp. This means that the
original SU~2! spin space has been extended to a SU(N)

space which is a well-known procedure in slave-boson
calculations.5 The Hubbard operatorsX i

pq with p50, q50
and p.0, q.0 have bosonic and those withp50, q.0 or
p.0, q50 have fermionic character. They obey the follow-
ing commutation and anticommutation rules, respectively,
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In the SU(N) model, considered here, theX operators are
subject to the constraint
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This means that at mostN/2 of theN states at each site can
be occupied at the same time. The first term in Eq.~1! de-
scribes the hopping of particles between the sitesi and j with
matrix elementst i j . The second term in Eq.~1! denotes the
Heisenberg interaction between the spin densities at sitei
and j with the exchange constantsJi j . In the following we
considerJi j only between nearest neighbors (Ji j5J) and t i j
between nearest (t i j5t) and next-nearest (t i j5t8) neigh-
bors. The coupling constants in Eq.~1! have been scaled
with N in such a way that the limitN→` describes an inter-
esting physical case and that forN52 the usualt-J model is,
except for an overall factor 1/2, recovered.

Using a 1/N expansion the Hamiltonian Eq.~1! has been
investigated forJ50 in Ref. 1 and, in more detail, in Ref. 2.
These treatments can be generalized to a finite value ofJ in
a straightforward way: The equation of motion for a fermi-
onic X operator is, using Eq.~1!,

]
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with
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2d~123!J~122!/2#/N. ~5!

Here, 1 is an abbreviation fori 1t1, i.e., 15~i 1t1!, wheret1
denotes the imaginary time.t~122! is equal to t i1i2d(t1
2t2) andJ~122! equal toJi1i2d(t12t2). The first term in

the parentheses on the right-hand side of Eq.~5! describes
hopping without flip of the spin whereas the second term
describes hopping with a spin flip. Comparing Eqs.~4! and
~5! with Eqs. ~9! and ~10! of Ref. 2, one finds that the
Heisenberg term inH just adds a contribution to the spin-flip
hopping term. The perturbation expansion in Ref. 2 rests on
two relations: The equation of motion for fermionic Hubbard
operators and Eq.~31! in Ref. 2 which relates expectation
values of bosonlike Hubbard operators to Green’s functions.
The first relation is modified by the Heisenberg term in the
above way, the second relation is unchanged. As a result, it
is straightforward to generalize the expressions for the self-
energy, the vertex, etc. in Ref. 2 to the case of a finiteJ.

Using the above procedure one obtains from Eq.~37! in
Ref. 2 the following expression for the self-energy inO~1! of
the t-J model:

S~122!5d~122!E d3t~123!g~3121!
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~6!

The normalized Green’s functiong ~denoted byG̃ in2! is
related toS via Dyson’s equation

E d3S 2d~123!
]

]t1
2S~123! Dg~322!5d~122!.

~7!

^X00~1!& is the expectation value ofX00~1!. BothS andg are
diagonal in the internal indices so we have omitted them in
the above equations. The self-energy in Eq.~6! is instanta-
neous giving rise to a frequency-independent, but
momentum-dependent renormalized one-particle energy
e~k!. After a Fourier transformation Eqs.~6! and ~7! yield
g~k,ivn!51/@ivn2j~k!# with

e~k!5D2q0t~k!2
1

2Nc
(
p
J~k1p! f „j~p!…. ~8!

Here we havej~k!5e~k!2m and D51/Nc(pt~p!f „j~p!…,
wheref is the Fermi function,Nc is the number of primitive
cells, andq05d/2 with the dopingd.

Taking the Heisenberg interaction also into account the
vertex equation~39! in Ref. 2 becomes

G̃~12;3!5d~122!d~123!1t~122!E d5d6g~125!G̃~56;3!g~6211!
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Writing G̃~12;3!5g~122, 123! Eq. ~9! becomes after a Fou-
rier transformation
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Since thek dependence ofJ andt are given by trigonometric
or products of trigonometric functions Eq.~10! represents an
integral equation with a kernel consisting of six separable
contributions. Equation~10! thus can be reduced to a 636
matrix equation with the solution
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The vectorsF andG are given by

Fa~k!5@ t~k!,1,Jcoskx ,Jsinkx ,Jcosky ,Jsinky# ~13!

and

Ga~k,q!5@1,t~k1q!,coskx ,sinkx ,cosky ,sinky#P~k,q!
~14!

with P(k,q)52g(k)g(k1q). The frequency sum in Eq.
~12! involves onlyP and can easily be carried out:

(
n8

P~k8,q!5
f „j~q1k8!…2 f „j~k8!…

j~k8!2j~q1k8!2 inn
. ~15!

Calculation ofg(k,q) thus requires essentially the calcula-
tion of the susceptibility matrixxab(q). For J50 the matrix
inversion in Eq.~11! can be done explicitly and one obtains
Eqs. ~12!–~15! of Ref. 2. In contrast to this special case,
g(k,q) depends forJÞ0 also on the vectork for a given
doping.

The Green’s functionD̃(q) for density fluctuations is
given by
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D̃~q!5
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Using Eq.~11! we obtain
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Carrying out the analytic continuationivn→v1 ih the
density-density correlation functionD~q,v! is equal to the
negative imaginary part ofD̃~q,v1ih!.

We have evaluated numerically the susceptibility matrix
xab(q) using a typical mesh of 100031000 points in the
Brillouin zone for the summation overk8. Figure 1 shows
results for the zero-frequency vertexg~k,q! for J50.2, t850
~all energies are in units of the nearest-neighbor hopping
energyt! and three different dopingsd. For each dopingk is
put on the Fermi line in the~1,1! direction andq is varied
along the~1,1! direction from zero to the maximal momen-
tum transfer for points on the Fermi line. Figure 1 should be
compared with Fig. 1 of Ref. 1 where a similar plot forg is
given for the caseJ5t850. ~The momentum scale in that
reference should be scaled by a factor& in order to have the
same absolute scale!. The figures clearly show that the
main property of the vertex found in Ref. 1 forJ50 is also
present forJ50.2: For large dopingsg varies only smoothly
with momentum whereas at smaller dopingsg develops a
forward scattering peak with a width;d due to a strong
suppression of large momentum transfers. This implies that
the effective charge interaction of electrons with other de-
grees of freedom~impurities, phonons, etc.! is essentially the
bare one at small but heavily suppressed at large momenta.
The curve ford50.10 in Fig. 1 shows a new feature: It
passes through zero at a small momentum which means that
the effective interaction is exactly zero at this point due to
correlation effects. With increasing momentum it goes
through a minimum with a negative value and approaches
zero from below at large momenta. A similar, but less pro-
nounced behavior, has been found2 in the one-dimensionalt
model and in the two-dimensionaltt8 model with a finitet8.
Finally, we have chosen in Fig. 1 a rather small value forJ

and not too small values ford in order to avoid singularities
in g due to instabilities of the homogenous phase.5

The above vertex function allows us to answer the follow-
ing question: How much are the inverse lifetime 1/t and
inverse transport lifetime 1/ttr of an electron affected by
electronic correlations if the coupling of the electron to ad-
ditional degrees of freedom~phonons, impurities, etc.! is due
to the interaction of charges? The answer becomes especially
simple if one assumes that the bare coupling function is
structureless, i.e., is independent of momentum and fre-
quency. In Ref. 2 is has been shown that the quantitiesL1,Ltr
defined by

L15C!
ug~k,k2k8!u2

q0
.k.k8 , ~18!

L tr5C!
ug~k,k2k8!u2

q0

3@v~k!2v~k8!#2.k.k8 /~2!v2~k!.k.k8 ,

~19!

describe changes in the inverse lifetime 1/t @or, in the Eliash-
berg functiona2F~v! for s-wave superconductivity# and the
inverse transport lifetime 1/ttr due to correlation effects. The
overall factorC is chosen such thatL15Ltr51 for d→1, i.e.,
the empty band limit. Ifg in Eqs.~18! and~19! depends only
weakly on momentum we haveL1;Ltr . On the other hand,
if g is nonzero only fork;k8 Ltr is much smaller thanL1.
Figure 2 showsL1 andLtr as a function ofd for J50.3 and
t8520.25. With decreasing dopingL1 and Ltr first pass
through a maximum at aroundd;0.8 and then decrease
monotonically by around a factor 2 and 4, respectively, until
d;0.2. The more and more pronounced appearance of a for-
ward scattering peak ing at still smaller dopings would
cause a further decrease inL1 andLtr and especially in the
ratio Ltr/L1. However, we exclude this low-doping region
from our considerations because of the occurrence of insta-
bilities of the homogenous phase in that region. Figure 2
suggests that correlation effects suppressL1 and, even stron-
ger,Ltr , moving from the overdoped towards the maximal
doped regime. Figure 10 in Ref. 2 presents results forL1 and
Ltr and for ~using our energy units! J50 and t8520.20.
Comparing this figure with our present Fig. 2 one concludes

FIG. 1. Zero-frequency vertex functiong~k,q! as a function of
aq with k fixed on the Fermi line along the~1,1! direction for three
dopingsd.

FIG. 2. Correlation-induced enhancementsL1 andLtr as a func-
tion of dopingd for J50.3 andt8520.25.
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thatL1 andLtr depend only very weakly onJ. ~The addi-
tional interpretation of the quantityd•Ltr as being propor-
tional to the resistivity in Ref. 2 should be dropped since the
Drude weight entering the static part of the resistivity de-
pends strongly ond and the resistivity near half-filling is
characterized byLtr/d rather than byLtr•d!.

Figure 3 shows the density-density correlation function
D~q,v! for J50.1 ~left panel! and J50.3 ~right panel! for
various momentaq. Curves corresponding to the same mo-
mentum practically coincide with each other demonstrating
thatD~q,v! and thus also the dynamic part of the vertex are
nearly independent ofJ. This implies thatD is dominated by

collective effects in the form of an infinitely sharp, disper-
sive sound peak also in the presence of the Heisenberg inter-
action. This peak has been broadened in Fig. 3 by using a
finite value of 0.1 forh. The energy of this peak is in general
much larger than the width of the renormalized band~which
is 0.96 forJ50.1 and 1.28 forJ50.3!. The contribution of
the particle-hole continuum toD is nearly invisible if the
sound peak is well above the particle-hole spectrum like, for
instance, in the caseq5~p,p!. In the other cases likeq5~2p/
5,p/5!, ~p/5,3p/5!, or ~p,0! the collective peak is not so well
separated from the particle-hole continuum andD has struc-
ture also at the low-frequency reflecting density of states of
single particle-hole excitations. The absence of a noticeable
dependence of the peak position onJ as well as the quite
different energy scales for charge and spin fluctuations3 re-
mind one of the spin-charge separation found in one-
dimensional models.

In conclusion, the equation for the charge vertexg of the
t-J model has been derived in leading order of an 1/N ex-
pansion, reduced to a 636 system of linear equations, and
solved numerically. Our results for the momentum and fre-
quency dependence ofg show only a weak dependence onJ.
We also discussed various properties which depend sensi-
tively on g, namely, the effect of correlations on the inverse
lifetime and the inverse transport lifetime of electrons and
the dynamics of charge fluctuations. Our conclusion is that
these quantities depend only weakly onJ and are mainly
determined by the constraint of having no double occupan-
cies of sites. These findings are consistent with recent exact
numerical results from small clusters.4,6
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FIG. 3. Density-density correlation functionD~q,v! as a func-
tion of energyv for d50.2 andJ50.1 ~left panel! andJ50.3 ~right
panel! usingh50.1.

8988 54BRIEF REPORTS


