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Statics and dynamics of charge fluctuations in thé-J model
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The equation for the charge vertexof the t-J model is derived and solved in leading order of &l 1/
expansion, working directly in terms of Hubbard operators. Various quantities which depend crucipliyen
then calculated, such as the lifetime and the transport lifetime of electrons due to a charge coupling to other
degrees of freedom and the charge-charge correlation function. Our results show that the static screening of
charges and the dynamics of charge fluctuations depend only weaklyand are mainly determined by the
constraint of having no double occupancies of sif€8163-18206)06737-9

The charge-fluctuation spectrum and the screening propspace which is a well-known procedure in slave-boson
erties of thet-J model are largely determined by the chargecalculations. The Hubbard operator¥ P9 with p=0, q=0
vertex y(k,q). Here,k denotes both the momentukof an  and p>0, q>0 have bosonic and those wifh=0, g>0 or
electron and the Matsubara frequeniy,. Similarly, g p>0, q=0 have fermionic character. They obey the follow-
stands for the transferred momentugnand the frequency ing commutation and anticommutation rules, respectively,
iv,. A simple interpretation ofy has been given in Ref. 1: It
multiplies the bare electron-phonon interactigtk,q) to
yield an effective electron-phonon interaction which takes
into account screening effects due to the constraint of n
double occupancies of sites. Another propertyyas$ that its
poles in the second frequency argument determine the di
persion of collective density waves and thus is an important
ingredient for the density-density correlation functiofq). N
For the casel=0 the properties of the static vertexhas 2 pr_ﬂ

p=0 ' 2

[XP9 X715 = 65 (8 XP*+ 85pXi?). 2

?n the SUN) model, considered here, th€ operators are
Subject to the constraint

)

been investigated in Refs. 1 and 2. In particular, it has been
shown thaty exhibits a strong momentum dependencejin
at low frequencies and small and intermediate dopings whiciThis means that at mo$t/2 of the N states at each site can
tends to suppress the effective electron-phonon interaction ibe occupied at the same time. The first term in Bg.de-
the tt’ model (t andt’ denote hopping integrals between scribes the hopping of particles between the sitsdj with
nearest- and second-nearest neighbor sites, respettivelynatrix elementd;; . The second term in Eq1) denotes the
This effect is especially pronounced in transport quantitiesHeisenberg interaction between the spin densities ati site
The frequency dependence pandD has been investigated, andj with the exchange constands . In the following we
again forJ=0, in Ref. 3. There it has been shown titatis considerJ;; only between nearest neighboig; & J) andt;;
nearly exclusively determined by collective effects and hashetween nearestt(=t) and next-nearestt{=t') neigh-
an energy scale substantially larger than the effective bandsors. The coupling constants in E(L) have been scaled
width, in agreement with computer simulatichhe pur-  with N in such a way that the limil—c describes an inter-
pose of this communication is to extend the above results testing physical case and that f=2 the usuat-J model is,
the t-J model and to investigate to what extent the aboveexcept for an overall factor 1/2, recovered.
properties ofy andD depend onJ. Using a 1N expansion the Hamiltonian E¢l) has been
The Hamiltonian of thé-J model reads investigated fod=0 in Ref. 1 and, in more detail, in Ref. 2.
These treatments can be generalized to a finite valukeiof
a straightforward way: The equation of motion for a fermi-

t. J:. X X .
H=— ; ﬁ XPOXOP+ ; ﬁ XPIXIP, onic X operator is, using Eq1),
p=1,...] N p,g=1, ... N
d Op: p202 Oq
(1) ﬁxo‘*(l): 3 d2d3t< 11 222 33
The subscripts,j stand for lattice sites; the superscripts) ! P2.92.43
denote forp=0 the unoccupied and fgv=1, ... N singly X XP292(2)X093(3) (4)

occupied states with a spin indgx This means that the
original SU2) spin space has been extended to a JU( with
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0g; p202 0qs N
t( 1 3):5(1—2)5p205q205q1q3t(1—3)/|\| 2(1—2)=5(1—2)Jd3t(1—3)g(3 -1
* 8p,049,0,L 6(1=2)1(1=3) —t(1—2)<XOO(1))—¥g(1—2).
—8(1-3)J(1-2)/2]IN. (5) ©

The normalized Green’s functiog (denoted byG in?) is
Here, 1 is an abbreviation fdgr, i.e., 1=(i;7,), wherer;  related toX via Dyson’s equation
denotes the imaginary time(1-2) is equal tot; ; 6(7; P
—75) andJ(1-2) equal toJ; ; 8(m,— 7). The first term in d3( —6(1-3) (9—7_1—2(1—3) 9(3—2)=46(1-2).
the parentheses on the right-hand side of &g.describes (7)
hoppi_ng Withou_t flip pf the s_pin_ whereas the second term<xoo(1)> is the expectation value o€%(1). Both3, andg are
describes hopping with a spin flip. Comparing E¢®.and  giagonal in the internal indices so we have omitted them in
(5) with Egs. (9) and (10) of Ref. 2, one finds that the the above equations. The self-energy in Eg).is instanta-
Heisenberg term il just adds a contribution to the spin-flip neous giving rise to a frequency-independent, but
hopping term. The perturbation expansion in Ref. 2 rests omomentum-dependent renormalized one-particle energy
two relations: The equation of motion for fermionic Hubbard e(k). After a Fourier transformation Eq$6) and (7) yield
operators and Eq31) in Ref. 2 which relates expectation 9(K,iwp)=1/[i w,—&Kk)] with
values of bosonlike Hubbard operators to Green’s functions. 1
The first relation is modified by the Heisenberg term in the e(k)=A—qot(k)— =— E J(k+p)f(&(p)). (8
above way, the second relation is unchanged. As a result, it 2N¢ “p
is straightforward to generalize the expressions for the selfijere we haveé(k)=e(k)—x and A=1NEt(p)f (&),
energy, the vertex, etc. in Ref. 2 to the case of a fidite  wheref is the Fermi functionN, is the number of primitive

Using the above procedure one obtains from &) in cells, andgo=6/2 with the dopingé.

Ref. 2 the following expression for the self-energydfl) of Taking the Heisenberg interaction also into account the
thet-J model: vertex equatior(39) in Ref. 2 becomes

1'(12;3)= 5(1—2)5(1—3)+t(1—2)f d5d6g(1—-5)I(56;3)g(6—1")

J(1

_2) J _ .
d5d6g(1—5)T(56;3)g(6—2). (9)

+5(1—2)f dadsd6t(1—4)g(4—5)T(56;3)g(6—1)— 5

Writing f(12;3)=y(1—2, 1-3) Eq. (9) becomes after a Fou- The vectorss andG are given by

rier transformation
Fo(K)=[t(k),1,Jcok,,Jsink, ,Jcok, ,Jsink,] (13)

T
7’(k,Q)=1+N— > (t(k)+t(k’+q) and
c k'
G.(k,q)=[1t(k+q),cok,,sirk,,cok, ,sinkJII(k,q)
g(k")g(k’+q)y(k',q). (10 (14
with TI(k,q)=—-g(k)g(k+q). The frequency sum in Eq.

Since thek dependence af andt are given by trigonometric  (12) involves onlyIl and can easily be carried out:
or products of trigonometric functions E(L.0) represents an
_ f(&(q+Kk")—f(&(k"))

J(k—K")
2

integral equation with a kernel consisting of six separable ,

contributions. Equatiorg10) thus can be reduced to a<6 2 (K )= K)—&(a+K ) —iv." (15
, - =9 ; o &(k")—&(qtk’)—iv,

matrix equation with the solution

Calculation of y(k,q) thus requires essentially the calcula-

6 6 1 tion of the susceptibility matrix,(q). For J=0 the matrix
y(k,q)=1~- 21 Fa(k) 21 [Sapt x(A)]apxp2(q), inversion in Eq.(11) can be done explicitly and one obtains
“ p= Egs. (12—(15) of Ref. 2. In contrast to this special case,

(1) vk,q) depends forJ#0 also on the vectok for a given
doping. _
Xaﬁ(q)ZE Ga(K',q)F 5(K'). (12) The Green’s functionD(q) for density fluctuations is
K/ given by
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tion of doping 6 for J=0.3 andt’=—0.25.
FIG. 1. Zero-frequency vertex functiop(k,q) as a function of

dopingsé. in y due to instabilities of the homogenous phase.
The above vertex function allows us to answer the follow-

~ T ing question: How much are the inverse lifetimer Hnd
D(q)—v % vk, a)II(k,q). (16) inverse transport lifetime 3 of an electron affected by
. _ electronic correlations if the coupling of the electron to ad-
Using Eq.(11) we obtain ditional degrees of freedofphonons, impurities, etcis due

to the interaction of charges? The answer becomes especially
~ 1 simple if one assumes that the bare coupling function is
D(q)——ﬁzl [1+x(@]1pxp2(9)- A7 structureless, i.e., is independent of momentum and fre-
guency. In Ref. 2 is has been shown that the quantitied,,
Carrying out the analytic continuationw,—w+i7n the  defined by
density-density correlation functiob(q,) is equal to the
negative imaginary part db(q,w+i 7). |y(k,k—k")|?

6

We have evaluated numerically the susceptibility matrix Aq=C< do KK (18)
Xop(Q) using a typical mesh of 10001000 points in the
Brillouin zone for the summation ovek’. Figure 1 shows |y(k,k—k")|?
results for the zero-frequency vertegk,q) for J=0.2,t'=0 Ay=C< q—
(all energies are in units of the nearest-neighbor hopping 0
energyt) and three different dopings For each doping is X[V(K) = V(K" )]?> >0 1(2<V3(K) > > s
put on the Fermi line in th€l,1) direction andq is varied (19

along the(1,2) direction from zero to the maximal momen-
tum transfer for points on the Fermi line. Figure 1 should bedescribe changes in the inverse lifetime [or, in the Eliash-
compared with Fig. 1 of Ref. 1 where a similar plot fpis  berg functionaF (w) for s-wave superconductivifyand the
given for the casd=t'=0. (The momentum scale in that inverse transport lifetime %/ due to correlation effects. The
reference should be scaled by a faat@iin order to have the overall factorC is chosen such that,=A, =1 for 6—1, i.e.,
same absolute scale The figures clearly show that the the empty band limit. Ify in Eqgs.(18) and(19) depends only
main property of the vertex found in Ref. 1 fdr=0 is also  weakly on momentum we havk;~A . On the other hand,
present forJ=0.2: For large dopingy varies only smoothly if vy is nonzero only fok~k’ A, is much smaller thar,.

with momentum whereas at smaller dopingdevelops a Figure 2 shows\; and A, as a function ofs for J=0.3 and
forward scattering peak with a width- & due to a strong t'=-0.25. With decreasing doping, and A, first pass
suppression of large momentum transfers. This implies thahrough a maximum at around~0.8 and then decrease
the effective charge interaction of electrons with other de-monotonically by around a factor 2 and 4, respectively, until
grees of freedoniimpurities, phonons, etcis essentially the 6~0.2. The more and more pronounced appearance of a for-
bare one at small but heavily suppressed at large momentaard scattering peak iry at still smaller dopings would
The curve for§=0.10 in Fig. 1 shows a new feature: It cause a further decrease Ay and A, and especially in the
passes through zero at a small momentum which means thedtio A,/A,. However, we exclude this low-doping region
the effective interaction is exactly zero at this point due tofrom our considerations because of the occurrence of insta-
correlation effects. With increasing momentum it goesbilities of the homogenous phase in that region. Figure 2
through a minimum with a negative value and approachesuggests that correlation effects supprégsnd, even stron-
zero from below at large momenta. A similar, but less pro-ger, A, moving from the overdoped towards the maximal
nounced behavior, has been fodrinl the one-dimensional  doped regime. Figure 10 in Ref. 2 presents results\foand
model and in the two-dimension&tl’ model with a finitet’. A, and for (using our energy unijsJ=0 andt’'=-0.20.
Finally, we have chosen in Fid a rather small value fat ~ Comparing this figure with our present Fig. 2 one concludes
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collective effects in the form of an infinitely sharp, disper-

J=0.1 J=0.3 sive sound peak also in the presence of the Heisenberg inter-
: : . ‘ action. This peak has been broadened in Fig. 3 by using a
06 302 GGUIED 06 802 a=CmsmS) finite value of 0.1 fory. The energy of this peak is in general
00 o~ 00 ; P much larger than the width of the renormalized bawtlich
06 1 ’ o8 ’ 1 is 0.96 forJ=0.1 and 1.28 fordJ=0.3). The contribution of

oor anoy | gg i - sz ] the particle-hole continuum t® is nearly invisible if the
A ,_/L sound peak is well above the particle-hole spectrum like, for

E-:‘;Z i ‘ @) | g‘; i ' @) | instance, in the casg=(,7). In the other cases likg= 27/

(= A ' JL 5,7/5), (7/5,3w/5), or (77,0) the collective peak is not so well
ool ‘ Twm | gg i ' T | separated from the particle-hole continuum &ndhas struc-
o J\¥ o0 A ture also at the low-frequency reflecting density of states of
ol ‘ Ty ol : “wo | single particle-hole excitations. The absence of a noticeable
0.6 0.6
00 ‘ ‘ 00 , , dependence of the peak position dras well as the quite
o 2.0 4.0 6.0 “o. . g ! i i 1

00 Energy o 0o 2E°nergy . 60 different energy scales for charge and spin fluctuafioas

mind one of the spin-charge separation found in one-
dimensional models.
In conclusion, the equation for the charge verieaf the
t-J model has been derived in leading order of aN &k-
pansion, reduced to ax® system of linear equations, and
) solved numerically. Our results for the momentum and fre-
that A; and A, depend only very weakly od. (The addi-  guency dependence gfshow only a weak dependence &n
tional interpretation of the quantity- A, as being propor- e also discussed various properties which depend sensi-
tional to the resistivity in Ref. 2 should be dropped since thejyely on y, namely, the effect of correlations on the inverse
Drude weight entering the static part of the resistivity de-jifetime and the inverse transport lifetime of electrons and
pends strongly orb and the resistivity near half-filling is the dynamics of charge fluctuations. Our conclusion is that
characterized by\,/6 rather than byA- 4. . _ these quantities depend only weakly dnand are mainly
Figure 3 shows the density-density correlation functiongetermined by the constraint of having no double occupan-

D(q,w) for J=0.1 (left pane} and J=0.3 (right pane] for  jes of sites. These findings are consistent with recent exact

mentum practically coincide with each other demonstrating
thatD(q,w) and thus also the dynamic part of the vertex are M.L.K. would like to thank Professor Michael Mehring
nearly independent &f. This implies thaD is dominated by  for support.

FIG. 3. Density-density correlation functidd(q,w) as a func-
tion of energyw for §=0.2 andJ=0.1 (left pane) andJ=0.3 (right
pane) using =0.1.
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