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Imaging material properties by resonant tapping-force microscopy: A model investigation
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The interaction of a cantilever performing a forced oscillation with a sample in a tapping-mode scanning
force microscope is investigated within a simple model. The tip together with the cantilever is modeled as a
periodically driven, damped harmonic oscillator. The viscoelastic sample is described by a friction force acting
on the tip while it is in contact and a harmonic potential. The penetration of the probe and the phase shift of
the oscillator due to contact with the sample are calculated for various sample parameters. In particular, an
approximate solution of the model equations for the phase shift is presented. Moreover, a relation between the
elastic constant of the model and the elastic modulus of a material is prege30&63-18206)04136-1

[. INTRODUCTION are concerned, the phase shift yields information comparably
to the changes in the amplitude.

Scanning force microscopySFM) has evolved to the The SFM images reflect the mechanical properties of the
most powerful surface analyzing tool over the last few yearssample averaged over the tip contact ardus the SFM
Many subfields developed, driven by the potential to image10t only allows one to detect structural features of a surface
surfaces with various physical properties down to moleculaPut also the mechanical properties of a sample on a nanom-
and atomic resolutioh? Various operating principles of eter scale. To extract the elastic constants from an image
SFM were designed in order to reduce surface destructioffauires a model which connects the measured changes in

and to image soft surfaces such as polymers and biologicif!® @mPplitude and/or the phase with the desired sample pa-

samples. Among these the so-called tapping-mode force mi@meters.

croscope minimizes surface contacts and lateral forces b%

periodically touching the surface with the cantileder. e interaction of a cantilever performing a forced oscillation
In a tapping-mode force microscope, the tip is externaIIyW'th a sample surface. The tip together with the cantilever is

driven with a frequency close to the resonance frequency ditodéled as a periodically driven, damped harmonic oscilla-
the oscillation in air. This frequency is high enough to touchtor- The viscoelastic sample is described by a friction force

a surface area comparable to the tip contact area severdfting on the tip while itis in contact and a harmonic poten-
times before moving the tip laterally. Moreover, the energy!i2! (elastic part The penetration of the sample, forces, and
of the cantilever-tip system is large enough to avoid sticking?@se shifts of the oscillator due to contact with the sample
of the tip to the surface. The vibrational amplitude assume&'® calculated for various sample parameters. The model cal-

values between 30 and 100 nm. The contact with the surfacglations are extensions of our previous investigations on the

reduces the amplitude. Usually, the tapping-mode force mil"fluence of forces on the sample in tapping mdtie.

croscope is operated in a constant amplitude mode, i.e., the 1N€ Paper is organized as follows: in Sec. Il the model is
amplitude is reduced until a feedback set point is reachedresented and the results are described in Sec. Ill.
The tapping-mode force microscope has successfully been
applied to investigate soft sampf&s. The deflection and
harmonic resonance frequency of commer®edhaped and
rectangular atomic force microscope cantilevers have been The tapping process during a cycle of the forced oscilla-
determined experimentally and theoretically by severation can be decomposed into two pafigthe tip is in air and
authors® (i) the tip is in contact with the sample. To keep the model
Recently tapping-mode force microscopes were develsimple, we will assume that the tip only interacts with the
oped which aside from the amplitude changes simultasurface when it is in contact, i.e., there are no long range
neously detect the phase shift between the free oscillation iattractive forces between the tip and the sample. The tip,
air and the oscillation while the tip is touching the surfacewhich is approximated by a mass point, experiences the fol-
during a period. As far as structural properties of a surfacéowing potential(see Fig. L

In this paper we present a simple model calculation for

Il. MODEL OF THE TAPPING MODE
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in air or in the sample within a period of oscillation, respec-
tively, we obtain two linear equations of motion with param-

viz) eters characterizing the cantilever or the combination of can-
tilever and sample, respectively. The solution of these
equations is given by

®)

z(t), z=0

\ Z(t) - ch(t), z<0 (7)

0 z z where

z.(t)=e" "[a.coq wtt) + b.sin wst)
FIG. 1. (@) Model of the forced cantilever oscillation. The can- ol [accosi v Si(wct) ]

tilever is approximated by a spring with spring constagtand +A.cofwt—ac)+7z, (8
quality factorQ.. z, is the equilibrium position in aicleft side.

The inertial part of the cantilever is described as a mass point with Z.(t)=e " [a, Lo wd) + beSin(wid)]

massm. On the right hand side the tip is in contact with the sample _

characterized by the spring constdgtand quality factorQ. (b) +AcsCoOg ot —agy) +7 . 9

Harmonic potentials experienced by the point masg- - -) Po-
tential describing the cantilever-. {-) Potential of the samplé—-)
Total potential of the cantilever-surface system.

The parameters of the combination of cantilever and sample
are w2.= w2+ 02 and y.s=y.+vs. The A; (i=c,cs) de-
note the amplitudes of the particular solutions of E§).

V(2)=Vy(2)+ Ve(20), (n gvenby
where A aw? w0
Ke I \/(wiz—wz)2+4yi2w2.
Ve(z)= E[Z_ZL(U]Z’ @ a; denotes the phase shifts
K 2y
V(2)= 522[1—(2)]. () tami—ﬁ- (13)

The cantilever is described as a harmonic spring with thé=inally, { is the eigenfrequency of the damped system
spring constank; and the time dependent equilibrium posi-

tion z, (t). Since the cantilever is periodically drivep(t) is wf=Voi =7, (12
given by and
z, (t)=2z +acog wt). 4 .
~ c
Here z (=0) denotes the average position of the driving ZL:;TZL (13

piezo crystal,w its frequency, and its amplitude of oscil- s

lation. ks denotes the spring constant of the sample@nig  the equilibrium position of the cantilever-sample system.

Heaviside's step function. The two solutions Eqs(.8) and (9) need to be combined in
The equation of motion of the mass in the potentialV ~ such a manner tha andz are continuous whenever the tip
[Eq. (1] is given by touches or leaves the surface. Together with the initial con-

dition these requirements determine the four coefficients
2() +{2y:+ 2y 1-O(2) }z() + 0 2(t) — 2, ] andb; . Since our original differential equatids) is nonlin-
T 0221~ O(2)]=awZcos ot). ®) ear, the coefficients; andb; depend on time.

As pointed out earlier, the total potentidl) is nonlinear
Aside from the elastic forces, this equation includes thedue to the presence of tif& function. This nonlinearity may
damping of the cantilever %= w./Q., where w, is the resultin a chaotic behavior of the tip for certain model pa-
eigenfrequency of the cantilever a}. its quality factor. rameters. However, we did not observe any trace of chaos for
The viscous part of the sample is taken into account by thé&® parameters used in our calculations. _
friction force 2ysz(t)[1—©(z)]. The friction constant can _Additionally, in real materials the interaction of the tip
also be related to the eigenfrequency of the samgland its ~ With the substrate is nonlinear, which we describe in the
quality factor Qg via 2ys= w</Qs. The eigenfrequencies Present paper by a harmonic potential. This is certainly a

themselves depend on the spring constants via crude approximation and is only used due to the lack of an
appropriate description of the tip-surface interaction, espe-

Ke ks cially for soft samples. A Lennard-Jones type potential may

o=V 2~ Vi (6) adequately be used for solid samples. However, for organic

substances other potentials should be more appropriate. The
Due to the presence of tHe@ function, Eq.(5) is nonlinear harmonic potential just serves as a first approximation to
and an analytical solutioffor all times cannot simply be investigate the principle mechanisms in the tip-substrate in-
given. However, during the time interval in which the tip is teraction of a tapping-force microscope.
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To compare our analytical solution with experimental re-
sults, we chose the parameters according to values used in ]
experiments. In detail, the tapping frequengyis set equal 10°-
to the resonance frequenay= w,=27340.575 kHz of the 3
cantilever in air and the spring constangt=50 N/m. The ]
amplitudea of the piezo oscillations and the quali§y, of T 1073
the cantilever are extracted from the resonance curve of the £ 3
cantilever in air. From the comparison of the half-width at
half maximum of the experimental resonance curve and the 1073
theoretical one we find~0.0269 nm and.~ 700. 1

The tapping-mode scanning force microscope is operated
in a constant amplitude mode. Via a feedback loop the height E S
(z,) of the piezo-cantilever system is adjusted such that the o' 10 10
amplitude of the oscillations, with the cantilever touching the k [N/m]
surface, assumes a set val(gt pointag). In a similar ¢
manner we deter'mlned the solution of our model Sy;tem. We FIG. 2. Deformatiorzye; of the sample versus sample stiffness
Chosfe the set poirdtse=0.6%,, wherea,= 18,'84 nm IS ,the ks for various sample damping constantsin a log-log represen-
maximum of the resonance curve of a cantilever in air. Th&ation. The damping constants arey2 103", where
heightz,_of the equilibrium position of the externally driving n=0,1,... 18 andw, is the frequency of the cantilever. The
force is now adjusted until the stationary solution assumegamping constant increases from top to bottom. All curves ap-
the set-point amplitude. From that stationary solution we eXproach the limiting curvez,e~k 22 for sufficiently largeks. The
tract the penetration of the sample and the phase shift of thequilibrium positionz, of the cantilever-tip system is obtained from
oscillation with respect to the one of the driving force. the sample deformation by the relatiaf= age— Zges-
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IIl. RESULTS ous materials is practically onIy. pos_sible wit.hin the param-
eter values where the deformation is changing according to
The solutionz(t) [Eq. (7)] assumes a stationary state afterthe power lawzqe~k; 2°. Otherwise the detailed depen-
an equilibration time. The oscillation is then periodic but notdence of the deformation on the sample parameters has to be
necessarily harmonic, especially for strong tip-surface interknown. As mentioned before, the limiting curve is ap-
actions. The time for the equilibration naturally depends orproached for all damping constants. Thus for sufficiently
the tip-surface interaction parameters. large ks or small ys, respectively, the elastic constants can
Two quantities can be extracted from the model calculabe determined independently of the damping of the material.
tions, which ultimately depend upon the sample properties: Material properties can also be extracted from the phase
(i) the heightz, of the equilibrium position of the cantilever- shift between the driving oscillation and the stationary oscil-
piezo system andi) the phase shift of the forced oscillation. |ation z(t) [Eq. (7)]. We determine the phase shift between
To determine the equilibrium positian , we adjusted the the two oscillations whenever the mass poitip) ap-
heightz,_in such a way that the deformation of the sampleproaches the surface and is at. The phase shift is then
(zged Pplus z. are equal to the set-point amplitude given by sime=-cos@t) or, if sinwt<0, by
(aser= 2L+ Z4e by a feedback loop. The sample deformation o= 7/2+|a— /2|, wheret is the time at whichz(t)=2z, .
itself is given by the minimum value a@ft) in the stationary The dependence of the phase shift on sample stiffness and
state[ zge=| minz(t)|]. In our calculations the set point is sample damping is shown in Fig. 34 increases from bot-
obtained with an accuradyz +zge)|/as<10 ° for all pa-  tom to top. As is obvious from the plot, all curves approach
rameters used. two limiting curves and decrease monotonously with increas-
Figure 2 shows the dependence of the sample deformatiang sample stiffness. In the limik,— 0 the curve for infinite
on its stiffnessks for various sample damping constants sample dampingtop line) is approached and in the limit
(7s)- (Notice the log-log representatigrithe damping con- k.« the curve for zero sample dampiriigottom ling is
stants used in the figure arey2=103""3w., where approached. Similarly to the sample deformation the phase
n=0,1,...,18.Obviously, the deformation decreases with shift approaches constant values. But the constants are as-
increasing stiffness and damping of the sample. There arsumed for small and large damping. In these regimes no
remarkably large ranges of sample stiffnesses, where thdistinction is possible between materials of different sample
sample deformation is independentlaf. This range is in-  stiffnesses. Despite this, from the phase shift material prop-
creasing with increasing sample damping. For all dampingrties can be extracted for sample stiffnesses where the
constantsy the curves of the sample deformation approachsample deformation is constant. By comparing Figs. 2 and 3,
a limiting curve which decreases with increasing sampleve observe variations im for kg values where the sample
stiffness azger~Kg 2 As a consequence, within the plateau deformation is constant, especially far~1—10. Hence
regions, samples with the same damping constant but diffepphase shift images may yield a small contrast even though
ent stiffnesses cannot be distinguished by tapping scannindeformation images show none.
force microscopy. Scans of such samples produce the same The phase shift depends nonlinearly on the material prop-
image and erroneously indicate similar material propertieserties. Thus for a quantitative comparison between different
although the elasticity constants may differ by several deimages the knowledge of this functional dependence is re-
cades. On the other hand, a quantitative comparison of varguired, i.e., material properties can only be extracted from
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the maximum amplitude in air. For the parameters tested, we

90 ol o g find quantitative differences up to 10%.
o The maximum force exerted on the sample by the tip is
80 o given by the linear relation
z 70 E F = KsZger- (19
% 60 - . . . : :
© F Thus the force is linearly increasing for increasing sample
S50 - stiffnesses whereg; is constant and increases 16#3 when
: Zger~ ks 2. As discussed in Ref. 10, the force experienced
40 o by the sample strongly depends on the tapping frequency. A
1'00 T 1'01 ' 1'02 T 1'03 T ""1"04 detailed discussion of the frequency dependence of the force

in a constant amplitude mode will be given elsewhere.

Using the Hertz modét*?the sample stiffness can be
related to elastic moduli of the sample. Thus material prop-
erties can be extracted from tapping-mode measurements.
Yor the special case of one sphere of radituand the second
sphere of infinite radiugplane the radius () of the contact
area between these two smooth elastic bodies under a load

k IN/m]

FIG. 3. Phase shifie between the piezo oscillation and the
oscillation of the cantilever touching the sample during one perio
versus the sample stiffnekgfor various sample damping constants
¥s. The damping constants are y2=10 3""3y., where
n=0,1,...,18 andw,. is the frequency of the cantilever. The

damping constant increases from bottom to top. Fis
images if a suitable model calculation yields a relation be- FR\ 3
tween the measured phase shift and the material parameters. =g (20

Although our calculations are based on harmonic potentials,
the combination of the two potentials makes the proble
highly nonlinear. Thus an exact analytical solution beyon
Egs.(7)—(9) cannot be given. However, an approximate ex-
pression of the phase shift is obtained in the following way.
In the stationary state the solutiaft) is periodic but not
necessarily harmonic. We approximate the stationary solu- 4 E

tion by the harmonic expression E' =312 (21)

* is related to the elastic moduli of the two materials. The
assumption that the Young modulus of the tip is much larger
than that of the surface yields the relation

Zpdt) =Bcoq wt—a). (149 ) )
_ _ wherev andE are the Poisson ratio and the Young modulus
The effective frequency and damping constant are assumesf the surface, respectively. Due to the load, the sphere pen-

to be a linear combination of the frequencies and the dampetrates into the surface a distanttavhich is related to the

ing constants of the cantilever and the sample, force by
2 2 2
ws=wet Lo, (15
£oe T F=RE*h32 (22)
Ye= YcT BYs- (16)

The stiffness of the sample follows from E@2) as deriva-

Moreover, we assume that the amplituleand the phase tive with respect td and is related to the spring constant b
shift « depend on the effective parameters in the same way P prng y

as the amplituded; of Eq. (10) and the phase shifts of Eq.

11), i.e,, 3 3
1D kszzE* ‘/RhZEE* VR Zget. (23
B awg (17)
\/(wg— w2)2+4y§w2’ To obtain the last relation, we used the fact that the penetra-
tion h is identical to the deformationys of our model cal-
27w culation. Thus the spring constant is proportional to the elas-
tan=—5— 3. (18 tic constant of the material. Since the deformatinyg is

© measured in a tapping-mode force microscope

Since we operate the tapping-force microscope in a constafizy.= a2, ) the material constants can be related to the
amplitude mode, we can extract the coefficighfrom Eq.  model parameters.

(17) and use this value to calculate the phase shift. Equation In summary, we have presented a simple model for the
(17) can simply be solved, becaugds included in quadratic interaction of a cantilever performing a forced oscillation
from. The comparison between the exact solution for thawith a sample surface in a tapping-mode scanning force mi-
phase shift and the analytical approximation exhibits exceleroscope. Similarly to a real experiment, we measured the
lent qualitative agreement. Quantitative agreement is onljeight of the equilibrium position of the cantilever above the
obtained for small damping constants and set points close teurface and the phase shift between the driving oscillation
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and the stationary oscillation of the tip-cantilever systemina In all the calculations the sample is considered a vis-
constant amplitude mode for various sample stiffnesses antbelastic continuum. However, for tips of nanometer size
damping. For the elastic deformation of the sample we findand structures of comparable size in the samples the con-
large regimes, where the deformation is independent of thénuum approach is rather crude. Considering these aspects,
sample stiffness. With increasing sample damping, these re¢he extraction of molecular parameters of a sample requires a
gimes are increasing. A limiting curvegr~k; %3 is ap-  much more detailed model of the tip-substrate interaction.
proached for all damping constants and sufficiently large
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