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The interaction of a cantilever performing a forced oscillation with a sample in a tapping-mode scanning
force microscope is investigated within a simple model. The tip together with the cantilever is modeled as a
periodically driven, damped harmonic oscillator. The viscoelastic sample is described by a friction force acting
on the tip while it is in contact and a harmonic potential. The penetration of the probe and the phase shift of
the oscillator due to contact with the sample are calculated for various sample parameters. In particular, an
approximate solution of the model equations for the phase shift is presented. Moreover, a relation between the
elastic constant of the model and the elastic modulus of a material is presented.@S0163-1829~96!04136-7#

I. INTRODUCTION

Scanning force microscopy~SFM! has evolved to the
most powerful surface analyzing tool over the last few years.
Many subfields developed, driven by the potential to image
surfaces with various physical properties down to molecular
and atomic resolution.1,2 Various operating principles of
SFM were designed in order to reduce surface destruction
and to image soft surfaces such as polymers and biological
samples. Among these the so-called tapping-mode force mi-
croscope minimizes surface contacts and lateral forces by
periodically touching the surface with the cantilever.3

In a tapping-mode force microscope, the tip is externally
driven with a frequency close to the resonance frequency of
the oscillation in air. This frequency is high enough to touch
a surface area comparable to the tip contact area several
times before moving the tip laterally. Moreover, the energy
of the cantilever-tip system is large enough to avoid sticking
of the tip to the surface. The vibrational amplitude assumes
values between 30 and 100 nm. The contact with the surface
reduces the amplitude. Usually, the tapping-mode force mi-
croscope is operated in a constant amplitude mode, i.e., the
amplitude is reduced until a feedback set point is reached.
The tapping-mode force microscope has successfully been
applied to investigate soft samples.3–7 The deflection and
harmonic resonance frequency of commercialV-shaped and
rectangular atomic force microscope cantilevers have been
determined experimentally and theoretically by several
authors.8

Recently tapping-mode force microscopes were devel-
oped which aside from the amplitude changes simulta-
neously detect the phase shift between the free oscillation in
air and the oscillation while the tip is touching the surface
during a period. As far as structural properties of a surface

are concerned, the phase shift yields information comparably
to the changes in the amplitude.

The SFM images reflect the mechanical properties of the
sample averaged over the tip contact area.9 Thus the SFM
not only allows one to detect structural features of a surface
but also the mechanical properties of a sample on a nanom-
eter scale. To extract the elastic constants from an image
requires a model which connects the measured changes in
the amplitude and/or the phase with the desired sample pa-
rameters.

In this paper we present a simple model calculation for
the interaction of a cantilever performing a forced oscillation
with a sample surface. The tip together with the cantilever is
modeled as a periodically driven, damped harmonic oscilla-
tor. The viscoelastic sample is described by a friction force
acting on the tip while it is in contact and a harmonic poten-
tial ~elastic part!. The penetration of the sample, forces, and
phase shifts of the oscillator due to contact with the sample
are calculated for various sample parameters. The model cal-
culations are extensions of our previous investigations on the
influence of forces on the sample in tapping mode.10

The paper is organized as follows: in Sec. II the model is
presented and the results are described in Sec. III.

II. MODEL OF THE TAPPING MODE

The tapping process during a cycle of the forced oscilla-
tion can be decomposed into two parts:~i! the tip is in air and
~ii ! the tip is in contact with the sample. To keep the model
simple, we will assume that the tip only interacts with the
surface when it is in contact, i.e., there are no long range
attractive forces between the tip and the sample. The tip,
which is approximated by a mass point, experiences the fol-
lowing potential~see Fig. 1!:
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V~z!5Vs~z!1Vc~z,t !, ~1!

where

Vc~z,t !5
kc
2

@z2zL~ t !#
2, ~2!

Vs~z!5
ks
2
z2@12Q~z!#. ~3!

The cantilever is described as a harmonic spring with the
spring constantkc and the time dependent equilibrium posi-
tion zL(t). Since the cantilever is periodically drivenzL(t) is
given by

zL~ t !5zL1acos~vt !. ~4!

Here zL(>0) denotes the average position of the driving
piezo crystal,v its frequency, anda its amplitude of oscil-
lation. ks denotes the spring constant of the sample andQ is
Heaviside’s step function.

The equation of motion of the massm in the potentialV
@Eq. ~1!# is given by

z̈~ t !1$2gc12gs@12Q~z!#%ż~ t !1vc
2@z~ t !2zL#

1vs
2z~ t !@12Q~z!#5avc

2cos~vt !. ~5!

Aside from the elastic forces, this equation includes the
damping of the cantilever 2gc5vc /Qc , wherevc is the
eigenfrequency of the cantilever andQc its quality factor.
The viscous part of the sample is taken into account by the
friction force 2gsż(t)@12Q(z)#. The friction constant can
also be related to the eigenfrequency of the samplevs and its
quality factor Qs via 2gs5vs /Qs . The eigenfrequencies
themselves depend on the spring constants via

vc5Akc
m
, vs5Aks

m
. ~6!

Due to the presence of theQ function, Eq.~5! is nonlinear
and an analytical solution~for all times! cannot simply be
given. However, during the time interval in which the tip is

in air or in the sample within a period of oscillation, respec-
tively, we obtain two linear equations of motion with param-
eters characterizing the cantilever or the combination of can-
tilever and sample, respectively. The solution of these
equations is given by

z~ t !5H zc~ t !, z>0

zcs~ t !, z,0
~7!

where

zc~ t !5e2gct@accos~vc
et !1bcsin~vc

et !#

1Accos~vt2ac!1zL , ~8!

zcs~ t !5e2gcst@acscos~vcs
e t !1bcssin~vcs

e t !#

1Acscos~vt2acs!1 z̃L . ~9!

The parameters of the combination of cantilever and sample
are vcs

2 5vc
21vs

2 and gcs5gc1gs . The Ai ( i5c,cs) de-
note the amplitudes of the particular solutions of Eq.~5!
given by

Ai5
avc

2

A~v i
22v2!214g i

2v2
. ~10!

a i denotes the phase shifts

tana i5
2g iv

v i
22v2 . ~11!

Finally, v i
e is the eigenfrequency of the damped system

v i
e5Av i

22g i
2, ~12!

and

z̃L5
vc
2

vcs
2 zL ~13!

the equilibrium position of the cantilever-sample system.
The two solutions Eqs.~8! and ~9! need to be combined in
such a manner thatz and ż are continuous whenever the tip
touches or leaves the surface. Together with the initial con-
dition these requirements determine the four coefficientsai
andbi . Since our original differential equation~5! is nonlin-
ear, the coefficientsai andbi depend on time.

As pointed out earlier, the total potential~1! is nonlinear
due to the presence of theQ function. This nonlinearity may
result in a chaotic behavior of the tip for certain model pa-
rameters. However, we did not observe any trace of chaos for
the parameters used in our calculations.

Additionally, in real materials the interaction of the tip
with the substrate is nonlinear, which we describe in the
present paper by a harmonic potential. This is certainly a
crude approximation and is only used due to the lack of an
appropriate description of the tip-surface interaction, espe-
cially for soft samples. A Lennard-Jones type potential may
adequately be used for solid samples. However, for organic
substances other potentials should be more appropriate. The
harmonic potential just serves as a first approximation to
investigate the principle mechanisms in the tip-substrate in-
teraction of a tapping-force microscope.

FIG. 1. ~a! Model of the forced cantilever oscillation. The can-
tilever is approximated by a spring with spring constantkc and
quality factorQc . zL is the equilibrium position in air~left side!.
The inertial part of the cantilever is described as a mass point with
massm. On the right hand side the tip is in contact with the sample
characterized by the spring constantks and quality factorQs . ~b!
Harmonic potentials experienced by the point massm. ~- - -! Po-
tential describing the cantilever. (•••) Potential of the sample.~—-!
Total potential of the cantilever-surface system.
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To compare our analytical solution with experimental re-
sults, we chose the parameters according to values used in
experiments. In detail, the tapping frequencyv is set equal
to the resonance frequencyv5v r52p340.575 kHz of the
cantilever in air and the spring constantkc550 N/m. The
amplitudea of the piezo oscillations and the qualityQc of
the cantilever are extracted from the resonance curve of the
cantilever in air. From the comparison of the half-width at
half maximum of the experimental resonance curve and the
theoretical one we finda'0.0269 nm andQc'700.

The tapping-mode scanning force microscope is operated
in a constant amplitude mode. Via a feedback loop the height
(zL) of the piezo-cantilever system is adjusted such that the
amplitude of the oscillations, with the cantilever touching the
surface, assumes a set value~set pointaset). In a similar
manner we determined the solution of our model system. We
chose the set pointaset50.65am , wheream518.84 nm is the
maximum of the resonance curve of a cantilever in air. The
heightzL of the equilibrium position of the externally driving
force is now adjusted until the stationary solution assumes
the set-point amplitude. From that stationary solution we ex-
tract the penetration of the sample and the phase shift of the
oscillation with respect to the one of the driving force.

III. RESULTS

The solutionz(t) @Eq. ~7!# assumes a stationary state after
an equilibration time. The oscillation is then periodic but not
necessarily harmonic, especially for strong tip-surface inter-
actions. The time for the equilibration naturally depends on
the tip-surface interaction parameters.

Two quantities can be extracted from the model calcula-
tions, which ultimately depend upon the sample properties:
~i! the heightzL of the equilibrium position of the cantilever-
piezo system and~ii ! the phase shift of the forced oscillation.

To determine the equilibrium positionzL , we adjusted the
heightzL in such a way that the deformation of the sample
(zdef) plus zL are equal to the set-point amplitude
(aset5zL1zdef) by a feedback loop. The sample deformation
itself is given by the minimum value ofz(t) in the stationary
state@zdef5u minz(t)u#. In our calculations the set point is
obtained with an accuracyu(zL1zdef)u/aset,1029 for all pa-
rameters used.

Figure 2 shows the dependence of the sample deformation
on its stiffnessks for various sample damping constants
(gs). ~Notice the log-log representation.! The damping con-
stants used in the figure are 2gs510231n/3vc , where
n50,1, . . . ,18.Obviously, the deformation decreases with
increasing stiffness and damping of the sample. There are
remarkably large ranges of sample stiffnesses, where the
sample deformation is independent ofks . This range is in-
creasing with increasing sample damping. For all damping
constantsgs the curves of the sample deformation approach
a limiting curve which decreases with increasing sample
stiffness aszdef;ks

22/3. As a consequence, within the plateau
regions, samples with the same damping constant but differ-
ent stiffnesses cannot be distinguished by tapping scanning
force microscopy. Scans of such samples produce the same
image and erroneously indicate similar material properties,
although the elasticity constants may differ by several de-
cades. On the other hand, a quantitative comparison of vari-

ous materials is practically only possible within the param-
eter values where the deformation is changing according to
the power lawzdef;ks

22/3. Otherwise the detailed depen-
dence of the deformation on the sample parameters has to be
known. As mentioned before, the limiting curve is ap-
proached for all damping constants. Thus for sufficiently
largeks or smallgs , respectively, the elastic constants can
be determined independently of the damping of the material.

Material properties can also be extracted from the phase
shift between the driving oscillation and the stationary oscil-
lation z(t) @Eq. ~7!#. We determine the phase shift between
the two oscillations whenever the mass point~tip! ap-
proaches the surface and is atzL . The phase shift is then
given by sina52cos(vt) or, if sinvt,0, by
a5p/21ua2p/2u, wheret is the time at whichz(t)5zL .
The dependence of the phase shift on sample stiffness and
sample damping is shown in Fig. 3 (gs increases from bot-
tom to top!. As is obvious from the plot, all curves approach
two limiting curves and decrease monotonously with increas-
ing sample stiffness. In the limitks→0 the curve for infinite
sample damping~top line! is approached and in the limit
ks→` the curve for zero sample damping~bottom line! is
approached. Similarly to the sample deformation the phase
shift approaches constant values. But the constants are as-
sumed for small and large damping. In these regimes no
distinction is possible between materials of different sample
stiffnesses. Despite this, from the phase shift material prop-
erties can be extracted for sample stiffnesses where the
sample deformation is constant. By comparing Figs. 2 and 3,
we observe variations ina for ks values where the sample
deformation is constant, especially forgs'1210. Hence
phase shift images may yield a small contrast even though
deformation images show none.

The phase shift depends nonlinearly on the material prop-
erties. Thus for a quantitative comparison between different
images the knowledge of this functional dependence is re-
quired, i.e., material properties can only be extracted from

FIG. 2. Deformationzdef of the sample versus sample stiffness
ks for various sample damping constantsgs in a log-log represen-
tation. The damping constants are 2gs510231n/3vc , where
n50,1, . . . ,18 andvc is the frequency of the cantilever. The
damping constant increases from top to bottom. All curves ap-
proach the limiting curvezdef;k22/3 for sufficiently largeks . The
equilibrium positionzL of the cantilever-tip system is obtained from
the sample deformation by the relationzL5aset2zdef .
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images if a suitable model calculation yields a relation be-
tween the measured phase shift and the material parameters.
Although our calculations are based on harmonic potentials,
the combination of the two potentials makes the problem
highly nonlinear. Thus an exact analytical solution beyond
Eqs.~7!–~9! cannot be given. However, an approximate ex-
pression of the phase shift is obtained in the following way.
In the stationary state the solutionz(t) is periodic but not
necessarily harmonic. We approximate the stationary solu-
tion by the harmonic expression

zapp~ t !5Bcos~vt2a!. ~14!

The effective frequency and damping constant are assumed
to be a linear combination of the frequencies and the damp-
ing constants of the cantilever and the sample,

ve
25vc

21bvs
2 , ~15!

ge5gc1bgs . ~16!

Moreover, we assume that the amplitudeB and the phase
shift a depend on the effective parameters in the same way
as the amplitudesAi of Eq. ~10! and the phase shifts of Eq.
~11!, i.e.,

B5
avc

2

A~ve
22v2!214ge

2v2
, ~17!

tana5
2gev

ve
22v2 . ~18!

Since we operate the tapping-force microscope in a constant
amplitude mode, we can extract the coefficientb from Eq.
~17! and use this value to calculate the phase shift. Equation
~17! can simply be solved, becauseb is included in quadratic
from. The comparison between the exact solution for the
phase shift and the analytical approximation exhibits excel-
lent qualitative agreement. Quantitative agreement is only
obtained for small damping constants and set points close to

the maximum amplitude in air. For the parameters tested, we
find quantitative differences up to 10%.

The maximum force exerted on the sample by the tip is
given by the linear relation

F5kszdef. ~19!

Thus the force is linearly increasing for increasing sample
stiffnesses wherezdef is constant and increases asks

1/3 when
zdef;ks

22/3. As discussed in Ref. 10, the force experienced
by the sample strongly depends on the tapping frequency. A
detailed discussion of the frequency dependence of the force
in a constant amplitude mode will be given elsewhere.

Using the Hertz model,4,11,12 the sample stiffness can be
related to elastic moduli of the sample. Thus material prop-
erties can be extracted from tapping-mode measurements.
For the special case of one sphere of radiusR and the second
sphere of infinite radius~plane! the radius (r ) of the contact
area between these two smooth elastic bodies under a load
F is

r5S FRE* D 1/3. ~20!

E* is related to the elastic moduli of the two materials. The
assumption that the Young modulus of the tip is much larger
than that of the surface yields the relation

E*5
4

3

E

12n2
, ~21!

wheren andE are the Poisson ratio and the Young modulus
of the surface, respectively. Due to the load, the sphere pen-
etrates into the surface a distanceh which is related to the
force by

F5ARE* h3/2. ~22!

The stiffness of the sample follows from Eq.~22! as deriva-
tive with respect toh and is related to the spring constant by

ks5
3

2
E*ARh5

3

2
E*ARzdef. ~23!

To obtain the last relation, we used the fact that the penetra-
tion h is identical to the deformationzdef of our model cal-
culation. Thus the spring constant is proportional to the elas-
tic constant of the material. Since the deformationzdef is
measured in a tapping-mode force microscope
(zdef5aset2zL) the material constants can be related to the
model parameters.

In summary, we have presented a simple model for the
interaction of a cantilever performing a forced oscillation
with a sample surface in a tapping-mode scanning force mi-
croscope. Similarly to a real experiment, we measured the
height of the equilibrium position of the cantilever above the
surface and the phase shift between the driving oscillation

FIG. 3. Phase shifta between the piezo oscillation and the
oscillation of the cantilever touching the sample during one period
versus the sample stiffnessks for various sample damping constants
gs . The damping constants are 2gs510231n/3vc , where
n50,1, . . . ,18 andvc is the frequency of the cantilever. The
damping constant increases from bottom to top.
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and the stationary oscillation of the tip-cantilever system in a
constant amplitude mode for various sample stiffnesses and
damping. For the elastic deformation of the sample we find
large regimes, where the deformation is independent of the
sample stiffness. With increasing sample damping, these re-
gimes are increasing. A limiting curvezdef;ks

22/3 is ap-
proached for all damping constants and sufficiently large
sample stiffnesses. Moreover, an analytical approximation
for the phase shift is derived. Using the Hertz model, a rela-
tion between the model parameters and the elastic constants
of the sample is derived, which allows one to obtain the
elastic constants from tapping-mode measurements.

In all the calculations the sample is considered a vis-
coelastic continuum. However, for tips of nanometer size
and structures of comparable size in the samples the con-
tinuum approach is rather crude. Considering these aspects,
the extraction of molecular parameters of a sample requires a
much more detailed model of the tip-substrate interaction.
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