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A theory of dc electric current induced in a quantum channel by a propagating surface acoustic wave
~acoustoelectric current! is worked out. The first observation, to our knowledge, of the acoustoelectric current
in such a situation was reported by J. M. Shiltonet al., J. Phys. Condens. Matter8, L337 ~1996!. The authors
observed a very specific behavior of the acoustoelectric current in a quasi-one-dimensional channel defined in
a GaAs-AlxGa12xAs heterostructure by a split-gate depletion–giant oscillations as a function of the gate
voltage. Such a behavior was qualitatively explained by an interplay between the energy-momentum conser-
vation law for the electrons in the upper transverse mode with a finite temperature splitting of the Fermi level.
In the present paper, a more detailed theory is developed, and important limiting cases are considered.
@S0163-1829~96!03335-8#

I. INTRODUCTION

In recent years much attention has been attracted by the
interaction between surface acoustic waves~SAW’s! and
two-dimensional electron gases~2DEG’s!. Most experiments
were performed in GaAs-AlxGa12xAs heterostructures, and
effects linear in acoustic intensity—the sound attenuation
and the change of sound velocity—were studied.1–4 These
works were aimed at investigating the linear response of a
2DEG to ac strain, and electric fields without electric con-
tacts attached to the sample. In particular, very interesting
experimental studies of these effects in the quantum Hall
regime were carried out in the works.1,4

The second class of studies deals with the so-called
acoustoelectric effect, namely, a drag of 2D electrons by a
traveling SAW.5–9 This effect is due to a transfer of momen-
tum from the SAW to the electrons due to a SAW-electron
interaction. As a result, a dcacoustoelectric currentappears
in a closed circuit. If the circuit is open, the SAW generates
a dc acoustoelectric voltageacross the sample. In the sim-
plest case, the current~or the voltage! is proportional to the
SAW intensity rather than to its amplitude. It is a simple
nonlinear effect that can be also employed to study the
2DEG.

An observation of an acoustoelectric current through a
quantum point contact was reported in Ref. 10. The authors
observed a dc current in a quasi-one-dimensional channel
defined in a GaAs-AlxGa12xAs heterostructure by a split-
gate depletion. The conduction of such channels is
quantized—its dependence on the applied gate voltage con-
sists of a set of plateaus divided by sharp steps.11,12

An important point is that a very specific behavior of the
acoustoelectric current as a function of the applied gate volt-
age was observed. That is, the current isnot quantized. On
the contrary, it experiencesgiant oscillationsas a function of
gate voltage, having maxima near the steps between the pla-
teaus of the conductance.

A semiquantitative explanation given in Ref. 10 attributes
the oscillations to electrons in the upper transverse subband
of the channel. When the bottom of this band is close to the
Fermi surface~i.e., near the step of conductance!, these elec-
trons at the Fermi level have a low longitudinal velocity. At
some value of the gate voltage this velocity can be close to
the sound velocityw. Such electrons interact strongly with
the wave because they move synchronously with the latter.
At other gate voltages there are no electrons which are able
to interact effectively, and the drag is not efficient.

In the following, we will discuss the acoustoelectric effect
theoretically in more detail, and consider the most important
parameters and limiting cases.

II. FORMULATION OF THE PROBLEM

Consider a ballistic point contact between two regions of
a 2DEG. According to the Landauer formula, the conduc-
tance of such a junction is determined by transparenciesTn
which correspond to different transverse modes

unk&5xn~z,x!expS i Ex

k~j!dj D , ~1!

the functionsxn and the wave vectork being slowly depen-
dent onx. Here we labelk the wave vector atx→`. We
have

G5
2e2

p\ Een

`

(
n51

N

denkS 2
] f 0~enk!

]enk
DTn~enk!, ~2!

where f 0(enk) is the Fermi function, while enk5en
1\2k2/(2m) is the electron energy for thenth transverse
mode. Such a concept is based upon the assumption that
electron thermalization takes place within the region;l in
~inelastic relaxation length! near the contact. That allows one
to reduce the problem to calculation of transmittance of non-
equilibrium electrons.

One can imagine several sources of influence of the
acoustic wave on the current through the contact. The first
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one is a drag of the 2DEG in the leads. Such a drag produces
a ‘‘phonon wind’’ in the leads which has been estimated by
Kozub and Rudin13 on the basis of the model introduced by
Streda.14 According to this model, one can introduce the
electron-phonon collision integralin the leads, Î e -ph

drag(e), as a
source of the force acting upon the electrons. Then the cur-
rent through the contact is

j}(
n
E

en

`

de Î e-ph
drag~enk!S 2

] f 0~enk!

]enk
DTn~enk!, ~3!

where Î e -ph
drag(enk) is a smooth function, determined by the

properties of the leads. Consequently, such a contribution
has the form of a sum of steps similar to the conductance that
is explicitly stated in Ref. 13.

However, the piezoelectric interaction between the SAW
and the electron system in the leads is significantly screened
by the 2DEG. Consequently, the steps are very small com-
pared with effects observed in the experiment,10 where
maxima of the acoustoelectric drag current rather than steps
were observed.

As a result, to explain the observed experimental results
we are left with the region of the quantum channel where the
piezoelectric field is not screened too much. That is, we ana-
lyze the drag due to a momentum transfer from the SAW to
the electron gasinside the quantum channel. The physical
reason for the importance of this region in comparison with
the much larger region of the 2DEG is the absence of effec-
tive screening. Such a physical picture implies that one has
to consider SAW-electron interaction inside the channel
rather than employ Bu¨ttiker-Landauer formalism.

III. GENERAL EXPRESSIONS
FOR ACOUSTOELECTRIC CURRENT

In the presence of a harmonic acoustic wave with the
frequencyv and wave vectorq the electrons acquire a per-
turbation

H int5U (
nk,n8k8

@Cnk,n8k8~q!ank
† an8k81H.c.#,

where

Cnk,n8k8~q!5^nkuexp~ iqx!un8k8&.

For simplicity, let us model the quantum point contact as a
channel with uniform widthd. Such an approximation is
valid if the product of the channel’s lengthL times the SAW
wave vectorq is much greater than 1,qL@1.15 We also
assume that the inequalityqd!1 holds. The last assumption
allows one to neglect the intermode transitions due to SAW,
and to take into account only diagonal in the mode quantum
numbersn,n8 contribution.

In this approximation,C5bn(q)dnn8d(k2k82q), and
we can consider the electrons of thenth mode as moving in
the effective classical field

Vn~x!5Re@Ubnexp~ iqx2 ivt !#.

Having in mind low enough frequencies,

\q!mw,pF ,

one can use the Boltzmann equation for the occupation num-
ber of thenth mode,f nk(x) ~see, e.g., Ref. 16!. This equation
has the form

S ]

]t
1v

]

]x
2
1

m

]Vn

]x

]

]v
1 Î D f nk~x!50,

whereÎ is the operator describing relaxation of the nonequi-
librium distribution. We will specify its form below, taking
into account two possible relaxation mechanisms:~i! impu-
rity scattering, and~ii ! escape from the channel.

Let us expandf nk(x) in powers of the amplitudeU,

f nk~x![ f 0@enk1Vn~x!#1 f 11 f 2 , ~4!

where

f 15Re@ f 1vexp~ iqx2 ivt !#; f 1v}Ubn . ~5!

The second-order part,f 2}uUbnu2, is a sum of two items—a
stationary part, and a part which varies in time with the fre-
quency 2v. We are interested only in the first part. The
second part does not contribute to the dc current and will be
omitted. From~4! we obtain

B̂f 1v52 ivUbnS 2
] f 0~enk!

]enk
D ,

~6!

Î f 25 K ]Vn~x!

]x

] f 1
]p L

t

.

Here we have introduced the operator

B̂~q,v![ Î1 i ~qv2v!

having the meaning of the operator of the linearized kinetic
equation. Angular brackets mean the average over timet,
^& t[(v/2p)*0

2p/v . . .dt. Substitutingf 1 and using the rela-
tionship

^Re@Cvexp~ ivt !#Re@Dvexp~ ivt !#& t5~1/2!Re~CvDv* !,

we obtain

f 252
uUbnu2qv

2
Î21ReH ]

]p F B̂21S 2
] f 0~enk!

]enk
D G J . ~7!

As a result, we arrive at the following formal expression for
the acoustoelectric current~taking into account the sum over
spins!:

j5eU2qv(
n

ubnu2ReE dp

2p\
v Î21

3H ]

]p F B̂21S 2
] f 0~enk!

]enk
D G J . ~8!

IV. ANALYSIS OF IMPORTANT LIMITING CASES

Equation~8! is the formal expression for the acoustoelec-
tric current. To evaluate it one needs to specify the relaxation
operatorÎ , i.e., to discuss sources of relaxation. The conven-
tional way to treat relaxation in the quantum channel is to
discuss scattering by individual defects described by scatter-
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ing matrices. However, we want to emphasize that the prob-
lem of the acoustoelectric effect has an important specifics.
Indeed, as we will demonstrate below, the effect is due to
electrons with small momentak. For these selected electrons
the effective mean free pathl eff can be much shorter than
the mean elastic free pathl for a bulk 2DEG~see below!.
We believe that for realistic ballistic channels the inequali-
ties l .L.l eff hold. As a result, one can use a relaxation
rate approach, similar to the conventional one for bulk sys-
tems. The possibility for a nonequilibrium electron to escape
the channel will be allowed for in a model way.

A. Relaxation rates

Here we discuss two sources of relaxation, namely, an
elastic scattering within the channel~with the rate 1/t) and
an escape from the channel due to its finite lengthL ~see Fig.
1!, an effective rate beinguvnu/L. Herevn is defined as the
velocity for thenth mode at a given energye,

en,mvn /\5e.

For lower transverse modesvn;vF , while for the upper one
~with the numberN) it can be small. On the other hand,
because of low longitudinal electron velocity, the electrons
of the upper mode are much more effectively scattered by
impurities~see below!. From this fact we come to an impor-
tant conclusion: for the upper mode~which is responsible for
the acoustoelectric effect near its maxima! the impurity scat-
tering might be important even if the contact is ballistic. We
would like to use this opportunity to emphasize once more
that in mesoscopic systems an interplay between the impu-
rity and other mechanisms of scattering is very dependent
upon the problem in question~cf. with Ref. 17!.

Introducing a correlation function of random impurity po-
tential as

K ~r!5^V~r!V~0!& im ,

and its matrix elements

Kmk8,nk5^nkuK ~r!umk8&,

we obtain

1

tn~k!
5
2p

\ (
mk8

uKmk8,nku
2d~enk2emk8!. ~9!

If the impurity potential has a short range, thenuKmk8,nku
2 is

independent of the arguments (mk8,nk). Consequently,

1

tn~k!
5
2puKu2

\
n~enk!

wheren(e) is the density of states per given spin,

n~e!5
1

p\ (
n51

N
1

uvnu
.

Assuming that the channel behaves as a rectangular box with
the thicknessd in the transverse direction, we obtain
N'AeF /e* , wheree*5h2/(8md2).18

For a wide contact (N→`) n5nbd, where
nb5m/(2p\2) is the 2D density of states. As a result, in a
channel we arrive at a smooth part of the relaxation rate
~which is of the order of the momentum relaxation rate in the
bulk 2DEG, 1/tb) plus an oscillating term

2

ptb
S e*

e2eN
D 1/2.

Finally, for all the levels except the highest one, one can put
1/tb for the impurity relaxation rate, while for the highest
one the appropriate estimate is

2

ptb

v*

uvNu
, ~10!

where v*5p\/md. In high-mobility selectively doped
structures, the scattering potential is smooth. Consequently,
the matrix elementsKnk8,nk significantly increase with
the decrease ofk. As a result, impurity scattering for the
upper mode is much stronger than for the lower ones,19 and
expression ~10! acquires an additional large factor
a;uKN,kw ;N,2kw

/KkF ,kF8
u2, wherekw;mw/\.

To take into account the finite length of the contact, we
also introduce the relaxation rateuvnu/L. As a result, an es-
timate for the relaxation operator of the upper level is

Î5maxS 1tb v*

uvNu
,
uvNu
L D . ~11!

We observe that there is a border valuevc of vN ,

vc5vFS a

N

L

l b
D 1/2, ~12!

where both mechanisms make contributions of the same or-
der of magnitude. Herel b is the mean free path in a bulk
2DEG ~we assumevc<vF). At uvNu&vc impurity relaxation
becomes more important than finite size of the contact.

Expression~11! needs a more detailed discussion. Con-
sider a ballistic one-dimensional pipe where the particles are
subjected to a constant forceF. As a result, they are accel-
erated asv(t)5v01(F/m)t, andx(t)5v0t1(F/2m)t2. At
the time t, the distance between a given particle and a par-
ticle started after timeu is dx5u@v01(F/m)t#. Conse-
quently, the product of the velocity at the timet and the local
density,v(t)/dx(t)51/u remains constant, keeping constant
the current density inside the pipe.

FIG. 1. Schematic shape of the quantum channel.
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The total current is determined by the difference between
the contributions of the particles with opposite directions of
initial velocity. The difference is proportional to
(F/m)t'FL/(mv0). Such a result can be reproduced by the
order of magnitude by the assumption~11!.

B. Estimates of the acoustoelectric effect

Now we are ready to make estimates. For simplicity, we
model the relaxation operator by the following interpolation
expression:

Î5
1

L

vN
21vc

2

uvNu
. ~13!

At vN@vc this approximately describes escape from the
channel, while atvN!vc!vF it is L independent and
equivalent to the inverse life time for the electron with a
given k due to elastic scattering. We have

vNÎ
215L

vNuvNu
vN
21vc

2 .

Integrating Eq.~8! by parts, and taking into account that

]~vNÎ
21!

]pN
5
2L

m

uvNuvc
2

~vN
21vc

2!2
,

we arrive at the following expression for the oscillating part
of the acoustoelectric current:

j5
LeU2v

p\
ubNu2E

2`

`

dvNFh~vN!FT~vN!,

Fh~vN!5
hvN

2vc
2

~vN
21vc

2!@vN
2 ~vN2w!21h2~vN

21vc
2!2#

,

~14!

FT~vN!5
1

4kBT

1

cosh2@m~vN
22vNF

2 !/4kBT#
.

Here h51/qL has the meaning of the ratio between the
acoustic wave length and the length of the contact,w5v/q
is the sound velocity, whilevNF5vN(eF).

We observe that the expression~14! consists of the prod-
uct of two functions. The functionFT has sharp maxima at
vN5vNF ~see Fig. 3!, the width being

dT5minF kBTmvN
,S 2kBTm D 1/2G .

The properties ofFh depend uponh and upon the ratio
j[w/vc :

Fh~vN!5
1

vc
2 f S vNvc , wvcD ,

f ~x,j!5
x2

11x2
h

x2~x2j!21h2~11x2!2
. ~15!

The functionf (x,j) for h50.1 is shown in Fig. 2. Below we
consider the important limiting cases.

1. Short waves,h!1

At h!1 f (x,j) depends on the dimensionless parameter
j/Ah. The most realistic limiting case corresponds to the
inequality

j5w/vc!Ah. ~16!

In this case the impurity scattering dominates for the impor-
tant group of the electrons. If inequality~16! is met, one can
setj50, and the integrand is symmetric. Then

FIG. 2. The functionf (x,j) for h50.1.

FIG. 3. Scheme of energy and momentum conservation laws for
electron-SAW interaction.
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Fh~vN!5
1

vc
2 f S vNvc ,0D ,

f ~x,0!5
x2

11x2
h

x41h2~11x2!2
. ~17!

The function f (x,0) has a maximum atx56Ah with the
peak value 0.5 and the width;Ah. The shape of the oscil-
lations of the acoustoelectric current depends upon the rela-
tionship betweenvcAh and dT . At vcAh!dT one can re-
place

f ~x!→
pAh

2A2(
6

d~x6Ah!.

As a result,

j5
eU2vubNu2

\vF
SNl b

2qa D 1/2FT~vcAh!. ~18!

In this case, we have a peak nearvNF50 ~i.e., exactly at
the step!, its shape being determined by the derivative of the
Fermi functionFT .

At vcAh@dT the functionFT behaves as

d@~m/2!~vN
22vNF

2 !#5~mvNF!
21(

6
d~vN6vNF!.

Consequently,

j5
eU2vNl b

pa\vNFeF
ubNu2f S vNFvc ,0D . ~19!

Note that in both cases the current is independent of the
channel’s lengthL. This is natural, because we consider the
situation where the intra channel impurity scattering is the
most important relaxation mechanism.

At

1@w/vc@Ah,

f (x,j) as a function ofx is strongly asymmetric. It has two
maxima, the most important being atx'j, the width being
h/j!j. Near the maximum,

f ~x,j!'
hj2

j2~x2j!21h2 . ~20!

If h/j!dT /vc , or dT@avF
2/(wql bN) one can approximate

f (x,j) as

f ~x,j!'pjd~x2j!. ~21!

Consequently, to obtain an estimate for the acoustoelectric
current one has to multiply Eq.~18! by j/Ah
'(w/vF)ANql /a . Otherwise, the estimate is given by Eq.
~19! with the replacement off (x,0) by f (x,j) from Eq.~20!.

The escape of nonequilibrium electrons becomes impor-
tant only atw>vc—a condition which seems not very real-
istic. Then

f ~x,j!'
1

j2
h

~x2j!21h2 .

As a result, the current appears proportional to the channel’s
lengthL.20 Measurements of theL dependence of the acous-
toelectric current may help to discriminate between different
relaxation mechanisms.

2. Long waves,h@1

If the wave length of the SAW is greater than the channel
length, the functionf (x) can be approximated as

f ~x!5h21
x2

~11x2!3
. ~22!

It has a maximum atx561/A2 and width of the order 1.
Consequently, in dimensional variables the width is of the
order ofvc . It has to be compared to the difference

dv5uvN2vN21u'A4Ne*/m'vF N
21/2.

If

vc@dv or L@l ,

the oscillations are not pronounced. Conversely, atL!l the
oscillating part is pronounced. Again, its shape is determined
by the relationship between the widths of the functionsFh
and FT . At vc@dT the result is given by Eq.~19! with
f (x) taken from~22!. In the opposite limiting case,f (x) can
be replaced by (p/16h)(6d(x61/A2). Consequently, the
shape is determined by the functionFT , like in Eq. ~18!.

V. DISCUSSION

Let us discuss qualitatively the picture of the acoustoelec-
tric effect. The linear response of the electrons to the SAW
with a given wave vectorq is proportional to the effective
‘‘interaction time’’ (qv2v)21, during which an electron
with the velocity v moves in an almost constant field. At
small v, or near the resonance (v5w), this time diverges,
and relaxation becomes important. In fact, the effect is pro-
portional to Re„@ Ī1 i (qv2v)#21

…. Consequently, to obtain
an effective coupling both the electron velocity and the scat-
tering rate have to be small.

In a homogeneous 2D system, the most important relax-
ation mechanism is disorder-induced scattering, the scatter-
ing rate being proportional to the 2D density of states. Thus,
the electron-SAW coupling for such a system is determined
by the productql . In a point contact relaxation differs from
the case of homogeneous 2DEG for the following reasons.

~i! The contact has afinite length L, the corresponding
escaperate being;uvu/L. This rate decreases asv→0.

~ii ! The density of states in a quantum point contact is an
oscillating function of the energy, it diverges at thresholds
corresponding to the filling of additional levels. Conse-
quently, the disorder-induced relaxation rate for the upper
mode increases at the threshold.

As a result, the total relaxation rate is a nonmonotonous
function of the electron velocity. The analysis given above
leads to the conclusion that coupling is optimal for electrons
having their velocities in a relatively narrow range, the cen-
tral velocity s;vcAh being small comparing to the Fermi
velocity. Above we have estimated the position of the center
and an effective width of the important region which is
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shown in Fig. 3. On the other hand, electronic states can
contribute to interaction only if their energies are in the vi-
cinity of the Fermi level. Consequently, for a given mode
numbern the electron velocities have to belong to a narrow
interval centered around some velocityvNF . One can move
these intervals by changing the gate voltage.

To obtain a nonvanishing contribution to the current, one
of these regions has to overlap with the region centered
arounds ~see Fig. 3!, which is possible only for the upper
level. As a result, the acoustoelectric current experiencesgi-
ant oscillationsas a function of the gate voltage.21 Indeed, in
the plateau region for the conductance the velocityvNF is
large enough and cannot overlap with the hatched region
nears. Then, as the system is driven to the step,vNF de-
creases, and important regions start to overlap. Conse-
quently, the current increases.

The fine structure of the peaks needs more careful discus-
sion. The current theory can lead to quantitative results only
when impurity relaxation is more important than the escape
from the channel. In the opposite limiting case the model
assumption~11! can provide only order-of-magnitude esti-
mates. The exact results in such a situation depend both on
the length and the shape of the channel.21

An important source of the fine structure of the peaks
could be a gate-voltage-dependent screening of the coupling.
This problems needs much more careful considerations. For
a rough estimate, we can introduce a screening factor as

U25
U0
2

11g@s~q,v!/s#2
,

where s(q,v) is the effective conductance, whileg is a
~small! geometry-dependent dimensionless factor. The effec-
tive conductance can be estimated as a sum of the contribu-
tions of lower transverse modes~which is a smooth function
of the gate voltage!, and of the contribution of the upper
mode

s5ssm1sosc.

The latter can be estimated near the peak of the drag current
in the same way as for a long wire, because usually
L/s>t. Considering a piece of wire with the length'q21,
we obtain the estimateC;q21 for its capacitance~up to
logarithmic terms!, and R;1/qs1(q,v) for its resistance.

Heres1 is the 1D conductance calculated from the kinetic
equation. As a result, the dimensionless screening parameter
can be estimated as (vRC)21'qs1 /s. Consequently, the
screening parameter is

sosc~q,v!/s5
qe2

sp\E dp~vB̂21v !S 2
] f 0~enk!

]enk
D

;
e2

s\

1

qvnt
. ~23!

Far from the maximum of the acoustoelectric current this
quantity appears small. However, near the maximum it can
be of the order 1, leading to a decrease of the current. Prob-
ably this is the origin of the double-peak structure of the first
peak of the acoustoelectric current, observed in Ref. 10.
With the increase of the number of occupied modes the
smooth part of screening increases. As a result, the current
oscillations’ amplitude must decrease, and the double-peak
structure has to be less pronounced. Such a behavior is in a
qualitative agreement with the experiment.10

Unfortunately, it is very difficult to give realistic esti-
mates for the coupling constant connecting the intensityS of
SAW and the amplitudeU of the electron’s potential energy.
According to the experimental results,10 we believe that it is
determined by piezoelectric interaction in the channel. Oth-
erwise, under the conditions realized in Ref. 10 steps pre-
dicted in Ref. 13 would be observed rather than giant oscil-
lations. However, the SAW in a layered structure has a
complicated polarization structure, and only a rough estimate
can be given

U0;AxSe2/v.

Herex is piezoelectric coupling constant which can be de-
termined by experiments on the change of sound velocity
due to 2DEG. To check the presented theory quantitatively,
it seems important to measure acoustic intensity indepen-
dently.
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