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Dynamic structure factor of a two-dimensional electron gas
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The dynamic structure fact@(k,w) of a two-dimensional electron gas is calculated @t 1 and 5 within
the Mori memory function formalism. We use the Gaussian model for the memory function at second stage and
obtain the necessary static inputs from the quantum Monte Carlo calculation by Tanatar and Ceperley and
Moroni, Ceperley, and Senator®(k,w) thus calculated shows a clear two-peak structure in the intermediate
wave-vector domain beyond the plasmon cutoff wave vector at hgti and 5. The results are compared
with the quantum Singwi-Tosi-Land-8ander(QSTLS theory and the calculation of Tanatar. It is found that
our results are similar to that of QSTLSgt=5 and do not support the Tanatar prediction of finding only a
single broad peak at intermediate[S0163-18206)07035-X

[. INTRODUCTION and found thaB(k, ) thus obtained exhibits a clear double-
peak structure in the intermediate wave-vector domain be-
The dynamic structure factdb(k,w) is a fundamental yond the plasmon cutoff wave vector. The similar behavior
quantity in describing the excitation spectrum of the interactof S(k,w) has recently been predicted by two of the present
ing many-electron systems and its study in two dimensionguthoré on the basis of quantum Singwi-Tosi-Land-
has gained a gOOd deal of interest in recent years. This arisgaander (QSTL$ theory_ However, it has been predicted
mainly from the possibility of its experimental measurementhy Tanatat by using the Mori memory functionMF)

due to the exact physical realization of two-dimensiq2al) approach that S(k, ») has only a single broad peak at inter-

electron systems in the laboratory, which include the eleCieqiatek. In the Mori formalism the central quantity to cal-

trons at the interfaces of semiconductor hetrojections; fOI(’:ulate is the MF. In the literature there exist different vari-

example, the silicon metal-oxide-semiconductor and theants of the Mori approach that differ in the method of
GaAs/AlGa,_xAs superlattice structure. The electrons ., 1ation of the ME. Jindadt al2® first employed the MF

trapped on the liquid helium surface constitute another inter-

X . method to calculat&(k,w) of a 3DEG. The MF was calcu-
esting example of a 2D electron system. However, unlike th?ated b renormalizir(1 t(lr:)e free-particle MF a8k, o) thus
3D case’ to the best of our knowledg®(k, w) in 2D has not y 9 P '

yet been experimentally determine@or an introduction to  °Ptained showed two-peak Structure in agreement with the
the various developments in 2D electron systems see revieGPeriments. Yoshida et al* introduced the Gaussian
articles by Ando, Fowler, and Stérand Isihard). There- model for the MF at second stage and' obtained ;atlsfactory
fore, it becomes both interesting and important to carry oufésults forS(k,w) for a 3DEG, but their method involved
the theoretical study o8(k,w) in 2D. In the literature, the three adjustable parameters. Tanatar in Ref. 8 extended the
electron gas confined to a piane interacting with i’amjten_ model of Yoshidaet al.ll to the 2DEG with his calculation
tial in the presence of a uniform positive background hagnvolving only one free parameter. All the necessary static
been the most widely used model to study the 2D electromnputs, except the isothermal susceptibilityk), were ob-
systems. A large amount of work has been done on the sai@ined from the quantum Monte Cal@MC) calculation'?

2D electron gas2DEG) model to understand the various For x(k) a lower bound x g(k)=2S?(k)/w wy
static and dynamic properties of these systems. Howevers#%2k?/2m] was used and the static structure fac8fk)
there have been very few attempts to stufik,w) of a  was taken from the QMC calculation. It was argued that
2DEG. In 3D, both experimentsind theor§ predict the two-  x, (k) is a good approximation foy(k), but we now know
peak structure ir5(k,w) at intermediate&k beyond the plas- that it differs considerably from the QMC calculation of Mo-
mon cutoff wave vector K.). Thus, it is quite natural to roni, Ceperley, and Senatof&Therefore, one should expect
investigate the possibility of finding the similar two-peak an improvement irS(k, ) results if all necessary static in-
structure in two dimensions also. Lee and Hbhgve calcu-  puts includingx(k) are taken from the QMC calculation.
lated S(k,w) for a 2DEG by solving the generalized Lange- This in fact forms one of the motivations of doing the present
vin equation. However, the applicability of their method is work. Further, we aim to investigate the possibility of ob-
limited to the long-wavelength limit only. Yoshida and serving the double-peak structure 8(k,w) of a 2DEG
Yasuharf used an approximate scheme that took into acwithin the MF formalism.

count the short-range electron correlation effects and the The layout of the paper is organized as follows: The Mori
coupling between single-pair and multiple-pair excitationsMF formalism is reviewed in brief in Sec. Il. The results and
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dsisgulsiion are given in Sec. Ill and conclusions are drawn in wi(k)= ws(k)[l— 1(K)7, (7)
o wherew,(k) = (2mne*k/m)*2is the 2D plasmon frequency
Il. MEMORY FUNCTION FORMALISM andl(k) is given by
In this section we review in brief the Mori MF formalism
as used by Yoshida, Takeno, and Yasular® study
S(k,w) of a 3DEG. In this formalism the dynamic density ) ] i )
response functiorx(k,w) is expressed in terms of a refer- Here,Jn(X) is thenth order Bessel function of the first kind

ence response function'®(k,w) and an effective potential andg(r) is the electron pair-correlation function. From Egs.

1 (dr
(k)= ﬂfo r—z[g(r)—1][1—Jo(kr)—3Jz(kr)]- 8

V(k,w) as
ax?(k,0)
x(kw)= 1-V(k,0) ¥k, o)’ @
V(kvw):VO(k)+Vl(k)wR2(k1w)v (2)

where R,(k, ) =M ,(k,w) —MP)(k,w) is the (normalized
interacting part of the second-order MF such

X, belonging to the reference system is denote&y. The

guantitiesa, Vo(k), andV4(k) in the above equations are

expressed in terms of frequency momentg, of the dy-
namic structure factoB(k,w) by

m, m, | 1 1
X= "0, = ol — —o |,
mP T my mP

/ mY, (3

Myp= J’iodw 0?P 1Sk, w). (4)

and

V1:

m{?

m, my m,
m2 m(20) mo

with the frequency moments defined as

o) ’

From the knowledge of(k,w), S(k,w) is calculated as

h
S(k,w)=—x"(k,), ©)

where x”(k,w) is the imaginary part of(k,w). This com-

(1), (2), and (6) we see that the calculation &(k,w) re-
quiresx(k), (K), andg(r) as inputs. We obtain these from
the recent QMC calculations of Tanatar and Cepéflend
Moroni et al*® y(©(k,w) is known due to Stertf Thus, the
calculation ofS(k,w) now reduces to the calculation of the
interacting part of the second order M (k,t). We use the
Gaussian anastz fd,(k,t) in the same way as that used by
Tanatar, i.e.,

that
R,(k,t=0)=1. Here and in what follows the quantity, say

Ry(k,t)=exd — w3(k)t?/2], 9
where wy(k) is the relaxation frequency related to the time
decay of the MF. The Laplace transform,(k,z) of
Rs(k,t) is defined as

Rz(k,z)zif dte Z'Ry(k,t), (10
0

wherez=w—ig, is the complex frequency. It may be noted
that

Ry(K, )= lim Ry(k,z) = R} (k, ) +i R} (K, w),

e—0

(11)

whereR;(k, w) andRj(k,w) are the real and imaginary parts
of Ry(k,w). It is easy to show that

2

R (K _ 1 w f[w/wd(k)]d , 2/
2k, )= (k)X 2020 Jo x'exgd x'%/2]
(129

and

2

1 n%_ w
rogk N 203K

Ry(K,w)= ) (12b)

pletes the MF formalism in general. For further details we

refer to the review article by Yoshida and Takéfio.

In the next section we present the results $jk,w) at

We are now in a position to apply the above method togifferentk for re=1 and 5r is the dimensionless parameter

calculateS(k,w) of a 2DEG. The starting point is to choose describing the areal densityn of electrons [re=1/
a reference system and the system of noninteracting electropg,, \/n7), whereag is the Bohr atomic radigs

is the most obvious choice as it enables us to explicitly take
into account the single-particle aspects of the dynamics and

. . . . Ill. RESULTS AND DISCUSSION
the statistics obeyed by the particles. Using the expressions

for the frequency momernitin Eq. (3), we have
a=1, Vo=1ix(k)—1/x©k),
and
V1=3[(K)—(K) O]+ (m/k)wi(k)=Vo.  (6)

In the above equatiog(k) = — x(k,w=0) is the isothermal
susceptibility of the interacting electron gd&) is the av-
erage kinetic energy per electron, an@i(k) is defined by

In numerical calculations we choose a system of units
where wave vector and frequency are expressed, respec-
tively, in units of the Fermi wave vectdq: and the Fermi
energyeg, distances in units ol‘<;l and energies in ryd-
bergs(1 Ry=e?/2ag). The static inputs required are taken
from the QMC calculation. The parameigg(k) is adjusted
so as to satisfy the zeroth sum rule $fk,w) to a good
accuracy. Thef-sum rule and the third sum rule are auto-
matically satisfied in the present formalism independent of
the choice ofwy(k). In Fig. 1 we plotS(k,w) at k=1.593
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FIG. 1. The dynamic structure factoB(k,w) vs w at
k=1.593, r,=1, and wy=2.61. PresentS(k,w) (solid line);
SO (k,w) (dash-dot ling Sgpa(k,») (dashed ling

andr =1 with wy=2.61. The zeroth sum rule is satisfied

within an error of about 6%. For comparison the noninter-
acting S©(k,w) and that obtained in the random-phase ap-

proximation(RPA) Sgpa(k,w) are also shown in Fig. 1. Itis
seen from Fig. 1 thaiS(k,w) calculated in the above-

described MF formalism shows a double-peak structure in

contrast to theSgpa(k, ) and the findings of Tanatdrwe
have found that the line shape &k,w), especially, its
double-peak behavior, depends upon the choiae k). To
show the nature of dependenceSfk,») on wy(k) we plot
it in Fig. 2 atk=1.863 and ;=1 for three different choices

of wy, namely, 2.91, 3.50, and 6.91. In Table | we give the

dependence of the zeroth momentSfk, w) on wy(k) along
with the QMC values of5(k). It can be noticed from Fig. 2

0.1

k=1.863

8X107R

6x1072

S(k,w)

4x1073

. 2x1072

FIG. 2. The dynamic structure factoB(k,w) vs o at
k=1.863,r,=1. wy=2.91 (solid line); wy=3.50 (dashed ling
wy=6.91 (dash-dot ling
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TABLE |. Dependence of zeroth moment d&(k,w) on
wy(K).
k rs wqy(k) S(K) Somc(K)  Percentage error
1.593 1.0 2.61 0.753 0.799 5.7%
1.863 1.0 291 0.851 0.905 5.9%
1.863 1.0 3.50 0.859 0.905 5.0%
1.863 1.0 6.91 0.887 0.905 2.0%
2.350 1.0 6.91 0.959 0.982 2.0%
2.100 5.0 135 0.896 0.909 1.4%
that the double-peak structure almost disappears at

wg=6.91 where the zeroth sum rule is satisfied with maxi-
mum accuracy among the cases investigated here. We have
further found that by choosing4>6.91 the sum rule accu-
racy does not vary much arf{k,w) shows only a single
broad peak. A similar type dB(k,») dependence ony is
noted atk=1.593. However, ak=2.35 andrg=1 with
wg=6.91, it is found thaB(k,w) shows a clear double-peak
structure(plotted as a solid line in Fig.)3with the zeroth
sum rule condition satisfied within an acceptable error of
2%. This seems to suggest tharat 1 it is less probable to
find a two-peak structure iB5(k,w) for k<1.863 than at
k=2.35. In order to see the effect of increasingon the
behavior ofS(k,w) we calculate it ak=2.1 andr,=5 with
wg=13.5. The calculateds(k,w) exhibits a pronounced
double-peak structure and is shown by a solid line in Fig. 4.
We also note from Table | that the sum rule criterion is
satisfied to a very good accuracy. From the above discussion
it can be concluded that the MF formalism used by us yields
S(k,w) that shows a clear double-peak structure at interme-
diate k at bothrg=1 and 5. This result is contrary to the
prediction of Tanata?,where S(k,w) shows only a single
broad peak at both=1 and 5. Our calculation differs from
that of Tanatar in the input used fg{k). We have obtained

8x1072
k=2.356
rg=1
6x107R
o = P it
3 i
o ax107R1 /s
& J:
{1
)
2x10R4
J Q
/4 T
0.0 : : :
0.0 3.0 6.0 9.0 12.0
@

FIG. 3. The dynamic structure fact&k,w) vs o at k=2.35,
r«=1, andwy=6.91. Presen(k,w) (solid ling); Sy(k,w) with
a(k)=b(k)=1.2 (dashed Iling Sy(k,w) with a(k)=0.8,
b(K)=1.2 (dash-dot ling
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2.4 rather, closer to the QMC calculation.
k=2.1 To the best of our knowledge, there is neither simulation
T'y=5 3 nor the experimental data available f(k,w) of a 2DEG to

2.0 + 0

compare our results. Therefore, we compare our results with
the other theories. For this we calcul&k,w) by using the
parameterized model of Yoshida, Takeno, and YasuHara,
where they approximaté(k,w) by

S(k,w)

Vu(k,w)=(m/k?)[1—a(k)Jw)(k) +(m/k?)
X[b(k)—1+a(k)Jw3(k) wRy(k,w). (13)

By using the Gaussian model f&,(k,t) and adjusting the
: parametersa(k), b(k), and wy4(k) to satisfy the zeroth sum
0.0 3.0 6.0 9.0 12.0 15.0 rule to a good accuracy, the authors in Ref. 11 obtained
w satisfactory results foS(k,w) of a 3DEG. Following the
same procedure, we calcula®,(k,w) at k=2.35 and
FIG. 4. The dynamic structure fact@(k,o) vs o at k=2.1 rs=1 and the result is shown as a dashed line in Fig. 3. The
e T NI = zeroth sum rule condition is satisfied within an accuracy of
rs=5, and wy=13.5. PresenS(k,w) (solid line); SM(k,w). and better than 1% foa(k) = b(K) = 1.2 andwy= 6.91. It may be
a(k)=1.0,b(k)=1.2 (dash-dot ling Sgst ok, w) (dashed ling : e a2 Yy
noted from Fig. 3 thaBy (k,w) is fairly close to the present
S(k,w) and its qualitative behavior is similar to the 3D cal-
X(k) from the accurate QMC calculation whereas Tanataﬁulation of Yoshidaet al.ll Like the 3D case it is also found
has used it for a lower-bound approximation asthat its line shape is sensitive to the choice agk) and
xie(K)=2S%(K)/ o[ w,=12k?/2m]; S(k) was taken from b(k). For exampleSy(k,») calculated with the samey
the QMC calculation. Thus, contrary to what was expected wq=6.91) but fora(k)=0.8,b(k)=1.2 is shown as a dash-
by Tanatar, th&(k, w) behavior changes drastically by using dot line in Fig. 3.Sy(k,) is also calculated at;=5 and
Xowmc(K) as input forx(k) in the formalism. To make the k=2.1 with w4=13.5, a(k)=1, andb(k)=1.2. Sy(k, )
difference betweerny g(k) and xouc(k) more transparent thus obtained exhibits a double peak having its close resem-
we plot them in Fig. 5 along with the RPA curverat=1.  blance with that calculated by using the present MF approach
We notice thaty g(k) differs considerably fromyquc(k)  and is plotted as a dash-dot line in Fig. 4. Thus the model
and is rather close tggpa(K). In particulary, g (k) exhibits  calculation based on the method of Yoshietaal. supports
a peak ak~1.5, in whichxquc(Kk) is atk~2. Here, it may  our prediction of finding a double-peak structureS¢k, )
be noted thajy(k) results obtained by us using tHeSTLS at intermediatek at bothr =1 and 5.
and QSTLS theories also do not agree wjths(k), but are, We finally compareS(k, ) with our recent resultwhich
we have obtained by using the QSTLS theory. From the
0.5 comparative study we find th&(k,w) differs both qualita-
tively and quantitatively fronBSqst (K, w) atrs=1 while a
. rg=1 gualitative similarity is noted at,=5. As a major difference
0.4+ . we note that in QSTLS the double-peak structure is pro-
. nounced only at ;=5 while in the present MF formalism it
- is pronounced at both,=1 and 5. In Fig. 4Sos d k, ) at
0.3+ k=2.1 andr,=5 is plotted as a dashed line. From the
O present and earlier investigations it seems that there is a good
. possibility of finding the two-peak structure B(k,w) of a
0.2+ . 2DEG. Here, it may be noted that the double-peak structure
N of S(k,w) in the present study is a property of the 2D elec-
) " tron system as no lattice effects are taken into account. A
0.1 similar conclusion has been drawn in 3D by Mukhopadhyay,
Kalia, and Singwi and othefsHowever, experiments by
Schilke et al!® on 3D electron system in Li and Be metals,
which are certainly not free-electron-like systems, atrributed
the double-peak structure to the lattice effects. Since no ex-
periment has been done so far to stug{k,) in 2D, the
accuracy of any theory in predicting its line shape and the
FIG. 5. The isothermal susceptibility(k) vs k at rg=1. reason for the existence of the double peak in it cannot be
x1a(K) (solid line); xrpa(k) (dashed ling xomc(k) (solid squares known at present.

x(k)

0.0 1 f ;
0.0 1.0 2.0 3.0 4.0



54 DYNAMIC STRUCTURE FACTOR OF A TWG. .. 8813

IV. CONCLUSIONS possibility of finding the double-peak structure in the experi-
mentalS(k, ) at intermediatek in the 2D electron systems

The dynamic structure fact@(k,w) of a 2DEG is calcu- also

lated in the Mori memory function formalism by using the
Gaussian model for the interacting part of the second-order
memory function. The static inputs needed are obtained from
the recent quantum Monte Carlo calculatid®(k,w) thus We gratefully acknowledge financial support by the Uni-
obtained shows a clear two-peak structure at intermediate versity Grants Commission, New Delhi. We are also grateful
at bothr,=1 and 5. Our results suggest that there is a goodo Professor K. N. Pathak for useful discussions.
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