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The dynamic structure factorS(k,v) of a two-dimensional electron gas is calculated atr s51 and 5 within
the Mori memory function formalism. We use the Gaussian model for the memory function at second stage and
obtain the necessary static inputs from the quantum Monte Carlo calculation by Tanatar and Ceperley and
Moroni, Ceperley, and Senatore.S(k,v) thus calculated shows a clear two-peak structure in the intermediate
wave-vector domain beyond the plasmon cutoff wave vector at bothr s51 and 5. The results are compared
with the quantum Singwi-Tosi-Land-Sjo¨lander~QSTLS! theory and the calculation of Tanatar. It is found that
our results are similar to that of QSTLS atr s55 and do not support the Tanatar prediction of finding only a
single broad peak at intermediatek. @S0163-1829~96!07035-X#

I. INTRODUCTION

The dynamic structure factorS(k,v) is a fundamental
quantity in describing the excitation spectrum of the interact-
ing many-electron systems and its study in two dimensions
has gained a good deal of interest in recent years. This arises
mainly from the possibility of its experimental measurement
due to the exact physical realization of two-dimensional~2D!
electron systems in the laboratory, which include the elec-
trons at the interfaces of semiconductor hetrojections; for
example, the silicon metal-oxide-semiconductor and the
GaAs/AlxGa12xAs superlattice structure. The electrons
trapped on the liquid helium surface constitute another inter-
esting example of a 2D electron system. However, unlike the
3D case,1 to the best of our knowledgeS(k,v) in 2D has not
yet been experimentally determined,~for an introduction to
the various developments in 2D electron systems see review
articles by Ando, Fowler, and Stern2 and Isihara3!. There-
fore, it becomes both interesting and important to carry out
the theoretical study ofS(k,v) in 2D. In the literature, the
electron gas confined to a plane interacting with a 1/r poten-
tial in the presence of a uniform positive background has
been the most widely used model to study the 2D electron
systems. A large amount of work has been done on the said
2D electron gas~2DEG! model to understand the various
static and dynamic properties of these systems. However,
there have been very few attempts to studyS(k,v) of a
2DEG. In 3D, both experiments1 and theory4 predict the two-
peak structure inS(k,v) at intermediatek beyond the plas-
mon cutoff wave vector (kc). Thus, it is quite natural to
investigate the possibility of finding the similar two-peak
structure in two dimensions also. Lee and Hong5 have calcu-
latedS(k,v) for a 2DEG by solving the generalized Lange-
vin equation. However, the applicability of their method is
limited to the long-wavelength limit only. Yoshida and
Yasuhara6 used an approximate scheme that took into ac-
count the short-range electron correlation effects and the
coupling between single-pair and multiple-pair excitations

and found thatS(k,v) thus obtained exhibits a clear double-
peak structure in the intermediate wave-vector domain be-
yond the plasmon cutoff wave vector. The similar behavior
of S(k,v) has recently been predicted by two of the present
authors7 on the basis of quantum Singwi-Tosi-Land-
Sjölander ~QSTLS! theory. However, it has been predicted
by Tanatar8 by using the Mori memory function~MF!
approach9 thatS(k,v) has only a single broad peak at inter-
mediatek. In the Mori formalism the central quantity to cal-
culate is the MF. In the literature there exist different vari-
ants of the Mori approach that differ in the method of
calculation of the MF. Jindalet al.10 first employed the MF
method to calculateS(k,v) of a 3DEG. The MF was calcu-
lated by renormalizing the free-particle MF andS(k,v) thus
obtained showed two-peak structure in agreement with the
experiments.1 Yoshida et al.11 introduced the Gaussian
model for the MF at second stage and obtained satisfactory
results forS(k,v) for a 3DEG, but their method involved
three adjustable parameters. Tanatar in Ref. 8 extended the
model of Yoshidaet al.11 to the 2DEG with his calculation
involving only one free parameter. All the necessary static
inputs, except the isothermal susceptibilityx(k), were ob-
tained from the quantum Monte Carlo~QMC! calculation.12

For x(k) a lower bound xLB(k)52S2(k)/vk@vk
5\2k2/2m# was used and the static structure factorS(k)
was taken from the QMC calculation. It was argued that
xLB(k) is a good approximation forx(k), but we now know
that it differs considerably from the QMC calculation of Mo-
roni, Ceperley, and Senatore.13 Therefore, one should expect
an improvement inS(k,v) results if all necessary static in-
puts includingx(k) are taken from the QMC calculation.
This in fact forms one of the motivations of doing the present
work. Further, we aim to investigate the possibility of ob-
serving the double-peak structure inS(k,v) of a 2DEG
within the MF formalism.

The layout of the paper is organized as follows: The Mori
MF formalism is reviewed in brief in Sec. II. The results and
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discussion are given in Sec. III and conclusions are drawn in
Sec. IV.

II. MEMORY FUNCTION FORMALISM

In this section we review in brief the Mori MF formalism
as used by Yoshida, Takeno, and Yasuhara11 to study
S(k,v) of a 3DEG. In this formalism the dynamic density
response functionx(k,v) is expressed in terms of a refer-
ence response functionx (0)(k,v) and an effective potential
V(k,v) as

x~k,v!5
ax~0!~k,v!

12V~k,v!x~0!~k,v!
, ~1!

V~k,v!5V0~k!1V1~k!vR2~k,v!, ~2!

whereR2(k,v)5M2(k,v)2M2
(0)(k,v) is the ~normalized!

interacting part of the second-order MF such that
R2(k,t50)51. Here and in what follows the quantity, say
X, belonging to the reference system is denoted byX(0). The
quantitiesa, V0(k), andV1(k) in the above equations are
expressed in terms of frequency momentsm2p of the dy-
namic structure factorS(k,v) by

a5
m2

m2
~0! , V05

m2

m2
~0! F 1m0

2
1

m0
~0!G ,

and

V15F H m4

m2
2
m4

~0!

m2
~0! J 2H m2

m0
2
m2

~0!

m0
~0! J G Y m2

~0! , ~3!

with the frequency moments defined as

m2p5E
2`

`

dv v2p21S~k,v!. ~4!

From the knowledge ofx(k,v), S(k,v) is calculated as

S~k,v!5
\

p
x9~k,v!, ~5!

wherex9(k,v) is the imaginary part ofx(k,v). This com-
pletes the MF formalism in general. For further details we
refer to the review article by Yoshida and Takeno.14

We are now in a position to apply the above method to
calculateS(k,v) of a 2DEG. The starting point is to choose
a reference system and the system of noninteracting electrons
is the most obvious choice as it enables us to explicitly take
into account the single-particle aspects of the dynamics and
the statistics obeyed by the particles. Using the expressions
for the frequency moments15 in Eq. ~3!, we have

a51, V051/x~k!21/x~0!~k!,

and

V153@^K&2^K&~0!#1~m/k2!v1
2~k!2V0 . ~6!

In the above equationx(k)52x(k,v50) is the isothermal
susceptibility of the interacting electron gas,^K& is the av-
erage kinetic energy per electron, andv1

2(k) is defined by

v1
2~k!5vp

2~k!@12I ~k!#, ~7!

wherevp(k)5(2pne2k/m)1/2 is the 2D plasmon frequency
and I (k) is given by

I ~k!5
1

2kE0
`dr

r 2
@g~r !21#@12J0~kr !23J2~kr !#. ~8!

Here,Jn(x) is thenth order Bessel function of the first kind
andg(r ) is the electron pair-correlation function. From Eqs.
~1!, ~2!, and ~6! we see that the calculation ofS(k,v) re-
quiresx(k), ^K&, andg(r ) as inputs. We obtain these from
the recent QMC calculations of Tanatar and Ceperley12 and
Moroni et al.13 x (0)(k,v) is known due to Stern.16 Thus, the
calculation ofS(k,v) now reduces to the calculation of the
interacting part of the second order MFR2(k,t). We use the
Gaussian anastz forR2(k,t) in the same way as that used by
Tanatar, i.e.,

R2~k,t !5exp@2vd
2~k!t2/2#, ~9!

wherevd(k) is the relaxation frequency related to the time
decay of the MF. The Laplace transformR2(k,z) of
R2(k,t) is defined as

R2~k,z!5 i E
0

`

dt e2 iztR2~k,t !, ~10!

wherez5v2 i«, is the complex frequency. It may be noted
that

R2~k,v!5 lim
«→0

R2~k,z!5R28~k,v!1 ipR29~k,v!, ~11!

whereR28(k,v) andR29(k,v) are the real and imaginary parts
of R2(k,v). It is easy to show that

R28~k,v!5
1

vd~k!
expS 2

v2

2vd
2~k! D E0@v/vd~k!#

dx8exp@x82/2#

~12a!

and

R29~k,v!5
1

A2pvd~k!
expS 2

v2

2vd
2~k! D . ~12b!

In the next section we present the results forS(k,v) at
differentk for r s51 and 5.r s is the dimensionless parameter
describing the areal densityn of electrons @r s51/
(aBAnp), whereaB is the Bohr atomic radius#.

III. RESULTS AND DISCUSSION

In numerical calculations we choose a system of units
where wave vector and frequency are expressed, respec-
tively, in units of the Fermi wave vectorkF and the Fermi
energy«F , distances in units ofkF

21 and energies in ryd-
bergs~1 Ry5e2/2aB). The static inputs required are taken
from the QMC calculation. The parametervd(k) is adjusted
so as to satisfy the zeroth sum rule ofS(k,v) to a good
accuracy. Thef -sum rule and the third sum rule are auto-
matically satisfied in the present formalism independent of
the choice ofvd(k). In Fig. 1 we plotS(k,v) at k51.593
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and r s51 with vd52.61. The zeroth sum rule is satisfied
within an error of about 6%. For comparison the noninter-
actingS(0)(k,v) and that obtained in the random-phase ap-
proximation~RPA! SRPA(k,v) are also shown in Fig. 1. It is
seen from Fig. 1 thatS(k,v) calculated in the above-
described MF formalism shows a double-peak structure in
contrast to theSRPA(k,v) and the findings of Tanatar.8 We
have found that the line shape ofS(k,v), especially, its
double-peak behavior, depends upon the choice ofvd(k). To
show the nature of dependence ofS(k,v) on vd(k) we plot
it in Fig. 2 atk51.863 andr s51 for three different choices
of vd , namely, 2.91, 3.50, and 6.91. In Table I we give the
dependence of the zeroth moment ofS(k,v) onvd(k) along
with the QMC values ofS(k). It can be noticed from Fig. 2

that the double-peak structure almost disappears at
vd56.91 where the zeroth sum rule is satisfied with maxi-
mum accuracy among the cases investigated here. We have
further found that by choosingvd.6.91 the sum rule accu-
racy does not vary much andS(k,v) shows only a single
broad peak. A similar type ofS(k,v) dependence onvd is
noted at k51.593. However, atk52.35 and r s51 with
vd56.91, it is found thatS(k,v) shows a clear double-peak
structure~plotted as a solid line in Fig. 3! with the zeroth
sum rule condition satisfied within an acceptable error of
2%. This seems to suggest that atr s51 it is less probable to
find a two-peak structure inS(k,v) for k<1.863 than at
k52.35. In order to see the effect of increasingr s on the
behavior ofS(k,v) we calculate it atk52.1 andr s55 with
vd513.5. The calculatedS(k,v) exhibits a pronounced
double-peak structure and is shown by a solid line in Fig. 4.
We also note from Table I that the sum rule criterion is
satisfied to a very good accuracy. From the above discussion
it can be concluded that the MF formalism used by us yields
S(k,v) that shows a clear double-peak structure at interme-
diate k at both r s51 and 5. This result is contrary to the
prediction of Tanatar,8 whereS(k,v) shows only a single
broad peak at bothr s51 and 5. Our calculation differs from
that of Tanatar in the input used forx(k). We have obtained

FIG. 1. The dynamic structure factorS(k,v) vs v at
k51.593, r s51, and vd52.61. PresentS(k,v) ~solid line!;
S(0)(k,v) ~dash-dot line!; SRPA(k,v) ~dashed line!.

FIG. 2. The dynamic structure factorS(k,v) vs v at
k51.863, r s51. vd52.91 ~solid line!; vd53.50 ~dashed line!;
vd56.91 ~dash-dot line!.

FIG. 3. The dynamic structure factorS(k,v) vs v at k52.35,
r s51, andvd56.91. PresentS(k,v) ~solid line!; SM(k,v) with
a(k)5b(k)51.2 ~dashed line!; SM(k,v) with a(k)50.8,
b(K)51.2 ~dash-dot line!.

TABLE I. Dependence of zeroth moment ofS(k,v) on
vd(k).

k rs vd(k) S(k) SQMC(k) Percentage error

1.593 1.0 2.61 0.753 0.799 5.7%
1.863 1.0 2.91 0.851 0.905 5.9%
1.863 1.0 3.50 0.859 0.905 5.0%
1.863 1.0 6.91 0.887 0.905 2.0%
2.350 1.0 6.91 0.959 0.982 2.0%
2.100 5.0 13.5 0.896 0.909 1.4%
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x(k) from the accurate QMC calculation whereas Tanatar
has used it for a lower-bound approximation as
xLB(k)52S2(k)/vk@vk5\2k2/2m#; S(k) was taken from
the QMC calculation. Thus, contrary to what was expected
by Tanatar, theS(k,v) behavior changes drastically by using
xQMC(k) as input forx(k) in the formalism. To make the
difference betweenxLB(k) and xQMC(k) more transparent
we plot them in Fig. 5 along with the RPA curve atr s51.
We notice thatxLB(k) differs considerably fromxQMC(k)
and is rather close toxRPA(k). In particularxLB (k) exhibits
a peak atk'1.5, in whichxQMC(k) is atk'2. Here, it may
be noted thatx(k) results obtained by us using the17 STLS
and7 QSTLS theories also do not agree withxLB(k), but are,

rather, closer to the QMC calculation.
To the best of our knowledge, there is neither simulation

nor the experimental data available forS(k,v) of a 2DEG to
compare our results. Therefore, we compare our results with
the other theories. For this we calculateS(k,v) by using the
parameterized model of Yoshida, Takeno, and Yasuhara,11

where they approximateV(k,v) by

VM~k,v!5~m/k2!@12a~k!#vp
2~k!1~m/k2!

3@b~k!211a~k!#vp
2~k!vR2~k,v!. ~13!

By using the Gaussian model forR2(k,t) and adjusting the
parametersa(k), b(k), andvd(k) to satisfy the zeroth sum
rule to a good accuracy, the authors in Ref. 11 obtained
satisfactory results forS(k,v) of a 3DEG. Following the
same procedure, we calculateSM(k,v) at k52.35 and
r s51 and the result is shown as a dashed line in Fig. 3. The
zeroth sum rule condition is satisfied within an accuracy of
better than 1% fora(k)5b(k)51.2 andvd56.91. It may be
noted from Fig. 3 thatSM(k,v) is fairly close to the present
S(k,v) and its qualitative behavior is similar to the 3D cal-
culation of Yoshidaet al.11 Like the 3D case it is also found
that its line shape is sensitive to the choice ofa(k) and
b(k). For example,SM(k,v) calculated with the samevd

(vd56.91) but fora(k)50.8,b(k)51.2 is shown as a dash-
dot line in Fig. 3.SM(k,v) is also calculated atr s55 and
k52.1 with vd513.5, a(k)51, and b(k)51.2. SM(k,v)
thus obtained exhibits a double peak having its close resem-
blance with that calculated by using the present MF approach
and is plotted as a dash-dot line in Fig. 4. Thus the model
calculation based on the method of Yoshidaet al. supports
our prediction of finding a double-peak structure inS(k,v)
at intermediatek at bothr s51 and 5.

We finally compareS(k,v) with our recent result,7 which
we have obtained by using the QSTLS theory. From the
comparative study we find thatS(k,v) differs both qualita-
tively and quantitatively fromSQSTLS(k,v) at r s51 while a
qualitative similarity is noted atr s55. As a major difference
we note that in QSTLS the double-peak structure is pro-
nounced only atr s55 while in the present MF formalism it
is pronounced at bothr s51 and 5. In Fig. 4SQSTLS(k,v) at
k52.1 and r s55 is plotted as a dashed line. From the
present and earlier investigations it seems that there is a good
possibility of finding the two-peak structure inS(k,v) of a
2DEG. Here, it may be noted that the double-peak structure
of S(k,v) in the present study is a property of the 2D elec-
tron system as no lattice effects are taken into account. A
similar conclusion has been drawn in 3D by Mukhopadhyay,
Kalia, and Singwi and others.4 However, experiments by
Schülke et al.18 on 3D electron system in Li and Be metals,
which are certainly not free-electron-like systems, atrributed
the double-peak structure to the lattice effects. Since no ex-
periment has been done so far to studyS(k,v) in 2D, the
accuracy of any theory in predicting its line shape and the
reason for the existence of the double peak in it cannot be
known at present.

FIG. 4. The dynamic structure factorS(k,v) vs v at k52.1,
r s55, andvd513.5. PresentS(k,v) ~solid line!; SM(k,v) and
a(k)51.0,b(k)51.2 ~dash-dot line!; SQSTLS(k,v) ~dashed line!.

FIG. 5. The isothermal susceptibilityx(k) vs k at r s51.
xLB(k) ~solid line!; xRPA(k) ~dashed line!; xQMC(k) ~solid squares!.
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IV. CONCLUSIONS

The dynamic structure factorS(k,v) of a 2DEG is calcu-
lated in the Mori memory function formalism by using the
Gaussian model for the interacting part of the second-order
memory function. The static inputs needed are obtained from
the recent quantum Monte Carlo calculation.S(k,v) thus
obtained shows a clear two-peak structure at intermediatek
at bothr s51 and 5. Our results suggest that there is a good

possibility of finding the double-peak structure in the experi-
mentalS(k,v) at intermediatek in the 2D electron systems
also.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support by the Uni-
versity Grants Commission, New Delhi. We are also grateful
to Professor K. N. Pathak for useful discussions.

1P. M. Platzman and P. Eisenberger, Phys. Rev. Lett.33, 152
~1974!.

2T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys.54, 437
~1982!.

3A. Isihara, Solid State Phys.42, 271 ~1989!.
4G. Mukhopadhyay, R. K. Kalia, and K. S. Singwi, Phys. Rev.
Lett. 34, 950 ~1975!; F. Green, D. N. Lowy, and J. Szymanski,
Phys. Rev. Lett.48, 638 ~1982!; K. Awa, H. Yasuhara, and T.
Asahi, Phys. Rev. B25, 3687~1982!.

5M. H. Lee and J. Hong, Phys. Rev. Lett.48, 634 ~1982!.
6F. Yoshida and H. Yasuhara, Phys. Lett.99A, 339 ~1983!.
7R. K. Moudgil, P. K. Ahluwalia, and K. N. Pathak, Phys. Rev. B
52, 11 945~1995!.

8B. Tanatar, Phys. Rev. B43, 14 621~1991!.
9H. Mori, Prog. Theor. Phys.33, 423~1965!; ibid. 34, 399~1965!.
10V. K. Jindal, H. B. Singh, and K. N. Pathak, Phys. Rev. B15, 252

~1977!.

11F. Yoshida, S. Takeno, and H. Yasuhara, Prog. Theor. Phys.64,
40 ~1980!.

12B. Tanatar and D. M. Ceperley, Phys. Rev. B39, 5005
~1989!.

13S. Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev. Lett.69,
1837 ~1992!.

14F. Yoshida and S. Takeno, Phys. Rep.173, 301 ~1989!.
15R. P. Sharma, H. B. Singh, and K. N. Pathak, Solid State Com-

mun.42, 823 ~1982!.
16F. Stern, Phys. Rev. Lett.18, 546 ~1967!.
17R. K. Moudgil, P. K. Ahluwalia, and K. N. Pathak, Phys. Rev. B

51, 1575~1995!.
18W. Schülke, U. Bonse, H. Nagasawa, S. Mourikis, and A. Kap-

rolat, Phys. Rev. Lett.59, 1361 ~1987!; W. Schülke, H. Na-
gasawa, S. Mourikis, and P. Lanzki, Phys. Rev. B33, 6744
~1986!.

54 8813DYNAMIC STRUCTURE FACTOR OF A TWO- . . .


