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Optical absorption of wide quantum wires
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We have calculated absorption spectra of quantum wires with rectangular cross-section and finite barrier
height, accounting for the Coulombic mixing between subbands. Our method gives high-resolution spectra for
both the bound and continuum states. We use these spectra to investigate the exciton binding energy and
oscillator strength as a function of confinement, particularly discussing the quasi-one-dimef&on&
quasi-2D transition which occurs when one of the wire dimensions is increased. The spectra show Fano
resonances in the continuum region, caused by the resonant coupling between discrete and energetically
degenerate continuum states. The Fano resonance is characterized by an asymmetrically broadened peak and a
dip below the level of the surrounding continuum. The broadening of these peaks is typically in the region of
1 meV.[S0163-18206)08035-4

I. INTRODUCTION to conduction-band transitions, in a wire with rectangular
cross section and finite barrier heights. We are not so inter-
As the fabrication and optical spectroscopy of quantumested in making comparisons with experiment as with inves-
wires become more reliable, it is increasingly desirable tdigating the sort of behavior which would be observed in a
develop an understanding of excitonic behavior in sucthigh-quality quantum wire. In particular, we examine the
structures. Excitonic effects in quantum wells are well€volution of excitons from the quasi-1D to nearly 2D situa-
documented—see Winkfefor a comprehensive review, but tions by varying one of the wire dimensions. We have exam-
as yet few calculations for quantum wires have been pubined this size transition by studying the changes in binding
lished. Variational methods have been used to calculate exenergy, oscillator strength, and degree of subband mixing as
citon binding energies, oscillator strengths, and wavehe confinement is reduced.
functions? but are limited in that they can only be used for  Our spectra also exhibit Fano resonarit@ese are due
the ground state. Glutsch and Bechstédtave investigated 10 the resonant coupling, via the Coulomb interaction, of
the effects of excitons on the optical spectra of quantunfliscrete states from higher energy subbands and continuum
wires, assuming complete confinement in one directionstates from lower-energy subbands. The Fano line shapes are
Lefebvreet al® recently described a fractional-dimensional characterized by their asymmetric broadening, accompanied
space method to calculate analytically excitonic absorptiondy @ dip below the level of the surrounding continuum.
but considered only a single pair of subbands. However, ashese have been predicted analyticdllys a general feature
the size of fabricated wires is typically large compared withof both quantum-well and quantum wire optical absorption
the exciton radius, the Coulomb mixing is large, renderingSPectra, and have also been observed in previous numerical
calculations nontrivial. In this paper we account for the ef-calculations. Fano resonances have been observed experi-
fects of mixing many subbands, and confirm that althoughmnentally in asymmetric double quantum wétidut not in
the single subband approximation works well for narrowguantum wires.
guantum wires, it is less accurate for structures of realistic
size. Glutsch and Chenflalso found this to be true. Il. THEORY
In the simplest model of optical absorption, electrons are

photoexcited from valence subbands to conduction subband%ﬁ:geb;ogs;?n?{eapg?:r:ltigmnW'tLee;?y?h;f;nga;?]zrsageuﬁ?n'

and the various transitions can be classified by the SUbbarbounded in thez direction. Working in the effective-mass
numbers, e.g.elhhl, elhh3, e2hh2. The Coulomb inter- o S 9 o
proximation, the Hamiltonian for an electron-hole pair is

action, however, couples all the electron and hole subban S the form
with very important consequencésBelow the subband

edges, quasibond states are formed, leading to distinct exci- p2 pﬁ e? .
ton peaks in the absorption spectra. At higher energies the Hex=—e o 1 FV{"(Xe,Ye)
Coulomb coupling also leads to a modification in the absorp- 2me - 2my  €ffre—ry|

tion in t.he continuum part of the spectrum. _ _ +V\t/]vire(xh Vi) 1)
In this paper we present theoretical high-resolution optical A _
spectra for quantum wires. Our method, which has previHere,V{"(x.,ye) andV}y"®(x,,yn) are the confining poten-
ously been applied to quantum wélland superlatticdsis tials for electron and hole, ang is the dielectric constant.
essentially numerically exact, and has the distinct advantagéhe uncoupled electron and hole statﬁg,qs}‘ and their
of handling both discrete and continuum states in a singleorresponding eigenvalu%"‘,s,h are calculated by express-
treatment. ing the decoupledx,y) problems as difference equations,
For the present investigation we consider only heavy-hol@nd by using inverse iteratiéfito solve on a finite mesh. We
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use this general method so that future calculations using re- 2 d?

alistic wire geometries may be performed. The exciton wave 5,47 ¢ij(2)+2 Viji i (2) i1:(2)
function is then expressed in the basis of the products of the K iy’
uncoupled electron and hole states =(E—ef—¢])j(2). ©)

\Ifex<x,y,z>=i2j i (2) BE(X,Y) (XY (2)

Here,z=z,—z,, w is the reduced electron-hole mass, &d

#;(2) describe the relative motion of the electron and hole!S @n eigenvalue of the system. The Coulomb coupling be-

in the axial direction, and are the solutions to a set of coupledeen theij andi’j" pairs of subbands is given by the ef-

differential equations, fective potential
|
&? & (Xe Ye) 85 (Xe Yo &1 (X Yi) b} (Xn.Yh)
Vijirj(2)=— o f J J j dxedx,dyedyn [(Xam X2t (Yo yr) 2t 22 - 4

Because the mixing between subbands decreases as thsirength, and wherg&, is continuous, it gives the required
separation increases, the infinite set of equati@san be continuum. In practice, to obtain convergence, it is necessary
truncated by ignoring subbands which are further thdd0  to maked small but nonzero. There is, therefore, an element
meV from the subband edge. This is justified numerically byof Lorentzian broadening in the calculated spectra. In order
testing for convergence of the calculated exciton binding ento calculate the spectruiii0), the Green'’s function is con-
ergy as a function of the number of subbands used. We nowtructed from a linear combination of humerical solutions to
have a set of equations which could, in principle, be solvedhe inhomogeneous equatié8) with the appropriate bound-
for all the exciton eigenstates, which in turn could be used tary conditions: at large the solution becomes plane-wave-
derive the optical absorption strength. However, our apiike, and az—0 the solution behaves like a regular solution.
proach, a generalization of Zimmerman’s metfidchakes it G must be continuous at=2z', and the first derivative o
unnecessary to solve for the eigenstates. The Green'$ias a step of-1 atz=z'. These two conditions are sufficient
function method can be most easily illustrated by considerto determine the coefficients of the linear combination, and
ing a single pair of subbands. In this case the exciton statehus calculateG.

are the eigenstates of The generalization to a set df coupled equations is
made by defining amN-component Green's function as the
Hin=Exdn, (5 solution to the set of inhomogeneous equations
where / ,
[Hij(z) —E]Gjj(z,2',E)=f;;6(z—2") (11
2 52 . . i . .
H(z)=— — ~_4v 7 6 (i.e., one eguanry for t.a'aolp) v_vherefij is the overlap inte-
@) 2u 9z 11142) © gral associated with thig th pair of subbands

and

L= e h
P o = [acawtonaionn. a2

Rather than solve this equation, a Green’s function is usedn this case the eigenfunction expansion is
This is defined as the solution to the inhomogeneous equa- N ,
Iy i (2D (D g

tion Gij(Z!Z,lE):E 2

E_E (13
[H(z)-E]G(z,z' .E)=8(z—2"). (®) N g
The Green’s function can be expanded in terms of the eigerﬁnd the absorption spectrum is
states of Eq(5) using
lim Im G;(0,0E+id)fF|. 14
I (Z)h(2) 50 EJ il i 4
G(z,2 \E)=>, ——"—, (9)
A Ex-E The Green’s function is now numerically constructed out of
Therefore the function N-independent solutions to the defining equation for large
and smallz, and the continuity and jump conditions are used
|, (0)]? to calculate the coefficients. This method enables efficient

lim IM[G(0,0E+i8)]=>,

5—0 N E)\_(E+|5) (10)

calculation of high-resolution spectra.

The prescription to calculate the spectral absorption there-
is proportional to the exciton absorption spectrum. Whgre fore is to calculate the uncoupled electron and hole states,
is discrete it gives a series af functions of the correct then evaluate the effective potential matrix elements
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FIG. 2. Binding energy and oscillator strength of teghhl

transition as a function of wire size.

broadening. The energy zero refers in each case to the
elhhl subband gap. The material parameters used corre-
spond to GaAs/Als/Ga, 46AS structures at 4.2 K, with a con-
duction to a valence-band offset ratio of 65:35. Just below
the subband edge, excited exciton states of even parity are
clearly visible. Above the subband edge, the strongest peaks
are for the allowed transitions with=j. However, other
transitions are also apparent. The strongest of thesEhik3
which despite having a small overlap mixes strongly with the
allowed states via the Coulomb interaction. The mixing gets
stronger in wider wires aslhh3 moves closer to thelhhl
state.
l 7 The binding energy and oscillator strength of the ground
state are plotted as a function of wire width in Fig. 2. As
expected, the binding energy decreases as the width is in-
creased, due to a weakening effective potential. However,
this is tempered by an increasing degree of subband mixing
at large widths. As the subbands move closer together the
FIG. 1. Calculated absorption spectra for rectangular quantunaxial correlation increases, which tends to enhance the bind-
wires, ranging from 5875 A to 50<500 A. The dotted lines indi- ing energy. For example, in the 500-A case, using a single
cate theelhhl peak calculated with 1-meV broadening and the pair of subbands in the calculation gives a binding energy of
solid lines have been calculated with 0.1-meV broadening. 9.6 meV, but adding as many pairs of subbands as is neces-
sary for convergence leads to a binding energy of 11.6 meV.
Viji'j'(2) which couple subband pairs, and finally to con-In the limit of infinite width we have a quantum-well situa-
struct the Green'’s function for the system of equati@)s tion where the discrete subbands caused by the confinement
in they direction have formed a continuous dispersion, and
in which the binding energy of our calculation should agree
with that of a quantum-well calculation using an appropriate
Figure 1 shows calculated absorption spectra for a rangeffective potential. Of course, in the 500-A wire we still see
of rectangular quantum wires. In each case the width irxthe discrete subbands, but they are closely spaced and the bind-
direction is fixed at 50 A, but the width in thedirection is  ing energy of 11.6 meV is only slightly greater than that of
varied from 75 to 500 Ahenceforth the word “width” re-  11.2 meV from the quantum-well calculation.
fers to the width in they direction. A small homogeneous The oscillator strength of the ground state initially dips as
broadening of 0.1 meV was used, but for clarity the excitonthe wire width is increased. This is because the expectation
ground-state peakgdotted line$ are shown with 1-meV value of the electron-hole separation decreases with decreas-
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Ill. RESULTS AND DISCUSSION
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ing confinement. As the width increases further, the oscilla-
tor strength increases as both the axial correlation and den-
sity of states increase. The behavior of the oscillator strength
in this transition from strong to weak confinement has been
previously discussetf:'® At large widths the increase is ap-
proximately linear, indicative of a 2D system in which the
absorption is proportional to the size of the sample. In con-
trast, calculations ignoring the subband coupling predict a
monotonic decrease in oscillator strength.

Examination of theelhhl bound-state wave function
confirms this suggestion. The degree of subband mixing in-
creases with increasing width. For the two smallest wires the
wave function is made up almost entirely of tedhhl
eigenstate, i.e.y;;~0 for i,j#1. As the size increases the
elhhl state remains the most significant, but even parity
states such aelhh3, e2hh2, e3hhl, etc., become more
important in the sum of Eq2). In other words, we can think
of the exciton as becoming more quantum-well-like as the
confinement is reduced.

The spectra for wires with widths greater than 75 A ex-
hibit Fano resonances. These are caused by the resonant cou- ==
pling of a discrete state of a higher-energy subband pair and T —————

energetically degenerate continuum states from lower sub- 42 43 44 45 46 47 48 49 50 51
bands. The line shape of a Fano resonance has the functional
form Energy (meV)
. (g+ 6)2 FIG. 3. Close up of the Fano resonance in the frame box of Fig.
a(e)= 1+ €2 (15 1 (squares The solid line represents the predicted functional form

calculated withg=—6.0 and'=0.6 meV.
where € is an energy normalized relative to the resonance
energyE, of the discrete state, in the 300-, 400-, and 500-A wires in which it forms a bound
E—E state below the continuum edge, the line shape is Lorentzian.
L. (16) For each wire the magnitude gfincreases with increasing

72 energy, indicating reduced coupling at higher order in agree-
The absorption profile is thus characterized by the peaknent with the Fano model.
width I', and by the Fano parametgr which gives the ratio
of the transition matrix elements to the discrete state and to
the continuum.

The widths of the peaks are much larger than the homo- We have presented a method to calculate accurately exci-
geneous broadening used in the calculation. Figure 3 showstanic spectra in quantum wires, and have described the tran-
detailed view of the resonance in the frame box of Fig. 1sition of an exciton from confinement in two directions to
This feature fits the functional form very well using=—6  confinement in just one dimension. We find that it is essen-
andI’=0.6 meV. For diagonal transitioris=j, i'=j’) and tial to consider the effects of subband mixing in order to
electron-hole symmetry, the Fano parameter is alwaysbtain accurate results for the binding energy and oscillator
negative'® However, a general rule can not been made forstrength in larger quantum wires. The binding energy is in-
the coupled case, and in our spectragtidh3 resonance in creased by the axial correlation of closely spaced subbands,
the 50100 A and 5x200 A wires has a positive Fano and the oscillator strength rises at large widths. We also see
parameter. Looking at thelhh3 peak it is also clear that the Fano resonances in our spectra, with broadening in the re-
asymmetry does arise from coupling to continuum states, agion of 1 meV.

€=
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