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We have calculated absorption spectra of quantum wires with rectangular cross-section and finite barrier
height, accounting for the Coulombic mixing between subbands. Our method gives high-resolution spectra for
both the bound and continuum states. We use these spectra to investigate the exciton binding energy and
oscillator strength as a function of confinement, particularly discussing the quasi-one-dimensional~1D! to
quasi-2D transition which occurs when one of the wire dimensions is increased. The spectra show Fano
resonances in the continuum region, caused by the resonant coupling between discrete and energetically
degenerate continuum states. The Fano resonance is characterized by an asymmetrically broadened peak and a
dip below the level of the surrounding continuum. The broadening of these peaks is typically in the region of
1 meV. @S0163-1829~96!08035-6#

I. INTRODUCTION

As the fabrication and optical spectroscopy of quantum
wires become more reliable, it is increasingly desirable to
develop an understanding of excitonic behavior in such
structures. Excitonic effects in quantum wells are well
documented—see Winkler1 for a comprehensive review, but
as yet few calculations for quantum wires have been pub-
lished. Variational methods have been used to calculate ex-
citon binding energies, oscillator strengths, and wave
functions,2 but are limited in that they can only be used for
the ground state. Glutsch and Bechstedt3,4 have investigated
the effects of excitons on the optical spectra of quantum
wires, assuming complete confinement in one direction.
Lefebvreet al.5 recently described a fractional-dimensional
space method to calculate analytically excitonic absorption,
but considered only a single pair of subbands. However, as
the size of fabricated wires is typically large compared with
the exciton radius, the Coulomb mixing is large, rendering
calculations nontrivial. In this paper we account for the ef-
fects of mixing many subbands, and confirm that although
the single subband approximation works well for narrow
quantum wires, it is less accurate for structures of realistic
size. Glutsch and Chemla6 also found this to be true.

In the simplest model of optical absorption, electrons are
photoexcited from valence subbands to conduction subbands,
and the various transitions can be classified by the subband
numbers, e.g.,e1hh1, e1hh3, e2hh2. The Coulomb inter-
action, however, couples all the electron and hole subbands
with very important consequences.3 Below the subband
edges, quasibond states are formed, leading to distinct exci-
ton peaks in the absorption spectra. At higher energies the
Coulomb coupling also leads to a modification in the absorp-
tion in the continuum part of the spectrum.

In this paper we present theoretical high-resolution optical
spectra for quantum wires. Our method, which has previ-
ously been applied to quantum wells7 and superlattices8 is
essentially numerically exact, and has the distinct advantage
of handling both discrete and continuum states in a single
treatment.

For the present investigation we consider only heavy-hole

to conduction-band transitions, in a wire with rectangular
cross section and finite barrier heights. We are not so inter-
ested in making comparisons with experiment as with inves-
tigating the sort of behavior which would be observed in a
high-quality quantum wire. In particular, we examine the
evolution of excitons from the quasi-1D to nearly 2D situa-
tions by varying one of the wire dimensions. We have exam-
ined this size transition by studying the changes in binding
energy, oscillator strength, and degree of subband mixing as
the confinement is reduced.

Our spectra also exhibit Fano resonances.9 These are due
to the resonant coupling, via the Coulomb interaction, of
discrete states from higher energy subbands and continuum
states from lower-energy subbands. The Fano line shapes are
characterized by their asymmetric broadening, accompanied
by a dip below the level of the surrounding continuum.
These have been predicted analytically10 as a general feature
of both quantum-well and quantum wire optical absorption
spectra, and have also been observed in previous numerical
calculations.7 Fano resonances have been observed experi-
mentally in asymmetric double quantum wells11 but not in
quantum wires.

II. THEORY

We consider a quantum wire in which carriers are con-
fined by a finite potential in the (x,y) plane and are un-
bounded in thez direction. Working in the effective-mass
approximation, the Hamiltonian for an electron-hole pair is
of the form
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h are calculated by express-
ing the decoupled (x,y) problems as difference equations,
and by using inverse iteration12 to solve on a finite mesh. We
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use this general method so that future calculations using re-
alistic wire geometries may be performed. The exciton wave
function is then expressed in the basis of the products of the
uncoupled electron and hole states

Cex~x,y,z!5(
i j

c i j ~z!f i
e~x,y!f j

h~x,y!. ~2!

c i j (z) describe the relative motion of the electron and hole
in the axial direction, and are the solutions to a set of coupled
differential equations,
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Here,z5ze2zh , m is the reduced electron-hole mass, andE
is an eigenvalue of the system. The Coulomb coupling be-
tween thei j and i 8 j 8 pairs of subbands is given by the ef-
fective potential
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Because the mixing between subbands decreases as their
separation increases, the infinite set of equations~3! can be
truncated by ignoring subbands which are further than;50
meV from the subband edge. This is justified numerically by
testing for convergence of the calculated exciton binding en-
ergy as a function of the number of subbands used. We now
have a set of equations which could, in principle, be solved
for all the exciton eigenstates, which in turn could be used to
derive the optical absorption strength. However, our ap-
proach, a generalization of Zimmerman’s method,13 makes it
unnecessary to solve for the eigenstates. The Green’s-
function method can be most easily illustrated by consider-
ing a single pair of subbands. In this case the exciton states
are the eigenstates of

Hcl5Elcl , ~5!

where
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and
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Rather than solve this equation, a Green’s function is used.
This is defined as the solution to the inhomogeneous equa-
tion

@H~z!2E#G~z,z8,E!5d~z2z8!. ~8!

The Green’s function can be expanded in terms of the eigen-
states of Eq.~5! using

G~z,z8,E!5(
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Therefore the function
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is proportional to the exciton absorption spectrum. WhereEl

is discrete it gives a series ofd functions of the correct

strength, and whereEl is continuous, it gives the required
continuum. In practice, to obtain convergence, it is necessary
to maked small but nonzero. There is, therefore, an element
of Lorentzian broadening in the calculated spectra. In order
to calculate the spectrum~10!, the Green’s function is con-
structed from a linear combination of numerical solutions to
the inhomogeneous equation~8! with the appropriate bound-
ary conditions: at largez the solution becomes plane-wave-
like, and asz→0 the solution behaves like a regular solution.
G must be continuous atz5z8, and the first derivative ofG
has a step of11 atz5z8. These two conditions are sufficient
to determine the coefficients of the linear combination, and
thus calculateG.

The generalization to a set ofN coupled equations is
made by defining anN-component Green’s function as the
solution to the set of inhomogeneous equations

@Hi j ~z!2E#Gi j ~z,z8,E!5 f i jd~z2z8! ~11!

~i.e., one equation for eachi j ! where f i j is the overlap inte-
gral associated with thei j th pair of subbands
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In this case the eigenfunction expansion is
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and the absorption spectrum is

lim
d→0

ImF(
i j

Gi j ~0,0,E1 id! f i j* G . ~14!

The Green’s function is now numerically constructed out of
N-independent solutions to the defining equation for large
and smallz, and the continuity and jump conditions are used
to calculate the coefficients. This method enables efficient
calculation of high-resolution spectra.

The prescription to calculate the spectral absorption there-
fore is to calculate the uncoupled electron and hole states,
then evaluate the effective potential matrix elements
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Vi ji 8 j 8(z) which couple subband pairs, and finally to con-
struct the Green’s function for the system of equations~3!.

III. RESULTS AND DISCUSSION

Figure 1 shows calculated absorption spectra for a range
of rectangular quantum wires. In each case the width in thex
direction is fixed at 50 Å, but the width in they direction is
varied from 75 to 500 Å~henceforth the word ‘‘width’’ re-
fers to the width in they direction!. A small homogeneous
broadening of 0.1 meV was used, but for clarity the exciton
ground-state peaks~dotted lines! are shown with 1-meV

broadening. The energy zero refers in each case to the
e1hh1 subband gap. The material parameters used corre-
spond to GaAs/Al0.52Ga0.48As structures at 4.2 K, with a con-
duction to a valence-band offset ratio of 65:35. Just below
the subband edge, excited exciton states of even parity are
clearly visible. Above the subband edge, the strongest peaks
are for the allowed transitions withi5 j . However, other
transitions are also apparent. The strongest of these ise1hh3
which despite having a small overlap mixes strongly with the
allowed states via the Coulomb interaction. The mixing gets
stronger in wider wires ase1hh3 moves closer to thee1hh1
state.

The binding energy and oscillator strength of the ground
state are plotted as a function of wire width in Fig. 2. As
expected, the binding energy decreases as the width is in-
creased, due to a weakening effective potential. However,
this is tempered by an increasing degree of subband mixing
at large widths. As the subbands move closer together the
axial correlation increases, which tends to enhance the bind-
ing energy. For example, in the 500-Å case, using a single
pair of subbands in the calculation gives a binding energy of
9.6 meV, but adding as many pairs of subbands as is neces-
sary for convergence leads to a binding energy of 11.6 meV.
In the limit of infinite width we have a quantum-well situa-
tion where the discrete subbands caused by the confinement
in the y direction have formed a continuous dispersion, and
in which the binding energy of our calculation should agree
with that of a quantum-well calculation using an appropriate
effective potential. Of course, in the 500-Å wire we still see
discrete subbands, but they are closely spaced and the bind-
ing energy of 11.6 meV is only slightly greater than that of
11.2 meV from the quantum-well calculation.

The oscillator strength of the ground state initially dips as
the wire width is increased. This is because the expectation
value of the electron-hole separation decreases with decreas-

FIG. 1. Calculated absorption spectra for rectangular quantum
wires, ranging from 50375 Å to 503500 Å. The dotted lines indi-
cate thee1hh1 peak calculated with 1-meV broadening and the
solid lines have been calculated with 0.1-meV broadening.

FIG. 2. Binding energy and oscillator strength of thee1hh1
transition as a function of wire size.
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ing confinement. As the width increases further, the oscilla-
tor strength increases as both the axial correlation and den-
sity of states increase. The behavior of the oscillator strength
in this transition from strong to weak confinement has been
previously discussed.14,15At large widths the increase is ap-
proximately linear, indicative of a 2D system in which the
absorption is proportional to the size of the sample. In con-
trast, calculations ignoring the subband coupling predict a
monotonic decrease in oscillator strength.

Examination of thee1hh1 bound-state wave function
confirms this suggestion. The degree of subband mixing in-
creases with increasing width. For the two smallest wires the
wave function is made up almost entirely of thee1hh1
eigenstate, i.e.,ci j'0 for i , jÞ1. As the size increases the
e1hh1 state remains the most significant, but even parity
states such ase1hh3, e2hh2, e3hh1, etc., become more
important in the sum of Eq.~2!. In other words, we can think
of the exciton as becoming more quantum-well-like as the
confinement is reduced.

The spectra for wires with widths greater than 75 Å ex-
hibit Fano resonances. These are caused by the resonant cou-
pling of a discrete state of a higher-energy subband pair and
energetically degenerate continuum states from lower sub-
bands. The line shape of a Fano resonance has the functional
form

a~e!5
~q1e!2

11e2
~15!

where e is an energy normalized relative to the resonance
energyEr of the discrete state,

e5
E2Er

G/2
. ~16!

The absorption profile is thus characterized by the peak
width G, and by the Fano parameterq, which gives the ratio
of the transition matrix elements to the discrete state and to
the continuum.

The widths of the peaks are much larger than the homo-
geneous broadening used in the calculation. Figure 3 shows a
detailed view of the resonance in the frame box of Fig. 1.
This feature fits the functional form very well usingq526
andG50.6 meV. For diagonal transitions~i5 j , i 85 j 8! and
electron-hole symmetry, the Fano parameter is always
negative.10 However, a general rule can not been made for
the coupled case, and in our spectra thee1hh3 resonance in
the 503100 Å and 503200 Å wires has a positive Fano
parameter. Looking at thee1hh3 peak it is also clear that the
asymmetry does arise from coupling to continuum states, as

in the 300-, 400-, and 500-Å wires in which it forms a bound
state below the continuum edge, the line shape is Lorentzian.
For each wire the magnitude ofq increases with increasing
energy, indicating reduced coupling at higher order in agree-
ment with the Fano model.

IV. SUMMARY

We have presented a method to calculate accurately exci-
tonic spectra in quantum wires, and have described the tran-
sition of an exciton from confinement in two directions to
confinement in just one dimension. We find that it is essen-
tial to consider the effects of subband mixing in order to
obtain accurate results for the binding energy and oscillator
strength in larger quantum wires. The binding energy is in-
creased by the axial correlation of closely spaced subbands,
and the oscillator strength rises at large widths. We also see
Fano resonances in our spectra, with broadening in the re-
gion of 1 meV.
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11D. Y. Oberli, G. Böhm, G. Weimann, and J. A. Brum, Phys. Rev.

B 49, 5757~1994!.

FIG. 3. Close up of the Fano resonance in the frame box of Fig.
1 ~squares!. The solid line represents the predicted functional form
calculated withq526.0 andG50.6 meV.

54 8797OPTICAL ABSORPTION OF WIDE QUANTUM WIRES



12W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipes InFORTRAN ~Cambridge University
Press, Cambridge, 1992!.

13R. Zimmermann, Phys. Status Solidi B135, 681 ~1986!.

14A. D’Andrea and R. DelSole, Solid State Commun.74, 1121
~1990!.

15L. C. Andreani, A. D’Andrea, and R. DelSole, Phys. Lett. A168,
451 ~1992!.

8798 54A. N. FORSHAW AND D. M. WHITTAKER


