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We consider models for the plateau transition in the integer quantum Hall effect. Starting from the network
model, we construct a mapping to the Dirac Hamiltonian in two dimensions. In the general case, the Dirac
Hamiltonian has randomness in the mass, the scalar potential, and the vector potential. Separately, we show
that the network model can also be associated with a nearest-neighbor, tight-binding Hamiltonian.@S0163-
1829~96!05935-8#

I. INTRODUCTION

Anderson localization is central to understanding the in-
teger quantum Hall effect~IQHE!.1 In particular, the plateau
transitions between different quantized values for the Hall
conductance reflect delocalization transitions in each Landau
level. Scaling ideas2 provide a framework for understanding
these transitions, and are supported by the results of
experiment3 and of numerical simulation.1 Progress toward
an analytical theory of the critical point, however, remains
limited.

The simplest starting point for such a theory is to neglect
electron-electron interactions and consider a single particle
moving in a magnetic field with a disordered impurity poten-
tial. In a pioneering work, Pruisken and collaborators4 ob-
tained from this a field-theoretic description in terms of a
s model. More recently, in response to the difficulties of
extracting quantitative results from thes model, several al-
ternative formulations have been explored: Read,5 Lee,6 and
Zirnbauer7 have investigated spin chains; Lee and Wang8

have considered the replica limit of Hubbard chains; and
Ludwig and collaborators9 have discussed the Dirac equa-
tion.

The correspondence between Dirac fermions in two space
dimensions, and nonrelativistic charged particles moving in a
magnetic field, stems from the fact that time-reversal sym-
metry is broken both by a mass term in the two-dimensional
Dirac equation9,10 and by a magnetic field in the Schro¨dinger
equation. Moreover, as emphasized by Ludwiget al., the
Hall conductance of Dirac fermions, with fixed Fermi en-
ergy, has a jump ofe2/h if the fermion mass is tuned through
zero. The critical behavior at this transition depends on the
symmetries of the Hamiltonian. The Dirac equation with
only a random vector potential is particularly amenable to
analysis9,11 since the zero-energy eigenstates are known
explicitly.12 Critical properties are controlled by a line of
fixed points, and turn out to be different from those expected
at the plateau transitions in the IQHE. The line of fixed
points, however, is unstable against additional randomness,
either in the mass or in the scalar potential, and flow is
conjectured9 to be towards a generic quantum Hall fixed
point, describing the same critical behavior as emerges from
the usual Schro¨dinger equation.

Confidence that Dirac fermions with suitable randomness
do indeed have a critical point in the same universality class
as the IQHE plateau transitions is clearly strengthened if
there exists an explicit mapping from a microscopic model
for the IQHE to the Dirac Hamiltonian. Fisher and Fradkin,13

and subsequent authors,9,15 have reached the Dirac equation
starting from certain, rather specific, tight-binding models.
An alternative to the tight-binding model, as a description of
the IQHE, is the network model,16 studied extensively by
numerical simulation.17 Ludwig and collaborators9 have as-
serted that Dirac fermions with various possible kinds of
randomness each represent particular forms of the network
model. These authors, however, did not set out a transforma-
tion from one model to the other. Separately, Lee6 found
such a transformation in the particular case of a network
model without random phases, obtaining Dirac fermions
with randomness only in the mass.

The purpose of this paper is to describe a general mapping
from the network model to the Dirac Hamiltonian in two
dimensions, which, in the unrestricted case, has randomness
in the mass, the scalar potential, and the vector potential.
Any approach to this problem must confront the fact that the
network model is defined using the language of scattering
theory, and therefore, at least in the first instance, contains
information only about behavior at one energy. The Dirac
Hamiltonian, by contrast, obviously fixes properties of an
entire spectrum of eigenstates. We begin from a unitary ma-
trix defined19 for the network model, which, heuristically,
can be thought of as a time-evolution operator. We show, in
a continuum limit, that it is the evolution operator for a Dirac
Hamiltonian. In this respect, our route is rather different
from that of Lee,6 who obtains a Hamiltonian by endowing
the phases of the network model with an energy dependence.
We also differ in taking the continuum limit isotropically,
while Lee6 does so anisotropically.

Our mapping is described in Sec. II. In Sec. III we exam-
ine in detail how edge states of the network model are related
to boundary states of Dirac fermions. This is important, since
it is these states that are responsible for the quantized Hall
conductance away from plateau transitions.

Equivalence between the network model and the Dirac
Hamiltonian necessarily requires a continuum limit. In Sec.
IV, we show that, independently of the continuum limit, one
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can associate with the network model a tight-binding Hamil-
tonian, which contains only nearest-neighbor hopping.

II. MAPPING FROM THE NETWORK MODEL
TO THE DIRAC HAMILTONIAN

In this section we construct an explicit mapping from the
network model16 to the Dirac Hamiltonian in two dimen-
sions. First, we recall the physical basis for the network
model and its definition. Consider nonrelativistic, charged
particles moving in a smoothly varying scalar potential in
two dimensions, with a strong perpendicular magnetic field.
The potential is smooth if its correlation length is much
larger than the cyclotron radius, and the field is strong if the
cyclotron energy is larger than the amplitude of potential
fluctuations. Under these conditions, the kinetic energy of
cyclotron motion about the guiding center, and the potential
energy associated with the position of the guiding center, are
both separately conserved. We focus on drift of guiding cen-
ters along equipotential lines. In the network model, portions
of a given equipotential are represented by directed ‘‘links,’’
and the wave function for the particle is represented by com-
plex current amplitudesZ, defined at points on each link. On
traversing a link, a particle aquires an Aharonov-Bohm
phase: ifZi andZj are amplitudes at opposite ends of the link
k @see Fig. 1~a!#, Zj5eifkZi . Tunneling between two dis-
joint portions of the equipotential can occur where they are
separated by less than a cyclotron radius, as happens near
saddle points in the potential. It is incorporated into the
model at ‘‘nodes,’’ where two incoming and two outgoing
links meet. The amplitudes on the four links that meet at a
given node may be related by a transfer matrix or by a scat-
tering matrix. In a suitable gauge, each of these 232 matri-
ces is real and depends on a single parameter, which we
denote byu ~for the transfer matrix! andb ~for the scattering
matrix!. The parameter determines the relative probabilities
for a particle to turn to the left or to the right on arriving at
the node. It is a smooth function of the equipotential energy,
measured relative to the potential at the saddle point.18 Re-
ferring to Fig. 1~b!, one has

S Z4Z3D 5S coshu sinhu

sinhu coshu D S Z1Z2D ~1!

and

S Z2Z4D 5S cosb sinb

2sinb cosb D S Z1Z3D . ~2!

The two parameters are related by sinb52tanhu. On varying
the equipotential energy from far below that of the saddle
point to far above,b increases fromb50 to b5p/2; tun-
neling is a maximum atbc5p/4.

The network model as a whole is built by connecting
these two elements—links and nodes—to form a lattice. The
simplest choice is the square lattice, illustrated in Fig. 2.
Randomness is introduced by choosing each link phasefk
independently from a probability distribution. The model
represents particle motion at an energy determined by the
value of the node parameters. If all nodes are identical, and if
phases are uniformly distributed between 0 and 2p, the sys-
tem is critical atb5bc , and in the localized phase other-
wise.

We follow Klesse and Metzler,19 and associate a unitary
matrix with the model. Roughly speaking, this matrix is a
time evolution operator. Let the unit of time be the interval
required for a guiding center to drift from the midpoint of
one link, through a node, to the midpoint of the next link;
ignore dispersion in this time interval, arising from variations
in drift velocity or in lengths of links. LetZ(r ;L) be the
amplitude for a particle to arrive at a pointr after L time
steps, starting from an initial wave functionZ(r 8;0). Then

Z~r ;L11!5(
r8

Tr,r 8Z~r 8;L !, ~3!

andT is the required time evolution operator. Eigenfunctions
of T with eigenvalue 1 are stationary states of the network
model.

In Eq. ~3!, the elementTr,r 8 is nonzero only if there is a
one-step path on the lattice fromr to r 8: that is, a path that
follows the directions of the links and passes only one node.
The values of these nonzero elements are given19 by a prod-
uct of a phase factor from the link traversed, and a tunneling
amplitude from the node, with sign conventions indicated in
Fig. 3.

To be definite, consider the system illustrated in Fig. 4.
Plaquettes are labeled by the coordinates, (x,y), of their cen-
ters. With our choice of lattice constant and of orientation for
the axes, (x,y) are a pair of integers, either both even or both

FIG. 1. Components of the network model: links~a! and nodes
~b!.

FIG. 2. The network model on a square lattice.
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odd. We denote the four linksi making up a plaquette by
i51, 2, 3 and 4, so that a pointr on the network is speci-
fied by the combination (x,y,i ). Initially, we take the tunnel-
ing parameterb to be the same at every node, and the four
phasesf i to be the same on every plaquette. In addition, it is
convenient to measure the phases relative to their value when
half a flux quantum threads each plaquette, by replacingf4
with f41p.

Because each plaquette has four links, the matrixT has a
434 block structure, and because the midpoints of links
form a bipartite lattice, each such block consists
of two 232 blocks. To exhibit this structure, we ar-
range the amplitudesZ(r ;L)[Zi(x,y;L) in the order
(Z1 ,Z2), with Z1(x,y)5„Z1(x,y),Z3(x,y)… and
Z2(x,y)5„Z2(x,y),Z4(x,y)…, suppressing the timeL for
clarity. In this basis, the evolution operator is

T5S 0 M

N 0 D , ~4!

where

M5S Seif1t2
x t1

y Ceif1

Ceif3 2Seif3t1
x t2

y D ~5!

and

N5S Ceif2 Seif2t1
x t1

y

Seif4t2
x t2

y 2Ceif4
D . ~6!

Here, we have introduced the abbreviationsC5cosb and
S5sinb, and the translation operators,t6

x andt6
y , defined by

their action, t6
x Zi(x,y)5Zi(x61,y) and t6

y Zi(x,y)
5Zi(x,y61). The first row ofM , for example, expresses the
fact, illustrated in Fig. 4, that Z1(x,y;L11)
5Seif1Z2(x21,y11;L)1Ceif1Z4(x,y;L).

In order to decoupleZ1 from Z2 , we consider the two-
step evolution operator,

W[T25SMN 0

0 NMD . ~7!

We may then deal just with the upper-left block,U[MN, in
the matrixW, and the component-pairZ1 . Since, at this
stage, we are treating a system without disorder,U is diago-
nalized by a Fourier transform. We write its eigenvectorsu
asuÁ(x,y)5(v,w)ei (qxx1qyy) and find

Uu5e2 iVS g a

2a* g* D u5ei ~x2V!u, ~8!

where

V52
1

2 (
j51

4

f j ,

g52SCei @1/2 ~f12f3!2qx#cos@ 1
2 ~f22f4!1qy#, ~9!

a5ei @1/2 ~f12f3!1qy#@S2ei @1/2 ~f22f4!1qy#

2C2e2 i @1/2 ~f22f4!1qy##,

andg* , a* are the corresponding complex conjugates. The
eigenvalues ofU areei (x2V) with a phasex given by

cosx[sin2bcos~qx2Ax!cos~qy2Ay!, ~10!

in which Ax5(f12f3)/2 and Ay5(f42f2)/2. Setting
b5bc1m/2[p/41m/2, and taking2p<x,p, the range
of allowed values forx has gaps aroundx50 andx56p
for mÞ0: x satisfies 2p1umu<x<2umu or
umu<x<p2umu. This dispersion relation is illustrated in
Fig. 5. Stationary states of the network model are character-
ized byx2V50.

To extract from the unitary evolution operator a Dirac

HamiltonianH, we write U5e2 iH̃ and work in the con-
tinuum limit, in which H̃ is small. Thus we expand around
(qx ,qy)5(0,0), takingm and the link phasesf j to be small.
To leading order, Eq.~10! gives the spectrum

x25m21~qx2Ax!
21~qy2Ay!

2 ~11!

for small x. At an operator level, whent6
x and t6

y act on
smooth functions we make the replacementst6

x 516]x and
t6
y 516]y . Then

FIG. 3. Amplitudes associated with possible scattering paths at
nodes.

FIG. 4. The network model, showing~i! our coordinate system
for plaquettes;~ii ! labeling of the four links that make up a
plaquette; and~iii !, with dashed lines, the paths that contribute to
Zi(x,y;L11) for i51,3.
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U'11S 2]x1 iAx ]y2 iAy1m

]y2 iAy2m ]x2 iAx
D 2 iV[12 iH̃ .

~12!

Finally, to bring the Hamiltonian into a conventional form,
we make a rotation in the two-component space, setting
H5GH̃G21, with

G5
1

A2
S i 21

i 1 D ~13!

and obtain

H5~px2Ax!sx1~py2Ay!sy1msz1V, ~14!

wherepx52 i ]x , and similarly forpy , and we use the Pauli
matrix representation

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D . ~15!

Now consider a network model with randomness. If the
link phases and tunneling parameter vary smoothly in space,
one obtains in the continuum limit the Dirac Hamiltonian,
Eq. ~14!, with randomness in the vector potential, scalar po-
tential, and mass. Specifically, fluctuations in the vector po-
tential A arise from randomness in the individual link
phases, fluctuations in the scalar potentialV come from
variations in the total Aharonov-Bohm phase associated with
each plaquette, and fluctuations in the massm are present if
the tunneling parameter is not constant everywhere. The
time-independent states of the network model correspond to
the zero-energy states of the Dirac Hamiltonian.

This mapping can also be carried through for generaliza-
tions of the network model. In particular, the two-

dimensional model in which each link carriesN channels16 is
equivalent to theU(N) Dirac Hamiltonians investigated by
Fradkin.14

III. EDGE STATES IN THE NETWORK MODEL
AND THE DIRAC EQUATION

The edge of a sample is, of course, set by a scalar confin-
ing potential in the usual description of the IQHE, based on
the Schro¨dinger equation. Dirac fermions, by contrast, are
confined by a spatially dependent mass, as discussed by Lud-
wig et al.9 In particular, chiral, zero-energy states of Dirac
fermions are associated with contours of zero mass.9 We
discuss in this section how such edge states emerge in our
mapping from the network model to the Dirac Hamiltonian.

Consider a network model defined on a strip of finite
width, as in Fig. 6. For energies in the lower half of the
Landau level, corresponding to values of the node parameter
b,bc , all states are localized, while for energies in the
upper half of the Landau level, for whichb.bc , a pair of
extended states appears, one at each edge of the strip.16

The evolution operatorU acting on the two-component
wave function,Z1(L), introduced for the bulk of the system
in the preceding section, is supplemented at the edge by the
following boundary conditions~see Fig. 6!: at x50, the
componentZ3 obeys the same equation as in the bulk,

Z3~0,y;L12!5@UZ1~L !#3~0,y!, ~16!

while the componentZ1 satisfies

Z1~0,y;L12!52ei @f1~0,y!1f4~0,y!#Z3~0,y,L !. ~17!

We wish to check under what conditions the evolution op-
eratorU has an eigenvectoru representing an edge state. We
simplify the discussion by considering a semi-infinite system
without disorder, settingf i50 for all i . Without disorder,

FIG. 5. The dispersion ofx ~vertical axis! plotted as a function
of (p2A)x and (p2A)y ~horizontal plane! in units ofp. The width
of the gap between the two bands is determined by the mass, which
is 1.2 here.

FIG. 6. The network model defined on a strip of widthM .
Dashed arrows indicate the propagation direction of edge states.
The dotted arrow represents the boundary condition, Eq.~17!.
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the spatial dependence, forx>1, of such an eigenvector is
uÁ(x,y)5(v,w)e( iqy2lx), where Re@l#.0; for x50,
uÁ(0,y)5(v8,w8)eiqy, wherev,v8,w, andw8 are constants.
This ansatz in the equation

Uu5eixu, ~18!

takingU from Eqs.~7!, ~16!, and~17!, yields

el5tanb ~19!

confirming that an edge state exists~Re@l#.0) only for
b.bc[p/4.

Similar results also follow if one considers directly the
continuum limit. Let the eigenfunctions ofH̃ be C̃(x,y), so
that those of H are C(x,y), with C[GC̃. Writing
CÁ5(C1 ,C3), the boundary condition atx50, Eq.~17!, is
to leading order

C3~0,y!5 iC1~0,y!. ~20!

Note that this boundary condition enforces a chiral edge cur-
rent: the current density, with componentsj a5C†saC, is
j5(0,uC1u2), and necessarily in the positivey direction. Im-
posing this boundary condition, the Dirac HamiltonianH of
Eq. ~14! with V50 andA50 has an eigenfunction of energy
E

C~x,y!5eiEye2mxS 1i D ~21!

provided thatm.0. This same eigenstate appears from con-
sidering an infinite system with position-dependent mass,
m(x,y), following Ludwig et al.: setting m(x,y)5m for
x.0, andm(x,y)5m0 for x,0, the boundary condition,
Eq. ~20!, emerges in the limitm0→2`.

IV. MAPPING FROM THE NETWORK MODEL
TO A TIGHT-BINDING MODEL

It is also possible, without taking a continuum limit, to
associate a nearest-neighbor tight-binding Hamiltonian with
the network model. The sites of the tight-binding model,
each carrying one basis state, correspond to the links of the
network model. In terms of the one-step evolution matrixT
the tight-binding HamiltonianH is simply

H5~T†2T!/ i . ~22!

We indicate schematically in Fig. 7 which matrix elements
of H are nonzero, and give their values in terms of link
phases and the tunneling parameter.

This Hamiltonian has two important features. First, it is
natural to introduce a unit cell containing the four sites aris-
ing from one plaquette of the network model. The ampli-
tudes of nearest-neighbor hoppingwithin and betweenunit
cells have moduli cosb and sinb, respectively, whereb is the
tunneling parameter: they are different, except at the critical
point, b5bc[p/4. Second, the phases of the hopping ma-
trix elements are correlated in the way indicated in Fig. 7. It
follows from known behavior of the network model that
these correlations have unusual consequences for the tight-
binding model. Consider a system in which all link phases
are independently and uniformly distributed. It is straightfor-

ward to see that for this system the eigenvalues ofT in the
complex plane are distributed uniformly on the unit circle.
As a result, the density,r(E), of eigenvaluesE of H can be

given exactly:r(E)5 1
4p@12(E/2)2#1/2 for (E/2)2<1 and

r(E)50 for (E/2)2.1. In addition, one can see that the
eigenvectors ofT have the same statistical properties
throughout the spectrum, a feature inherited byH. Hence the
localization length of eigenstates ofH is independent of their
energyE. If all nodes have the same parameter value,b,
then asb→bc , the localization length diverges uniformly
across the spectrum: this Hamiltonian never has a mobility
edge as a function of energy.

We note thatH is similar in structure to, but different in
detail from, the tight-binding model used as a departure point
by Ludwig and collaborators.9 The latter includes not only
nearest-neighbor, but also next-nearest-neighbor hopping:
compare Fig. 7 with Fig. 1 of Ref. 9. Our model also differs
from that of Fisher and Fradkin.13

V. SUMMARY

We have set out in detail a mapping from the network
model for plateau transitions in the IQHE to Dirac fermions
in two space dimensions. The mapping makes crucial use of
a unitary operator defined for the network model,19 which is
essentially the time-evolution operator. The two-component
structure of Dirac spinors in two space dimensions arises
rather naturally from the network model, defined on a square
lattice: the fact that each plaquette has four sides suggests a
four-component wave function, which separates into two in-
dependent pairs because of the existence of two sublattices.
This structure is not dependent on the continuum limit, and is
also shared by a nearest-neighbor tight-binding Hamiltonian,
derived directly from the evolution operator.
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FIG. 7. Schematic illustration of the tight-binding Hamiltonian.
~a! The only nonzero matrix elements are those linking nearest-
neighbor sites, within plaquettes~full lines! and between plaquettes
~dashed lines!. ~b! Their values areieif l (x.y)cosb for the bonds
marked l51,2,3,4, ieif l (x.y)sinb, for the bonds markedl518,28,
and2 ieif l (x.y)sinb, for the bonds markedl538,48, hopping in all
cases being in the direction given by the arrows.
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