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Models for the integer quantum Hall effect: The network model, the Dirac equation,
and a tight-binding Hamiltonian

C.-M. Ho and J.T. Chalker
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We consider models for the plateau transition in the integer quantum Hall effect. Starting from the network
model, we construct a mapping to the Dirac Hamiltonian in two dimensions. In the general case, the Dirac
Hamiltonian has randomness in the mass, the scalar potential, and the vector potential. Separately, we show
that the network model can also be associated with a nearest-neighbor, tight-binding Hami[t8aik68-
182996)05935-9

I. INTRODUCTION Confidence that Dirac fermions with suitable randomness
do indeed have a critical point in the same universality class
Anderson localization is central to understanding the in-as the IQHE plateau transitions is clearly strengthened if
teger quantum Hall effeddQHE)." In particular, the plateau there exists an explicit mapping from a microscopic model
transitions between different quantized values for the Halfor the IQHE to the Dirac Hamiltonian. Fisher and Fradkin,
conductance reflect delocalization transitions in each Landaand subsequent authdtS, have reached the Dirac equation
level. Scaling idedsprovide a framework for understanding starting from certain, rather specific, tight-binding models.
these transitions, and are supported by the results oAn alternative to the tight-binding model, as a description of
experiment and of numerical simulatioh.Progress toward the IQHE, is the network modéf, studied extensively by
an analytical theory of the critical point, however, remainsnumerical simulatiort! Ludwig and collaboratofshave as-
limited. serted that Dirac fermions with various possible kinds of
The simplest starting point for such a theory is to neglectandomness each represent particular forms of the network
electron-electron interactions and consider a single particlenodel. These authors, however, did not set out a transforma-
moving in a magnetic field with a disordered impurity poten-tion from one model to the other. Separately, $.éeund
tial. In a pioneering work, Pruisken and collaboratosk-  such a transformation in the particular case of a network
tained from this a field-theoretic description in terms of amodel without random phases, obtaining Dirac fermions
o model. More recently, in response to the difficulties of with randomness only in the mass.
extracting quantitative results from the model, several al- The purpose of this paper is to describe a general mapping
ternative formulations have been explored: Réade® and  from the network model to the Dirac Hamiltonian in two
Zirnbauef have investigated spin chains; Lee and Whang dimensions, which, in the unrestricted case, has randomness
have considered the replica limit of Hubbard chains; andn the mass, the scalar potential, and the vector potential.
Ludwig and collaboratoPshave discussed the Dirac equa- Any approach to this problem must confront the fact that the
tion. network model is defined using the language of scattering
The correspondence between Dirac fermions in two spactheory, and therefore, at least in the first instance, contains
dimensions, and nonrelativistic charged particles moving in anformation only about behavior at one energy. The Dirac
magnetic field, stems from the fact that time-reversal symHamiltonian, by contrast, obviously fixes properties of an
metry is broken both by a mass term in the two-dimensionakntire spectrum of eigenstates. We begin from a unitary ma-
Dirac equatio®t'®and by a magnetic field in the Scliiager  trix defined® for the network model, which, heuristically,
equation. Moreover, as emphasized by Ludwigal, the can be thought of as a time-evolution operator. We show, in
Hall conductance of Dirac fermions, with fixed Fermi en- a continuum limit, that it is the evolution operator for a Dirac
ergy, has a jump o&?/h if the fermion mass is tuned through Hamiltonian. In this respect, our route is rather different
zero. The critical behavior at this transition depends on thdérom that of Le€’ who obtains a Hamiltonian by endowing
symmetries of the Hamiltonian. The Dirac equation withthe phases of the network model with an energy dependence.
only a random vector potential is particularly amenable toWe also differ in taking the continuum limit isotropically,
analysi$'! since the zero-energy eigenstates are knownwhile Le€® does so anisotropically.
explicitly.!? Critical properties are controlled by a line of  Our mapping is described in Sec. II. In Sec. Il we exam-
fixed points, and turn out to be different from those expectedne in detail how edge states of the network model are related
at the plateau transitions in the IQHE. The line of fixedto boundary states of Dirac fermions. This is important, since
points, however, is unstable against additional randomnes#, is these states that are responsible for the quantized Hall
either in the mass or in the scalar potential, and flow isconductance away from plateau transitions.
conjectured to be towards a generic quantum Hall fixed Equivalence between the network model and the Dirac
point, describing the same critical behavior as emerges frorhlamiltonian necessarily requires a continuum limit. In Sec.
the usual Schidinger equation. IV, we show that, independently of the continuum limit, one
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FIG. 2. The network model on a square lattice.
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FIG. 1. Components of the network model: linfg and nodes Zz) _ cosB  sinB\[Z; @
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. . . . . The two parameters are related by@&in—tanhg. On varying
can associate with t_he network model a tlght-blndm_g Ham'l'the equipotential energy from far below that of the saddle
tonian, which contains only nearest-neighbor hopping.

point to far above increases fronB=0 to 8= 7/2; tun-
neling is a maximum aB.= w/4.
Il. MAPPING FROM THE NETWORK MODEL The network model as a whole is built by connecting
TO THE DIRAC HAMILTONIAN these two elements—Ilinks and nodes—to form a lattice. The
simplest choice is the square lattice, illustrated in Fig. 2.
In this section we construct an explicit mapplng from the Randomness is introduced by Choosing each link phﬁ(se
network model® to the Dirac Hamiltonian in two dimen- independently from a probability distribution. The model
sions. First, we recall the physical basis for the networkepresents particle motion at an energy determined by the
model and its definition. Consider nonrelativistic, chargedyalue of the node parameters. If all nodes are identical, and if
particles moving in a smoothly varying scalar potential in phases are uniformly distributed between 0 ang the sys-
two dimensions, with a strong perpendicular magnetic fieldiem is critical atB=p., and in the localized phase other-
The potential is smooth if its correlation length is much yjise.
larger than the cyclotron radius, and the field is strong if the \we follow Klesse and Metzle®® and associate a unitary
cyclotron energy is larger than the amplitude of potentialmatrix with the model. Roughly speaking, this matrix is a
fluctuations. Under these conditions, the kinetic energy otime evolution operator. Let the unit of time be the interval
cyclotron motion about the guiding center, and the potentiatequired for a guiding center to drift from the midpoint of
energy associated with the position of the guiding center, argne link, through a node, to the midpoint of the next link;
both separately conserved. We focus on drift of guiding cenignore dispersion in this time interval, arising from variations
ters along equipotential lines. In the network model, portionsn drift velocity or in lengths of links. LeZ(r;L) be the
of a given equipotential are represented by directed “links,” amplitude for a particle to arrive at a pointafter L time

and the wave function for the particle is represented by comgieps; starting from an initial wave functic@{r’;0). Then
plex current amplitudeZ, defined at points on each link. On

traversing a link, a particle aquires an Aharonov-Bohm )

phase: ifZ; andZ; are amplitudes at opposite ends of the link Z(r;L+1)= 2 TopZ(r’sL), ©)

k [see Fig. 13)], Zj=e'¢’kZi. Tunneling between two dis- '

joint portions of the equipotential can occur where they areandT is the required time evolution operator. Eigenfunctions
separated by less than a cyclotron radius, as happens neafrT with eigenvalue 1 are stationary states of the network
saddle points in the potential. It is incorporated into themodel.

model at “nodes,” where two incoming and two outgoing In Eq. (3), the element . is nonzero only if there is a
links meet. The amplitudes on the four links that meet at abne-step path on the lattice fromto r’: that is, a path that
given node may be related by a transfer matrix or by a scatfollows the directions of the links and passes only one node.
tering matrix. In a suitable gauge, each of these2matri-  The values of these nonzero elements are diey a prod-
ces is real and depends on a single parameter, which wéct of a phase factor from the link traversed, and a tunneling
denote byd (for the transfer matrixand 8 (for the scattering amplitude from the node, with sign conventions indicated in
matrix). The parameter determines the relative probabilitiesig. 3.

for a particle to turn to the left or to the right on arriving at  To be definite, consider the system illustrated in Fig. 4.
the node. It is a smooth function of the equipotential energyPlaquettes are labeled by the coordinatgsy), of their cen-
measured relative to the potential at the saddle g8ife-  ters. With our choice of lattice constant and of orientation for
ferring to Fig. 1b), one has the axes, X,y) are a pair of integers, either both even or both
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Here, we have introduced the abbreviatidds- cos8 and
S=sing, and the translation operatot$, andtY. , defined by
G A o] | ! their action, tXZ(x,y)=Z(xx1y) and t%Z(x,y)

; 1 13 1o |‘ ’ =Zi(x,y*=1). The first row ofM, for example, expresses the

1, . , , fact, illustrated in Fig. 4, that Z,(x,y;L+1)

=Sd%1Z,(x—1y+1;L)+Ce%1Z,(x,y;L).
sin B sin B cos B cos B In order to decoupl€, from Z_, we consider the two-
' step evolution operator,

2 2 2 2

Y |

FIG. 3. Amplitudes associated with possible scattering paths at

nodes. W=T2= ( (7)
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odd. We denote the four linkis making up a plaquette by

I.:l’ 2, 3 and 4 S0 that a p0|r.1t.on the network is speci- the matrix W, and the component-pai£, . Since, at this
fied by the combinationx,y,i). Initially, we take the tunnel- : . ) o
stage, we are treating a system without disorters diago-

ing parametelB to be the same at every node, and the four” _: ) o
..~ .. nalized by a Fourier transform. We write its eigenvectors

phasesp; to be the same on every plaquette. In addition, it is U™ (xy) = (0,W)e &%) and find

convenient to measure the phases relative to their value whél? Y=,

We may then deal just with the upper-left blotk=MN, in

half a flux quantum threads each plaquette, by replag¢ing

with ¢+ . Uu:e"V( o )u:eiu—wu ®)
Because each plaquette has four links, the matrhas a —a* ’

4X 4 block structure, and because the midpoints of links

form a bipartite lattice, each such block consistsWhere

of two 2X2 blocks. To exhibit this structure, we ar- 4

range the amplitudesZ(r;L)=2Z;(x,y;L) in the order V:_EE b

(Z+ !Z—)! with Z+(X,y):(Zl(X,y),Z3(X,y)) and 2 =1 "

Z_(X,¥)=(Z5(X,Y),Z4(x,y)), suppressing the timé& for
clarity. In this basis, the evolution operator is y=2SCelL2(41-¢3)~aulcog L (h,— b+, (9

T:(l(\)l '\(;I) 4 a=gllL/2(d1- da)+ay][ SReil1/2 (b2 da)+y)
— e il112(d2= b0+ oyl
where
' . and y*, a* are the corresponding complex conjugates. The
Sdut* t¥. Cce® eigenvalues ofJ aree'®~V) with a phasey given by
| céd? —sdtatiy ®
T cosy=sin2Bcogq,—Ay)cogq,—A,), (10
in which Ay=(¢1—¢3)/2 and Ay=(¢s— ¢,)/2. Setting
B= Bt ml2=x/4+m/2, and taking— 7= y <, the range
I of allowed values fory has gaps aroung=0 andy=*«
* 8 (D) for m#0: x satisfies —a+|m|<ys<-|m or
|m|<y=<=—|m|. This dispersion relation is illustrated in
GeLy+1) (rbyel Fig. 5. Stationary states of the network model are character-
B B[ = ized by y—V=0.
w9 To extract from the unitary evolution operator a Dirac
- (X“’Y"'ﬁ Hamiltonian H, we write U=e~™™ and work in the con-
4 tinuum limit, in whichH is small. Thus we expand around
(dx,ay)=(0,0), takingm and the link phaseg; to be small.
To leading order, Eq(10) gives the spectrum

(x-Ly-1)

4 2 (%y-2) ¢4 92

3 LF]
X2=m2+(qx_Ax)2+(Qy_Ay)2 (11
FIG. 4. The network model, showin@ our coordinate system
for plaquettes:(ii) labeling of the four links that make up a fOf small x. At an operator level, whetl. andt. act on
plaquette; andiii ), with dashed lines, the paths that contribute to Smooth functions we make the replacemeits- 1+ d, and
Zi(x,y;L+1) fori=1,3. t=1+4,. Then
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FIG. 5. The dispersion of (vertical axi3 plotted as a function FIG. 6. The network model defined on a strip of width.

of (p—A), and (p—A), (horizontal plangin units of . The width Dashed arrows indicate the propagation directilo.n of edge states.
of the gap between the two bands is determined by the mass, whichhe dotted arrow represents the boundary condition,(Eg.
is 1.2 here.

dimensional model in which each link carrischannel®® is

— 0 FiA,  dy—iA,+m _ equivalent to theJ(N) Dirac Hamiltonians investigated by
Us~1+|. . Yo Siv=1—iH. Fradkinl*
dy—iAy—m dy— 1A
(12
Ill. EDGE STATES IN THE NETWORK MODEL
Finally, to bring the Hamiltonian into a conventional form, AND THE DIRAC EQUATION
we make a rotation in the two-component space, setting ) _
H=GHG"! with The edge of a sample is, of course, set by a scalar confin-
' ing potential in the usual description of the IQHE, based on
1/i -1 the Schrainger equation. Dirac fermions, by contrast, are
G= _( . ) (13) confined by a spatially dependent mass, as discussed by Lud-
y2\i 1 wig et al® In particular, chiral, zero-energy states of Dirac

fermions are associated with contours of zero niag¢e
discuss in this section how such edge states emerge in our
—(n _ _ mapping from the network model to the Dirac Hamiltonian.
H=(px—Adoxt(py—Ay)oy+mo,+V, (149 Consider a network model defined on a strip of finite
wherep,= —id,, and similarly forp,, and we use the Pauli width, as in Fig. 6. For energies in the lower half of the
matrix representation Landau level, corresponding to values of the node parameter
. B<B., all states are localized, while for energies in the
0 1 0 —i 1 0 upper half of the Landau level, for whigB> 3., a pair of
>=\1 o YTl o) 9 \lo -1/ (19 extended states appears, one at each edge of théstrip.
The evolution operatot) acting on the two-component
Now consider a network model with randomness. If thewave function,Z_ (L), introduced for the bulk of the system
link phases and tunneling parameter vary smoothly in spacen the preceding section, is supplemented at the edge by the
one obtains in the continuum limit the Dirac Hamiltonian, following boundary conditiongsee Fig. & at x=0, the
Eqg. (14), with randomness in the vector potential, scalar po-componenZ; obeys the same equation as in the bulk,
tential, and mass. Specifically, fluctuations in the vector po-
tential A arise from randomness in the individual link Z3(0y;L+2)=[UZ,(L)]3(0y), (16)
hases, fluctuations in the scalar potenNalcome from . "
Sariations in the total Aharonov-Bohrg phase associated Witr\lNh”e the component, satisfies
each pIaqqette, and quctugtions in the massare present if Z,(0y;L+2)=—el4100+60917 oy ).  (17)
the tunneling parameter is not constant everywhere. The
time-independent states of the network model correspond td/e wish to check under what conditions the evolution op-
the zero-energy states of the Dirac Hamiltonian. eratorU has an eigenvectar representing an edge state. We
This mapping can also be carried through for generalizasimplify the discussion by considering a semi-infinite system
tions of the network model. In particular, the two- without disorder, settingh;=0 for all i. Without disorder,

and obtain
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the spatial dependence, fae1, of such an eigenvector is

u'(x,y)=(v,w)el® " where REN]>0; for x=0, @ . \

u'(0y)=(v',w")e'%, wherev,v’,w, andw’ are constants. @ V ‘
. d

taking U from Egs.(7), (16), and(17), yields @

This ansatz in the equation

3:\\
et =tanB (19
confirming that an edge state exisRg\]>0) only for @ )

B>B.=ml4.

Similar results also follow if one considers directly the  FIG. 7. Schematic illustration of the tight-binding Hamiltonian.
continuum limit. Let the eigenfunctions ¢f be ¥(x,y), so (@ The only nonzero matrix elements are those linking nearest-
that those of H are W(x,y), with \IIEG\“I;. Writing neighbor sites, within plaquettétll lines) and between plaquettes

" : i i jel 41(xy) for the bonds
W =(W,,¥,), the boundary condition at=0, Eq.(17),is  (dashed lines (b) Their values areie'®*'cos8
to IeaEiinB or?ger y a.(17) marked| =1,2,3,4,ie'?*Ysing, for the bonds markedi=1",2,

and —ie'?Ysing, for the bonds market=3',4', hopping in all
W,(0y)=iW¥,(0y). (20) cases being in the direction given by the arrows.

Note that this boundary condition enforces a chiral edge cur- . . .
rent: the current density, with componeris=¥'o W, is ward to see that for this system the eigenvalue3 df the

i= (0% ,|?), and necessarily in the positiyedirection. Im- complex plane are djstributed u-niformly on the unit circle.
posing this boundary condition, the Dirac Hamiltonidnof As aresult, the densityy(E), of eigenvalues of 7¢ can be

Eq. (14) with V=0 andA =0 has an eigenfunction of energy 9iven exactly:p(E)= am{1-(E/2)?]*"? for (E/2)?<1 and
E p(E)=0 for (E/2)>>1. In addition, one can see that the
eigenvectors of T have the same statistical properties
_ throughout the spectrum, a feature inheritedHhyHence the
‘P(X,y)ze'EyemX( i ) (21 |ocalization length of eigenstates Afis independent of their
energyE. If all nodes have the same parameter val@de,
provided thatm>0. This same eigenstate appears from conthen asg— 8., the localization length diverges uniformly
sidering an infinite system with position-dependent massacross the spectrum: this Hamiltonian never has a mobility
m(x,y), following Ludwig et al. setting m(x,y)=m for  edge as a function of energy.

x>0, and m(x,y)=m, for x<0, the boundary condition, We note thatH is similar in structure to, but different in
Eq. (20), emerges in the limitng— —o. detail from, the tight-binding model used as a departure point
by Ludwig and collaborator$.The latter includes not only
IV. MAPPING FROM THE NETWORK MODEL nearest-neighbor, but also next-nearest-neighbor hopping:
TO A TIGHT-BINDING MODEL compare Fig. 7 with Fig. 1 of Ref. 9. Our model also differs

. _ _ _ _ . from that of Fisher and Fradkit?.
It is also possible, without taking a continuum limit, to

associate a nearest-neighbor tight-binding Hamiltonian with

the network model. The sites of the tight—binding model, V. SUMMARY

each carrying one basis state, correspond to the links of the _ . _

network model. In terms of the one-step evolution mafrix ~ We have set out in detail a mapping from the network

the tight-binding Hamiltoniar¥ is simply model for plateau transitions in the IQHE to Dirac fermions
in two space dimensions. The mapping makes crucial use of
H=(TT=T)l/i. (22)  a unitary operator defined for the network motfalyhich is

essentially the time-evolution operator. The two-component
structure of Dirac spinors in two space dimensions arises
hases and the tunneling parameter rather naturally from the network model, defingd on a square
P 9p : lattice: the fact that each plaquette has four sides suggests a

tTh'sl tngTItc()jman has .;[wonlmpotrtgn_t fetahturfes. F'.;St’ I .'Sfour—component wave function, which separates into two in-
hatural to Introduce a unit cell containing the four Sites a”.s'dependent pairs because of the existence of two sublattices.
ing from one plaquette of the network model. The ampli-

tudes of nearest-neighbor hoppingthin and betweenunit This structure is not dependent on the continuum limit, and is
. : . i also shared by a nearest-neighbor tight-binding Hamiltonian,

cells h_ave moduli cggand sirB, rgspectlvely, wherg is the. . Perived directly from the evolution operator.

tunneling parameter: they are different, except at the critical

point, 8= B.=m/4. Second, the phases of the hopping ma-

trix elements are correlated in the way indicated in Fig. 7. It ACKNOWLEDGMENT
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