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By means of exact diagonalization we study the low-energy states of seven electrons in the lowest Landau
level which are confined by a cylindric external potential modeling the rest of a macroscopic system and thus
controlling the filling factorn. Wigner crystal is found to be the ground state for filling factors between
n51/3 andn51/5 provided electrons interact via the bare Coulomb potential. Even atn51/5 the solid state
has lower energy than the Laughlin one, although the two energies are rather close. We also discuss the role of
pseudopotential parameters in the lowest Landau level and demonstrate that the earlier reported gapless state,
appearing when the short-range part of the interaction is suppressed, has nothing in common with the Wigner
crystallization in the pure Coulomb case.@S0163-1829~96!07235-9#

I. INTRODUCTION

After the Laughlin states~LS’s! were proposed as new
ground states of strongly correlated two-dimensional-
electron liquid in external magnetic field,1 they were inten-
sively compared to the known ground states~GS’s!, in par-
ticular, with Wigner crystal ~WC!, to understand the
conditions and limitations of the experimental observation of
the fractional quantum Hall effect~FQHE!. In fact, even
LS’s themselves may be called ‘‘liquid’’ only for sufficiently
large filling factorsn51/m @for m<mc'71 ~Ref. 2!#, as
follows from the formal analogy between the LS and the
two-dimensional one-component plasma at dimensionless
temperatureT51/2m. At very smallT the equivalent plasma
undergoes Kosterlits-Thouless transition to the state with the
finite shear modulus and should be rather viewed as a solid.3

For the Coulomb system, however, the critical valuemc is
of academic importance only, since it is easy to prove that in
the solid phase the Lauglin state differs qualitatively from
the genuine GS. Indeed, in a solid with nonzero shear modu-
lus and Coulomb interaction between the particles the sound
dispersion law in magnetic field isvk;k3/2.4 Calculating the
mean-square displacement in such a solid atT50 one finds
a convergent answer̂ @u(0)2u(R→`)#2&;*d2k/vk→
const. On the other hand, the equivalence between the LS
and the finite-temperature two-dimensional~2D! plasma im-
plies divergency of this correlator.„In solid plasma this di-
vergency is due to the transverse-sound dispersion law:
^@u(0)2u(R→`)#2&;T*d2k/vk

2;Tln(R)…. Thus solid LS
maintains the topological order only, which is typical for the
2D solid with short-range interactions in magnetic field when
vk;k2, in agreement with the fact that the LS is a perfect
trial function for the GS of the system with short-range in-
teractions.

Having established that in the Coulomb system LS pro-
vides an incorrect GS for largem.mc , one may further
suspect that it may lose to the Wigner crystal at much
smaller m. Early variational calculations performed for

the electrons at the lowest Landau level and neglecting
Landau-level-mixing effects5 gave strong evidence that WC
has lower energy already atn51/7, which explained why
there is no Hall conductivity quantization at this filling fac-
tor. Mixing effects, which are very important in real systems,
were taken into consideration in Refs. 6. It was found that
virtual transitions between the Landau levels promote WC
states and make the LS unstable even atn51/3 for suffi-
ciently large mixing parameterl5n1/2(e2/e l H)/vc , where
l H5(1/eB)1/2 is the magnetic length in the external fieldB,
e is the dielectric constant, andvc5eB/m* is the cyclotron
frequency for electrons with the effective massm* . ~We use
units\5c51). For thel50 case the results of Refs. 5 and
6 predict the LS to be the ground state for filling factors
n51/3 and 1/5.

An essential drawback of previous calculations is their
variational character. Since the difference in energy~per par-
ticle! between the LS and WC is only a few percent in Cou-
lomb unitse2/e l H , only filling factorsn51/m with oddm,
where the liquid GS is known reasonably well, were ana-
lyzed in detail. We simply do not know other liquid states
with necessary accuracy to compare them with the varia-
tional functions we have at hand for WC. Moreover, it is
impossible to use the LS energiesELS(1/m) to derive
Eliquid(n) for other filling factors by extrapolation, because of
the cusps that must occur at filling factors where the FQHE
exists.

It is believed that due to this cusping down at simple
rational n there may arise reentrant WC-LS-WC behavior
aroundn51/5 ~and possiblyn51/3). Available experimen-
tal data seem to give strong evidence that WC exists at
n50.21.7–9However, this conclusion is based entirely on the
divergent, activation-type resistivityrxx→` at low tempera-
tures, thus one may not rule out the possibility of explaining
the data by impurity induced electron localization.

The other way to study this problem is by means of exact
diagonalization. We are not aware of any systematic attempt
to look for the WC states in numerical simulations of FQHE,
although in Ref. 11 WC was suggested as a possibility to

PHYSICAL REVIEW B 15 SEPTEMBER 1996-IIVOLUME 54, NUMBER 12

540163-1829/96/54~12!/8644~8!/$10.00 8644 © 1996 The American Physical Society



explain peculiar degeneracies in the numerical spectra as a
function of inter-particle pseudopotential. As we show be-
low, the collapse of the LS to the gapless state atn51/3
found in Ref. 11, has nothing to do with the transition to the
WC state. The best numerical calculations were done on a
sphere for as many asN512 particles on 25 orbits.10 While
the spherical geometry is perfect for the study of FQHE it-
self, it is practically ineligible for looking at Wigner crystal-
lization. There is little doubt that the optimal electron con-
figuration in the WC is the triangular lattice, which is
topologically prohibited on a sphere.

To give further theoretical support to the idea that the WC
state may be the GS of the 2D electron gas atn,1/5, we
calculated numerically GS and low-laying excited states for
the cluster of seven electrons in the lowest Landau level and
in the confining potential.~The number of particles in the
system must be 7, 12, etc., depending on the sample geom-
etry, to account for the hexagonal symmetry of WC.! The
confining potential was derived from the Coulomb interac-
tion between an electron in the cluster and electrons outside
the ‘‘first coordination sphere’’~that is at a distance equal to
or larger thanA3a, wherea is the atomic length in the tri-
angular lattice!. In fact, the radiusa of this confining poten-
tial was our main variable determining an effective filling
factor (a;n21/2). It was found that the WC state~see below
the discussion of what has to be thought of as WC for the
system of only seven particles! is the GS of the system for all
filling factors between 0.4 and 1/5 except for the region
0.34.n.0.294~includingn51/3), where the LS was essen-
tially present in the structure of the GS. These results
strongly suggest~keeping reservations for possible finite-size
corrections! that LS atn51/3 is very close in energy to WC,
and that in a perfect Coulomb system atn51/5 the ground
state may be WC. There is almost no doubt then that WC
must exist between these two filling factors.

Our calculation completely ignores impurities and
Landau-level-mixing effects, as well as possible screening of
the bare Coulomb potential, and the role of electron delocal-
ization in the direction perpendicular to the 2D plane. Some
of these factors are very important in real systems, and, e.g.,
electron screening, may work in favor of the LS. We believe
that the experimental data of Refs. 7–9, demonstrating the
FQHE atn51/5, can be accounted for along these lines. We
are planning to study different pseudopotentials in a separate
paper.

II. HAMILTONIAN AND NUMERICAL METHOD

We study a 2D system ofNe57 electrons in the magnetic
field in a confining potential. Since we intend to model the
macroscopic system in the finite-cluster calculation, we de-
rive this confining potential as resulting from the Coulomb
interaction between an electron in the cluster and other elec-
trons outside the ‘‘first coordination sphere.’’ The unit length
a(n) in the WC lattice is expressed through the electron
densityne and filling factorn52p l H

2 ne as

A3
2
a2ne51 or a25

4p

nA3
~1!

~from now on we measure all distances in units ofl H , which
is kept fixed in our calculation!. To account for the short-
range correlations we place surrounding electrons on the co-
ordination spheres of the WC state. One may better view our
system as originating from the classical crystal with atoms
sitting on them50 orbitsC j (zj )5Cm50(zj2Zj ), with the
positionsZj forming an ideal triangular lattice corresponding
to the filling factorn. We then allow for full quantum dy-
namics of seven electrons withZj50 and uZj u5a, while
keeping other electrons frozen, but coupled to the first seven
ones by Coulomb forces. The thus-obtained confining poten-
tial is not spherically symmetric, and may cause transitions
changing the momentum of an inner electron by
Dm566n. Obviously, this coupling will promote a ‘‘crys-
tal’’ state for the central cluster. To avoid this shortcoming
we ignore all these transitions, keeping only the diagonal
part of the interaction; this procedure is equivalent to rota-
tional averaging of the confining potential.

We also ignore Landau level mixing, which means that
Coulomb interaction is the only energy scale in the problem.
To simplify the notation we measure all energies in units
e2/(e l H). Working in the symmetric gauge
A5(1/2)H(2y,x) we place the electrons on up to 31 orbits
corresponding to the angular momentum states ranging from
m50 tom530. The maximum number of orbits in a given
calculation was defined by the condition that occupation
numberŝ n(m)&, giving the probability to find an electron in
the state with the orbital momentumm, stop changing~at the
level of 0.001!, when the number of orbits is increased, and
that the largest momentum state be empty with the same
accuracy.

The starting Hamiltonian then can be written as

H5 (
m1 ,m2 ,m3 ,m4

Vm1 ,m2 ,m3 ,m4
am1

† am2

† am3
am4

1(
m

Vm
~MF!am

† am , ~2!

~where MF stands for mean field!, and wheream
† creates an

electron in the state

um&5
zm

A2p2mm!
e2uzu2/4. ~3!

In the symmetric gauge the interaction matrix elements in the
first term in Eq. ~2! satisfy the conservation law
m11m22m32m450 and may be written as

Vm1 ,m2 ,m3 ,m4
5

~21!m11m3

2M~P i51
4 mi ! !

1/2 (
k150

<m1 ,m4

(
k250

<m2 ,m3

3~22!k11k2k1!k2!Ck1

m1Ck1

m4Ck2

m2Ck2

m3

3I ~M ,k1 ,k2!, ~4!

I ~M ,k1 ,k2!5E
0

`

dq
VC~q!

2p
q2M22k122k211e2q2, ~5!
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where M5m11m2, Cj
i5 i !/ „j !( i2 j )! …, and VC(q) gives

the Fourier component of the pair potential. For the case of
Coulomb interactionVC(q)52p/q, and the final expression
simplifies to

Vm1 ,m2 ,m3 ,m4
5

~21!m11m3Ap

22M11~P i51
4 mi ! !

1/2 (
k150

<m1 ,m4

(
k250

<m2 ,m3

3~24!k11k2@2~M2k12k2!21#!!

3Ck1

m1Ck1

m4Ck2

m2Ck2

m3. ~6!

To construct the mean-field confining potential one has to
calculate the diagonal matrix elements for one electron stay-
ing in orbit um& and the other electron staying in orbit
Cm50(z2Zj ) ~for the diagonal matrix element it does not
matter whether the stateCm50(z2Zj ) is defined in the same
gauge as statesum& or obtained by gauge transforming the
stateum50&). Thus we have

Vm
~MF!5 (

j52,3, . . .
Vm~Zj !, ~7!

where the sum is over all coordination spheres starting from
the second one, and

Vm~Zj !5~21!m22mm!(
k50

m
~21!k2k

k! @~m2k!! #2

3E
0

`

dq
VC~q!

2p
q2m22k11e2q2J0~quZj u!. ~8!

HereJ0(q) is the Bessel function. In practice we constructed
the confining potential by summing over all coordination
spheres inside the radius 100l H .

Our diagonalization procedure is arranged as follows. For
the calculation of the ground-state level we use the standard
modified Lanczos method with the straightforward iteration
procedure~see, for example, Ref. 12!, while for the calcula-
tion of the lowest excited levels we apply a more sophisti-
cated method.13 The set of approximate eigenfunctions is
reconstructed from Relay’s tridiagonal matrix,14 and the trial
wave function is expanded in it. As is known, the set inevi-
tably involves a substantial number of spurious states, due to
numerical errors. These states, however, may be easily iden-
tified by their negligible contribution to the expansion of the
trial wave function. Upon exclusion of the spurious states the
set is subjected to orthogonalization and correction by the
Newton method. The relative~with respect to a characteristic
interlevel spacing! errors in the energy level calculation are
typically of order 10213410211 for the ground state, and of
order 102941025 for some ten first excited states. Since the
Hamiltonian conserves the total angular momentum we take
advantage of this symmetry to proceed separately for each
angular momentum sector.

III. RESULTS FOR THE LOW-ENERGY STATES

Before presenting our numerical results for the ground
and first exited states in the cluster, let us first discuss how
one may discriminate between the liquid and solid states in
such a small system. The most obvious solution is to look at

the pair-correlation function. From the symmerty consider-
ations we expect~at least for small filling factors! that one
particle will be always staying near the origin, and the re-
maining six particles will have their density distribution be-
ing peaked at a distance'a(n) apart. These particles are
mutually correlated over the angleu between their coordi-
nates on the first coordination sphere. The appropriate pair-
correlation function thus can be defined as

ga~u!5^auC†~z1!C
†~z2!C~z2!C~z1!ua&, uz1u5uz2u5a,

~9!

whereu5arg(z1)2arg(z2) varies in the interval (0,p). In
the solid state we expect three well-defined oscillations in
g(u), while in the liquid these oscillations should be strongly
damped. It is difficult to predicta priori the amplitudes of
oscillations, but it is known~see, e.g., Ref. 3! that pair cor-
relations in the LS disappear very rapidly atn51/3 and
n51/5. Our definition ofg is not quite standard, but we
believe that its qualitative behavior is the same~we verify
this point explicitly below!. In any case, the abrupt change of
the ground-state correlatorgG(u) as a function ofn is in-
dicative of the solid-liquid transition.

One may also expect some qualitative differences in the
structure of the low-energy spectra of the WC and LS. By
construction, our Hamiltonian is cylindrically symmetric and
conserves the total angular momentumM5(mmn(m). In
the solid phase of the macroscopic system this symmetry is
spontaneously broken. For the triangular lattice under study
the symmetry is broken by coupling momentaMG66n
~whereMG is the ground-state angular momentum andn is
an integer!. Thus in the solid phase we expect the states
uMG66n& to form a subset of the lowest excited states well
separated from the rest of the excitation spectrum in these
sectors. There is no special reason to have the lowest exci-
tations atMG66n in a liquid phase, nor should they have
much lower energies than excited states withM5MG .

One remark is in order here. In a really macroscopic solid,
the lowest states are those corresponding to the system rota-
tion as a whole, with the energy going as
E;(M2MG)

2/L4 whereL is the system’s size. The crystal
symmetry is not present in the structure of the spectrum ex-
plicitly, but it is important that the states, mixed by the sym-
metry breaking fields, are among the lowest ones. In the
finite system of only seven particles we do not expect the
spectrum to be quadratic inM2MG , since this property in
the rotating solid is achieved by creating extra zeros in the
wave-function C̃(zj )5C(z1 ,z2 , . . . ,zN) for fixed
$z1 , . . . ,zj21 ,zj11 , . . . ,zN%. This procedure may be too
costly in energy in a small system. ForNe57 rotation is
equivalent to the correlated motion of six particles. The first
rotating state which requires no extra zeros inC̃(zj ) is that
with uM2MGu56.

The other point concerns the consistency of our procedure
of controlling the filling factor according to Eqs.~1! and~8!.
Since the confining potential is derived from the crystal state,
a natural question arises of how good this approximation is
for modeling a liquid environment. There is no doubt that at
n51/3 the ground state is well described by the LS with the
ground-state angular momentumMG53Ne(Ne21)/2563.
No matter how trivial, this fact is not at all predetermined by
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the numerical procedure used. Its validity was confirmed in
our calculations, thus demonstrating consistency between
Eq. ~1! and the effective filling factor. Similarly, we ob-
served thatMG55Ne(Ne21)/25105 whenn50.198 in Eq.
~1!. The consistency of our ‘‘mean-field’’ procedure follows
also from the fact that for alln,1/2 the position of the
maximum in the particle densityr(R) coincides witha(n).

In Table I we present our data for the ground state angular
momentum as a function of filling factor. Forn.0.705 the
system is described by the IQHE state with occupation num-
bersni51 for i50,1, . . . ,6.After drastic transformations in
the range of densities between 0.705 and 0.46 the GS
evolves into the state with well-defined pair-correlation func-
tion g(u). We note that starting from rather high filling fac-
tor 0.587 the angular momentum of the ground state changes
by 6. Also, the lowest exited state is always in the sector
MG66.

To identify the nature of the GS we present in Fig. 1 the
plots of g(u) calculated for critical filling factorsnM where
MG jumps. While going fromMG545 toMG551→57 the
pair-correlation function develops more pronounced oscilla-
tions. We naturally consider this evolution as formation of

more rigid solid-state order in the system, although the filling
factor seems to be too large here to expect the WC state in a
macroscopic system. If we ignore for the moment what is
happening inMG563 then the ‘‘crystal set’’ may be
smoothly continued to higher momentum states
57→69→75→81•••→111 resulting finally in a quite im-
pressive ‘‘long-range’’ order~see Fig. 2!. With all the reser-
vations concerning small system size we have to conclude
that the WC has lower energy than the LS in the range of
filling factors between 1/3 and 1/5.

We also observe a well-defined structure of ‘‘satellite
states’’ uMG66n& in the energy spectrum for smalln; for
example, whenMG581 we find that E752EG and
E872EG are some five times smaller than the energy of the
first excited state in sectorsM575,81,87~see Fig. 3!. Note
also the remarkable similarity between the low-energy specra
in the basic set of states withM5MG66n.

Clearly, the state withMG563 is special in that its pair-
correlation function is more ‘‘liquidlike’’ thang(u) for both
MG557 and MG569. As mentioned above, the LS at
n51/3 hasM563, thus irregular behavior of the pair-
correlation function in this sector may be due to the change

TABLE I. Ground-state angular momentum.

GS angular
momentum
MG 21 28 33 39 45 51 57 63 69 75 81 87 93 99 105 111

Range of
filling factors
nmax 1 0.705 0.587 0.527 0.460 0.408 0.364 0.340 0.294 0.276 0.255 0.240 0.224 0.211 0.198 0.188
nmin 0.705 0.587 0.527 0.460 0.408 0.364 0.340 0.294 0.276 0.255 0.240 0.224 0.211 0.198 0.188

FIG. 1. Pair-correlation functionsg(u) for the ground states in
the degeneracy points corresponding to the angular momentum
changes 51→57, 57→63, 63→69, and 69→75.

FIG. 2. Pair-correlation functionsg(u) for the ground states at
the degeneracy points corresponding to the angular momentum
changes 87→93, 93→99, 99→105, and 105→111.
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of GS from solid to liquid. This suggestion seems to be cor-
rect, because the calculated projection of the exact GS for
n50.32, i.e., in the middle of the stability interval of the
sectorM563 ~see Table I!, on the Laughlin state is as large
as ^CLS

(1/3)uCG
(63)&50.934, and the ground-state energy is ex-

tremely well approximated by the variational value
ELS
(1/3)5^CLS

(1/3)uHuCLS
(1/3)&. In Coulomb units we find

ELS
(1/3)2EG

(63)50.0134, while the energy of the first excited
state in the sectorMG563 is almost five times higher,
E1
(63)2EG

(63)50.0621. Furthermore, there is no pronounced
satellite structure in the low-energy spectrum when
MG563. Surprisingly enough, the ground-state wave func-
tion and gG(u) are rather different fromuCLS

(1/3)& and
gLS(u). It is clearly seen in Fig. 4 thatgLS(u) is almost flat
for largeu and shows no sign of pair correlations across the
diameter of our system. These correlations are present in the
GS. Also, in Fig. 5 we plot the average occupation numbers
^n(m)&, calculated in the GS and in the LS. We see that
^n(m)& in the LS has much smaller amplitude atm50 and
more shallow minimum. As one might have expected, the
central particle is not at all localized in the liquid phase.

To clarify the nature of such differences, we construct
another variational state, which may be regarded as solid,
uC̃(63)&. Consider two nearest solid states, e.g.,uCG

(75)& and
uC (81)& at some 0.255,n,0.276. We notice that their dis-
tribution functions^n(m)& are very close in shape~see Fig.

6!, with one particle being localized in orbits with smallm
~actuallym50,1; the sum of̂ n(m)& before the minimum
is almost 1), and the other six particles occupying extended
states with largem. When going fromMG575 to M581
the value ofM5(mm^n(m)& changes by 6 almost entirely
due to the change of the occupation numbers of six particles
on the first coordination sphere, i.e.,̂n(81)(m11)&
'^n(75)(m)& for large m. ConsideringuC (81)& as rotating
state with all the pair correlations being preserved, we may
construct the variational stateuC̃(75)& close to exactuCG

(75)&
according to the rule

uC̃~75!&;(
$mi %

C$mi %
~81!am721

† am621
† . . .am221

† am1

† u0&,

~mi11.mi !, ~10!

where( imi581, andC$mi %
(81) are the corresponding exact am-

plitudes of the expansionuC (81)&5($mi %
C$mi %
(81)) iami

† u0&. No-
tice that the first particle keeps its states. This procedure is
well justified because the first particle is separated from the
others by a deep minimum in the distribution function~with
^n(m)& close to zero in minimum, see Fig. 6!. To estimate
the accuracy of this procedure we project thus-obtained
variational state on exactuCG

(75)& and find the overlap to be

FIG. 3. Low-energy spectrum atn50.248 (MG581).

FIG. 4. Pair-correlation functionsg(u) at n50.32 for the
ground state, the Laughlin stateuCLS

(1/3)&, and the solid state
uC̃(63)&.

FIG. 5. ^n(m)& distributions atn50.32 for the ground state, the
Laughlin stateuCLS

(1/3)&, and the solid stateuC̃(63)&.

FIG. 6. ^n(m)& distributions for the ground stateuCG
(75)& and the

excited stateuC (81)& at n50.265.
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0.995. We apply now this method to constructuC̃(63)& from
uC (69)& obtained atn50.32, to obtain a solid-state trial wave
function. In Fig. 4 and Fig. 5 we show the pair-correlation
function and ^n(m)& of this state. Finally, the solid-state
variational energy turns out to be as good as
ES
(63)2EG

(63)50.0075 and the overlap with the GS is
^C̃(63)uCG

(63)&50.953 ~even better than that of the Laughlin
state!!.

From these data we have to conclude that the genuine GS
in the range of filling factors 0.294,n,0.340 is a mixture
of solid and liquid phases with comparable amplitudes. Not
only do these two quite different states strongly overlap with
the ground state and almost minimize the energy, but also
^C̃(63)uCLS

(1/3)&50.817. That large overlap is, of course, the
finite-size effect. Obviously, under these conditions no defi-
nite conclusion about the true GS of the macroscopic system
is possible, and there is no contradiction with the experimen-
tal fact that atn51/3 the GS is the Laughlin liquid.

We would like to comment here on the widely used argu-
ment, based on diagonalization offinite-sizesystems, that
large overlap of the LS with the exact GS and its precise
energy may serve as a criterion that the corresponding mac-
roscopic system will be an incompressible liquid. We have
demonstrated above that this argument simply does not work
for the system of seven particles; short-range order in the LS
and WC turns out to be very similar. One has to analyze
more delicate properties~like pair-correlation function at
large distances! to discriminate between the two phases.

It follows from our data in Fig. 2 that GS in the sector
M5105 is of solid type. To see how differentuCG

(105)& is
from uCLS

(1/5)& we present in Fig. 7 the corresponding corre-
lation functions. We further confirm this result by calculating
the overlap between the two states,^CLS

(1/5)uCG
(105)&50.759,

and the Laughlin-state energyELS
(1/5)2EG

(105)50.0188~com-
pare with the energy of the first excited state
E1
(105)2EG

(105)50.0319). Now, the admixture of the LS in the
structure of the GS is much smaller than that atn51/3 and
the variational energy is of the order of the first excited state
in this sector. To reconcile this result with the experimental
observation of the FQHE atn51/5 in some ~not all!!
systems,7–9 we notice that our result was obtained on a
finite-size system and for the unscreened Coulomb interac-
tion between the particles. Given a rather large difference in

energy between the LS and WC found in our study, it is
likely that WC will be the true GS of a macroscopic system
too. This conclusion, however, may change for the screened
Coulomb interaction since the Laughlin state is stabilized by
short-range interactions. We plan to investigate the role of
screening effects on the ground state atn51/5 in a separate
paper.

Since the liquid energy is casping down atn51/5, our
results give very strong support to the idea that WC exists in
the Coulomb system forn.1/5. Even if WC is replaced with
the LS atn51/5 when the interaction potential is screened, it
will most likely survive at slightly larger filling factors. We
thus conclude that experiments7–9 did see the WC state
aroundn51/5.

IV. OTHER GROUND STATES
IN THE PSEUDOPOTENTIAL APPROACH

It was found in Ref. 11 that by varying pair potential
between the particles in the lowest Landau level one can
drastically change the nature of the ground state. In this sec-
tion we discuss whether this change is of any relevance to
Wigner crystallization.

Following Ref. 11 we characterize the potential by the
energiesUm of pairs of particles with relative angular mo-
mentumm. In the lowest Landau level

Um5E
0

`

dqqSV~q!

2p De2q2Lm~q2!, ~11!

whereLm are the Laguerre polynomials. These are pseudo-
potential parameters because different bare interactions may
have the same values ofUm . For the Coulomb interaction
these parameters areUm5Ap(2m21)!!/(2m11m!) and de-
crease slowly withm. Spinless fermions are coupled with
odd values ofm only. The effect of decreasingU1 for the
Coulomb system ofNe56 electrons on a sphere atn51/3
was the collapse of the Laughlin-type ground state to some
gapless state11 ~we will call it U1 state!. The nature of this
state was not clearly identified, although the results did sug-
gest a tendency to charge-density wave formation. As we
demonstrate below, the gapless ground state obtained by re-
ducing the short-range part of the Coulomb interaction isnot

FIG. 8. Some realizations of the interaction potential in the real
space with reduced values ofU1.

FIG. 7. Pair-correlation functionsg(u) at n50.193 for the
ground state and the Laughlin stateuCLS

(1/5)&.
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the conventional Wigner crystal~by ‘‘conventional’’ we
mean the single-atom triangular lattice!.

We start by noting that the new state has almost zero
overlap with the LS.11 This result is in sharp contrast with
the large overlap between the WC and LS found in Sec. III.
This fact alone is sufficient to rule out WC as a candidate for
theU1 state. Furthermore, as is seen from the data presented
in Ref. 11, the collapse of the LS isnot accompanied by
formation of the low-energy satellite states corresponding to
the rotations of the octahedron formed by six particles on a
sphere.

We performed an analogous study of the ground-state
changes as a function of theU1 pseudopotential parameter
for our system of seven particles. In agreement with Ref. 11
we observe a drastic transformation of the ground state at
n50.32 whenU1 is reduced to 0.35. For smaller values of
U1 the ground-state angular momentum changes from
MG563 toMG556. The change ofMG by 7, not by 6, also
proves that we are not dealing with the conventional WC.
Finally, we followed the transformation of the solid ground
state withMG575 atn50.265 and observed its collapse to
the sameU1 state forU1,0.32. These results leave no doubt
that reducing the short-range part of the Coulomb potential
promotes a new ground state other than the LS or WC.

To have a better feeling about real-space interaction po-
tentials with reduced values ofU1 we show in Fig. 8 the
particular set of interaction potentials of the form

V~r !5
Ap

2
e2r2/8I o~r

2/8!2
l

2
e2r2/4, ~12!

where I o is the Bessel function. The first term gives the
Coulomb interaction between the two unit charges at a dis-
tance r5ur 12r 2u apart, each being spread out with the
Gaussian distribution (2p)21/2exp$2uz2riu2/2%, and the sec-
ond term further suppresses the short-range part of the first.
The choice ofV(r ) in this form is rather arbitrary. It is
justified by the simplicity of its Fourier transform
V(q)/2p5(1/q2l)exp$2q2%. In a more general case one
may also vary the ‘‘cutoff length’’ by lettingr→r /r c in the
second term. In Fig. 8 we plot the potential@Eq. ~12!# for
l50.8, 1.0, and 1.2. The corresponding values ofUm are
given in Table II. We see thatU1 state is stabilized at the
edge of digging a potential well at short distances.
d2V(r )/dr2,0.

In Fig. 9 we present̂n(m)& distribution in theU1 state
with momentumMG556. Quite unexpectedly, in theU1
state, the central particle is replaced with the correlated hole.
One has to appreciate this result in the system with the long-
ranged Coulomb potential—by taking the central particle
from orbits with m50,1 and placing it into much higher
orbits we substantially increase its mean-field energy. On the
other hand, the first coordination sphere of six particles
moves to internal orbits, thus gaining some mean-field en-
ergy. Thus we see that theU1 state suggests locally~on the
scale ofa) inhomogeneous particle distribution. Of course,
the long-range tail of the Coulomb potential ensures that the
macroscopic system is homogeneous on a large scale@a,
but when the short-range part of the interaction is reduced,
the system may choose states with local density higher than
average. We are not able to say anything definite about such
a state except that it is not the conventional WC. Obviously,
if the final state is a solid with more than one particle in the
unit cell, it cannot be traced from the numeric study of seven
particles.

After this work was completed we became aware of the
fact that we had overlooked some important experimental
results15 which seem to be in an excellent agreement with
our numerical study. In these references a metal-insulator
transition is found to occur at the universal filling factor
nc.0.28 in a rather wide range of magnetic fields and
sample mobilities; no reentrant behavior is observed around
n51/5. The authors argue that their results could be ex-
plained in terms of Wigner crystallization~though other in-
terpretations are not ruled out!.
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TABLE II. Pseudopotential parameters.

Potential U1 U3 U5

Coulomb 0.44 0.28 0.22
l50.8 0.37 0.29 0.23
l51.0 0.35 0.28 0.23
l51.2 0.32 0.27 0.22

FIG. 9. ^n(m)& distribution for theU1 state atn50.32 and
l51.2.
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