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Displaced squeezed number states of the phonon field in polar semiconductors
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Considering that the=rohlich continuummodel of polarons, in thetatic approximation, describes the
electron-phonon interaction in polar semiconductors, and that the Hamiltonian of the generalized parametric
oscillator represents the ion vibrations, we have studied a way of producing phonon-displaced squeezed
number states. By the use of the evolution operator method, the exact wave function as well as the probability
density are obtained. In order to see explicitly the wave function's squeezing property, we have given the
analytical forms of the variance’sq andAp. Dealing with the radiative recombination process, which occurs
at imperfections, we have derived the phonon number distribution. A calculation of Maglarameter,
which accounts for the kind of the distribution, and of the Huang-Rhys fatare also presented. An
interesting result is obtained when we study the case of a simple driven harmonic oscillator,Qvhasam-
eter imposes the value 0.5 on the fackiin order to have a Poissonian distribution. Any deviation from this
value yields sub- or super-Poissonian distributions which characterize the photoluminegdensgectrum,
as regards the sharpness of the PL lines and the number of phonons involved in the recombination process.
With regard to the time dependence of the fackoand of the Hamiltonian representing the ion vibrations,
unexpected valueén comparison with the time-independent ca® the Q parameter can be found. This
behavior can affect the number of emitted phonons, defined by the kind of the phonon number distribution.
[S0163-182696)01236-2

[. INTRODUCTION scopic phenomena such as Raman scattering and absorption
spectrat®t’

It is well known that squeezed states are nonclassical In the present paper we consider the case of polar doped
states, which were first introduced and studied in the field oBemiconductors, such as CdTe, whose electronic quality can
quantum optics with the ultimate aim to obtain a reducecbe assessed by photoluminescer@),’®2%?! from the
fluctuation in one field quadrature, at the expense of an instrength and sharpness of the spectral components. Using the
creased fluctuation in the othkleading to an increase in the adiabatic approximation, we can study the properties of the
signal-to-noise ratio in suitable experiments ranging from(boson phonon field according to Refs. 18 and 19.
optical communication to the detection of gravitational Assuming that the Hamiltonian which represents ion vi-
radiation®® brations has the forrtin the harmonic approximatigrf the

Among the theoretical schemes that have been proposegeneralized parametric oscillatGn our analysis, we restrict
to generate squeezed light is that of harmonic oscillator withourselves to one vibrational mode and a basis of two)ions
a time-dependent frequenty'° Most of the techniques that with SU(1,1) algebraic structur& we shall prove that the
have been used are based on scattering experiments in ngrhonon field prepared initially in thath number statgn
linear systems;*®’ which can be described approximately =1,2..) and driven by an external force, evolves to a dis-
by the Bogoliubov Hamiltonian. placed squeezed number state, for appropriate values of the

Considerable attention has also been paid to generalizéime-dependent parameters which appear in the Hamiltonian
tions of squeezed states, mainly to the displaced andf the parametric oscillatd® The limited spreading\q of
squeezed number statés?® Actually, as has been proven, the corresponding wave packets leads to the generation of
these states can be generated by displacing the oscillator atatalized* vibrational states. Localized phonon states are
changing its frequency: More specifically, considering a known in the literatur®?®to arise due to the modifications
time-dependent harmonic oscillator, prepared initially in thewhich occur in the vibrational spectrum of the lattice in pres-
nth number statén=1,2..) and driven by a transient, spa- ence of isolated defecfsee Eqs(28) and (46)].
tially uniform external force, we finally obtain the corre- A study of polar semiconductors leads to taking into ac-
sponding displaced squeezed number state. The ma€e count the Frohlich continuummodel of polarong®192527
coincides exactly with the displaced squeezed vacuum stateresupposing a modification in the phonon dispersion spec-
or simply squeezed state. trum, caused by the presence of time-dependent factors in the

An interesting quantity of a time-dependent harmonic os-generalized parametric oscillator form, we give an expres-
cillator is the set of time-dependent transition probabilitiession for a charge-carrier—phonon interaction Hamiltonian, in
among thenth number states. The associated transition amthe static approximation'® The effect of this interaction is to
plitudes are defined as corresponding matrix elements of theisplace the equilibrium position of the ions, and its form has
time evolution operators. Such amplitudes play an importanan h(4) algebraic structuré®
role in the time-dependent formulation of molecular spectro- Thus the Hamiltonian we are dealing with has the fofm
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H(t) =Hion(t) + Help(), (1)  the electron-phonon interaction in its modified version, due
. to the time dependence of the Hamiltonian that represents the
with lattice vibrations. Also in Sec. Il B we cite the analytic form
, of the Huang-Rhys factor, which, as is known, is a measure
Hion(t) = o(t)(aa+3) + &(t)a+ £* (t)a™ (2)  of the charge-carrier—LO-phonon interaction for the time-
independent cas&:?>3°Section IV is concerned with non-
classical effects such as squeezing and sub-Poissonian statis-
3) tics. In order to see explicitly the squeezing property of the
phonon wave functions, which have already been calculated,
we proceed to a computation of the varianadsg and Ap.
tgurthermore, we give the analytical form of MandeQspa-
prameter, finding the necessary condition which characterizes
the kind of distribution. We also study the special case of a
OTtime-independent driven oscillator, obtaining for the Huang-

and
Hept) =r(t)a+r*(t)a™.

It is worthwhile to stress that the use of the Hioh
model of polarons assumes that the dominant contribution
the electron-phonon interaction is the polar interaction wit
long-wavelength longitudinal-opticalLO) phonons. It is
also well known that the phonon number distribution amon

distinct number states, corresponding to the ion vibrationa _hys_ factor the value 0.5, in order to have a Emssonlan dis-
states before and after the electronic transitions ar|but|0n. Any value larger or less than 0.5 will lead to the

imperfectiong® decides the shape of the emissitor ab- appearance of super- or sub-Poissonian distributions, respec-
sorption line (,)r band tively. Finally we give the exact forms of the occupation

In the present work we are interested in radiative recompmb‘”‘b'I't'f[est bOtSh I_or 3|§plgcedt zqtueezedl gumber aEd
bination processes starting from an initial state where thgyacuum states. section Viis devoted 1o concluding remarxs.

hole is bound to an acceptor impurity and the electron is
either a free conduction electron or a donor-bound elecfton. Il. EVOLUTION OPERATOR METHOD—
During electron-hole recombination, we assume that the pho- EXACT WAVE FUNCTION

non field evolves from an initial state described by a dis- | ¢t ys consider the Hamiltonian of the driven generalized
placed squeezed phonon field to a state where the eleCtroBarametric oscillato?® which is given by Eq(1) or
hole recombination has taken place, i.e., a free LO-phonon

field in a number statém). In this regime, calculating the H(t) =Hion(t) + Heppr(1), 4
phonon number distribution, we obtain a form which ac-

counts for the determination of the existing photolumines-Where

cence spectrum. Furthermore, based on the fact that the evo- 1 p2

lution operator corresponding to the Hamiltoniéd) is just Hion(t) = > Z(t) — + wY(t)(gp+ pg) + X(t) mw?g?

the Weyl displacement operator multiplied by a phase m

factorl**we can obtain the explicit form of the Huang-Rhys ®)
factor® appearing in the phonon number distribution. is the Hamiltonian of the generalized parametric oscill&tor,

Continuing to examine the nonclassical effects, we pro-and
ceed to a calculation of Mandel® parametet;*! finding
the necessary condition to have sub-Poissonian, super- Hepi(D) = p(t)q+ »(t)p (6)
Poissonian, or simply Poissonian distribution, for both time-ig the driving term, wher&(t), Y(t), Z(t) u(t), andu(t) are
dependent and -independent harmonic oscillators. The aboyg general nonsingular functions of time, andis the re-
condition leads to the interesting result that for the case ofj,ced mass.
the simple driven harmonic oscillatdt,where there is no The relationship between Eq4) and(4) is clearly dem-
squeezing, the phonon number distribution is sub-Poissoniagnstrated by the following equations:
for Huang-Rhys factor values less than 0.5, and super-
Poissonian for values larger than 0.5. This result determines how
the PL spectrum of CAT¥ as regards the number of o(t)= - [X(M+Z(1)], (7)
phonons involved in the recombination process and the
sharpness of the observed lines or bands. ho

The organization of the paper is as follows. In Sec. Il we &)= v [X(t)—2Z(t)—2iY(1)], (8)
briefly review the evolution operator method, which is based
on theSU(1,1)@h(4) algebraic structure of the Hamiltonian PRRET: 5 M| V2
(1) and the Wei-Norman theorefi.We obtain the exact r(t)=(—> ,u(t)—i(—w) (). 9
wave function, as well as the probability density, assuming 2mo 2
that the phonon system is initially prepared in tite num-

ber state. Also we prove that this wave function is a numbey, | 2king advantage of knowing the “unperturbed” evolu-
state with respect to the operat(t)=A*(t)A(t), where tion operatofwhich corresponds tél;,,(t)], the explicit co-

the operatorA(t) is related to the usual operatar by a ordinate repre_sentat_ions of the generators of the Weyl group
Bogoliubov transformation plus a translation. By finding the2nd the one-dimensional Lorentz QVO‘SJZB' we express the evo-
coefficients of this transformation, we imply thaat the wave ution operator corresponding td(t) a

function we have obtained is a squeezed stdtén Sec. —1).

Il A, by use of the Fradlich continuum model of polarons, U(t)=Uion(t) U, (1), (10

we give the explicit form of the Hamiltonian that representswhereU,,,(t) andU,(t) satisfy the equations
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Uion
ih ot =Hion()Ujon(t),  Uion(0) =1, (11
. dU,
'ﬁT:HKt)UKt)a u,(0)=lI, (12
where
Hi () = Ui Heppt) Uion(t). (13

The “unperturbed” operatod,,,(t) admits the Wei-Norman
(WN) form

Ujon(t) = eMDeatagbhatalin ge(t(@oa®) (14

where the WN characteristic functiongt), a(t), b(t), and
c(t) are given in analytic form in Ref. 22. Replacifity) in
(13), with the help of(6), we obtain

) Jd
Hi()=K(Hg—iN(t) -, (15
q
where the function&(t) andN(t) are given in Ref. 28.
Then, by Eqg.(12) and, because of thk(4) structure of
H,(t), we obtain
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f(t)=—% ftN(t’)dt’, (18

0

t .
mn=ﬁpavuvmv, (19

Once the evolution operator is known, we can find the exact
wave function at any later time, supposing that we start with
a number state at=0,"

|W(0))=|n); (20
that is, an eigenstate of the number oper&tera™a,
N[n)=n|n), (21)
with
1 . P
a= % VMmoq+I \/Tw) (22

The wave function at any later time with the help (@0),

— eh(h)agf(t)(/aa) gg(t)
U (t)=e"Ve V"7 Wes (16 (14), (16), and(20) will be represented by
where
- W (1))=U(1)|¥(0)) (23
o= [ kv, i
0 or
|
1 me\ Y4 ~ 2 b(t) 2 h(t) 2
|\If('[)>: W ﬁ eA(t)ea(t)q e*h(t)f(t)ef[qe +f(1)] /4c(t)e[qe +f(t)+2h(t)c(t)]“/4c(t)[1+ (2mw/f)c(t)]
2Mw n/2
1=——c® mw| Y2 qeb® 4 £(t) + 2h(t)c(t)
Mo mrore Hal | 7~ amZe? 7| (24
1+T c(t) 1- 72 ce(t)
|
with 102~ [1(D)]?=1 (29
A =A()+g(b). (8
Now we can define an operaté(t) ag '
A(t)=U(t,00aUu* (t,0), (26) M

and it is easy to see that the wave function is a number state

with respect to the operatdi(t)=A"* (1) A(t),

N[ (1)) =n|¥(1)). (27)

Using (10), (14), (16), and(22), it can be shown the operator

a is related to the operatdk(t) by a Bogoliubov transfor-
mation plus a translation
A(t) =l ()a+1,(t)a* + (1), (28)

with

l1(t)=2%(e"V+e PW)+ e—bm(T c(t)— 2a(t)c(t))

h
—— a(t)e P,

o (30

Io(t)=3(ePM—e b)) eb“)($ c(t)+ 2a(t)c(t))

i
—— a(t)e b,

e (31
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Mo 12 ho\12 Also, R, r, andr,, denote the positions of the acceptor cen-

B(t)= %) 0=\ 5mg MO (32 ter, the electron, and the hole, respectivély. is the volume
of the lattice,s(e0) ande(0) are the high frequency and static

Also after some algebra we obtain the corresponding probdielectric constantse is the charge of electronk| denotes

ability density, which has the following form: the measure of the phonon wave veckgrand g, is the
" b electrical permittivity of free space.
1 [(mo et :
[P (t)]2= e With the help of Eq(41), Eq. (38) takes the form
2"n! \ 7h 4amPwc?(t)| M
1- %z Hepi D) =[11 (DR D (k,r) +15 ()R* (1) @* (k,r)]a
Mo [qeb(t)+f(t)+2h(t)c(t)]2 +[I’1‘(t)R*(t)CID*(k,r)+I2(t)R(t)<D(k,r)]a+.
xXexp| — E A2 , (42
1- —ﬁr C (t)
V2 b0 B. Huang-Rhys factor

><H§ (@) € +f(t2)4;22h(t)i§2t) , According to Egs(3), (9), and (38), we can obtain the

h (1_ 4m “’ZC (t)) following forms for the real functions appearing in E6):

h Mo 12
(33 ()= ﬁ) {IO+LMIROD (K.
with the evident condition
+[IT () +15 () IR* (1) D* (k,r)}, (43
+ oo
[IERTS! (34 i
v(t)= Wﬁ{[ll(t)—|2(t)]R(t)q>(k,f)
Ill. FRO LICH MODEL OF POLARONS +[|’2‘(t)—I’l‘(t)]R*(t)CI)*(k,r)}, (44)

A. Electron-phonon interaction where m represents the reduced mass of the electron and

According to Ref. 22, the classical equation of motion forhole in the static approximatiot.

the generalized parametric oscillator Ef) has the form Now, based on the fact that the evolution operator which
L, corresponds to the Hamiltonia@?2) is the Weyl displace-
g+ 0*(t)q=0, (39 ment operatot! according to Refs. 18 and 19 we can obtain
where the Huang-Rhys factos as follows:
d/Y\ 1(3 372 SORIVIGTE (45)
0’ ()=wi(XZ-Y?)—0wZ — ||+ |=— 5 =5]. i -
dt\z/ "2\z 272 where(t) is given by(32), and the functionfi(t) andf(t)

(36) by (17) and(18), respectively.

The frequencyw(t) can be encountered as a modified ver-
sion of the longitudinal-optical branch frequeney’ due to IV. NONCLASSICAL EFFECTS
the existence of the time-dependent fact&(s), Y(t), and A. Squeezing effect
Z(t). As can easily be seen for the case of a simple harmonic
oscillator, e.g.,X(t)=2(t)=1, Y(t)=0 coincides exactly
with the usual frequencw, e.g.,

As is well known(see, for instance, Refs. 1, 4, 9, and 11
relation(29) implies that the wave function represents a dis-
placed squeezed number state. To see its squeezing property

w(t)=w. (37)  explicitly, we wi!l compute the variance cnq‘ andp. After a
L ) ) ] lengthy calculation, we obtain the following results, with re-
By the use of the Fildich continuum modef? the Hamil- spect to the wave functiof¥(t)):

tonian which represents the electron-phonon interaction in

the static approximation'® taking into consideration Eq. 1 P 112
(36), has the form Ag=(n+3) (@) [11(t)—15(D)] (46)
Hepr(t) =R(1) D (K, F)A(t) +R* () * (k,1)A™ (1), or
it 39 Ag=(n+3)YAW(1), (47)
with
— i ezhwz(t) 1 1 ]1/2 1/2 2 2-2 1/2
R(t)_ﬂ[ 2eve (2= o) 39 W(t)=(%) e—b<t>(1——2—4m ‘;’L c (t)) (48)
D (k,r)=(e*R-1+eke—gkTh), (40 and

A(t)=ly(Da+l(Ha’. (41) Ap=(n+H)YAfime) 14 (1)+15(t)] (49
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or
mw/f
_ 112 Ab(t)
Ap=(2n+1)Yhe ) mac()
M7
1/2
—2a(t)e 20M 1+| 2a(t)
mo e2b(t) 12
- - 2
h ( 2mwc(t)) Wil . (0
1+ ———
h
As can be checked,
f
Aqu>§(2n+1). (52
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The function that allows one to verify the occurrence, or
not, of sub-Poissonian statistics of the phonon figtdac-
cordance with the boson field of lighis given by Mandel's
well-known Q parameter®!

((AnA)—(n)
()

2l P02+ n+ 1) +[L(H)]A(2n+1)
- ()P n+]1()]*(n+1) +[T(t)[?

(56)

The distribution of the phonon field is sub-Poisson(super-
Poissonian or simply Poissoniaifi Q<0 (Q>0 or Q=0).

Of importance is the case of the driven harmonic oscilla-
tor, e.g.,.X(t)=2Z(t)=1, or Y(t)=0. As can be seen, Man-
del's Q parameter implies that

|BI*(2n+1)=<)n+B/%. (57)

Thus, under appropriate values of the time-dependent pa-

rametersX(t), Y(t), andZ(t) of the generalized parametric

Actually for |8>=0.5 we have a Poissonian distribution,

oscillator (5), squeezing in one of the quadrature variancesand any value ofg|? less or larger than 0.5 will lead to a sub-

can be obtained.

B. Sub-Poissonian statistics

We calculate the following averages in the sthit))
[Eq. (24), with the help of Eq(27)]:

(ny=(¥(t)aal¥t))=[l1(t)>n+]l,(t)[A(n+1)

or super-Poissonian distributidalthough there is no squeez-
ing). It is also worthwhile to emphasize that these distribu-
tions interpret the sharpness of the experimentally observed
lines of the(PL) spectrum in CdTé% and also determine the
number of phonons involved in the recombination process.
The phonon number distribution for a transition between
an initial statgW(t)) [relation(24)] to a free statém), after
a lengthy calculation, takes the form

+TOP, (52)
1 eb(t)
(n?y=(P(t)|(ata)?|¥(t)) an(t)=|(m|\1’(t)>|2=2nn!2mm! am2e?c2(1)| 72
= [l (O*n?+2[1,(D]?1(D)[*(2n*+2n+1) ( S )
+2[LOPT )P +[1()]*(n+ 1) % _ Mo L2(t)
2 2 2 N B 4mPw2c?(t)
+2(n+ DI 102+ (2n+ 1) |L(D)| (1——ﬁ2 )
+(O)]% (53 o o] 1
h ilfo t o t” )
where ><exp_4 ( O + 0 o [1(1)]%,
L(t)=17 (DT () - 13 (D)™ (1), (54) (58)
L) =13 () B —11(1) B* (V). (55 wherel(t) is given by the following relatior®
_ e < [m)[n ky+ky
I(t)_xl§=:o K2§=:o (K1> ( Kz)z
Mo 1/2 O'(t) Ko
[ ot K (T) [£(t)+2h(t)c(t)]—eP® 5000 Lo p(t) | (Mt eae
X(_l) 2p(t) ( 4m2w202(t))1/2 : P(t)_)(z(t)
1_T
1 1/2y (m+n—k1—kp)/2 (t)
= _ [m—n—kq+ko|/2 X _ —
X{Z p(t) [1+X°(V] 1] ] P\m+nﬂ<1—x§|/2 /_p(t) [1+x*()—p(t)] 1/2] (59

[P(x) denotes the Legendre polynomikénd
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(0= 1ol 60
X sl
1 g2b(t)
p= 2 mo a(®)+ ( mec(t)) ’ (61
2|1+ —
f
v2ePMB(t)
U(t)zﬁt(t)’ (62)
S
L(t)=2h(t)c(t)+f(t). (63
In addition, the phonon number distribution for the usual squeezed $tates=0) has the form*
1 et s L2(t) 1 (a2t o-*z(t)) 1 1|
PnoV)= 2y, (1 4m2w2C2(t))1/2 ex _T( 4m2w202(t)) A2 %0 T oo ol
n/2
1 (t) . *(1)
X 1_p*(t Hn d 1|12 Ha d 1 12 (64)
2001 5g] || 20001 o)

In the case where we havg(t)=Z(t)=1, Y(t)=0 (e.g., acceptor impurity, and the electron is either a free conduc-
the simple driven harmonic oscillajpthe distribution takes, tion electron or a donor-bound electron. In this regime we
as expected, the form of a Poissont4n, have calculated the exact phonon number distribution, for

transitions between an initial state described by a displaced

P, ot)= i eSSt (65) squeez«_ed r_1umber state, to a state where the electron-hole
’ n! ’ recombination has taken place, e.g., a free LO-phonon field
: in a state|m). Furthermore, based on the fact that the evo-
with lution operator corresponding to the electron-phonon interac-
(1) tion HamiIton_ian(FrohIich—ty_pe interactionin the static ap-
S(t)= 5 =|B(1)|?, (66) proximation is the Weyl displacement operator, we have

obtained the form of the Huang-Rhys factdfor one
and Mandel'sQ parameter is equal to zero, as can easily beelectron-hole cagewhich is time-dependers(t).
seen from relation§56) and (57). In order to determine the shape of the PL spectrum lines,
we calculated Mandel'Q parameter, finding the necessary
condition for observing sub-Poissonian, super-Poissonian, or
simply Poissonian phonon-number distributions. Specifi-
In the present work we have studied the possibility ofcally, studying the case of a simple driven time-independent
generating displaced squeezed number states of the phonbarmonic oscillatofalthough there is no squeezjnthe con-
field, using(in the harmonic approximatigra driven time-  dition Q=0, which insures Poissonian distribution, imposes
dependent Hamiltonian with agU(1,1)®@h(4) algebraic the value 0.5 on the Huang-Rhys factér Any deviation
structure. Using the Frdich continuum model of polarons, from this value leads to the appearance of phonon-number-
we have attributed the driving term of the above HamiltoniansqueezedS<0.5) or -enhanced S>0.5) distributions. This
to the electron-phonon interaction. result determines the form of the observed PL spectfdion
Assuming that the phonon field is initially prepared in thethe case of CdTe, as regards the sharpness of the PL lines
nth number state, we have obtained the exact form of thend the corresponding number of phonons involved in the
evolved wave function, using an algebraic operator techrecombination process. It is therefore evident that our results
nigue that has been developed in our previous papers. As @re in agreement with the experimental results for CdTe.
can be proved, this wave function is a displaced squeezefictually the authors of Ref. 18, studying the band at 1.54 eV
number state, for appropriate values of the time-dependenthich is not present in the spectrum of the undoped sample,
parameters appearing in t&dJ(1,1) part of the total Hamil- and the usual band at 1.45 eV which is present in doped and
tonian. undoped CdTe, deduced, by an overall fit of the measure-
We are dealing with a radiative recombination processnents using a Gauss function, the Huang-Rhys factor
starting from an initial state where the hole is bound to anS=0.30+0.02 for the band at 1.54 eV, arg=1.3+0.1 for

V. CONCLUSION
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the broadband at 1.45 eféee Fig. 4 in Ref. 18

S. BASKOUTAS, A. JANNUSSIS, AND P. YIANOULIS

54

tiation of time in the Hamiltonian describing the ion vibra-

In our analysis we predict the form of the bands, andtions leads to the generation of phonon-displaced squeezed
provide insight for the interpretation of the experimental datanumber states with limited spreading, for appropriate values
in terms of sub-Poissonian and super-Poissonian phonon disf the parametersX(t), Y(t), and Z(t) and to a time-
tributions. Giving the phonon number distribution for a ra- dependent Huang-Rhys fact& The time dependence of
diative recombination process, between an initial state debothH,,,(t) andS(t) can cause the existence of unexpected
scribed by a simple squeezed state to a state where electroralues(compared to the time-independent gaee Mandel's
hole recombination has taken place, we point out that in th&€ parameter, affecting the zero-phonon, one-phonon, and
case of a time-independent oscillator the distribution is alimultiphonon processes, by means of a possible change in the

ways Poissonian for any value of the Huang-Rhys fagtor

distribution shape, as is expected for the time-independent

As is easily understood from the above analysis, the inicase.
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