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Considering that theFröhlich continuummodel of polarons, in thestatic approximation, describes the
electron-phonon interaction in polar semiconductors, and that the Hamiltonian of the generalized parametric
oscillator represents the ion vibrations, we have studied a way of producing phonon-displaced squeezed
number states. By the use of the evolution operator method, the exact wave function as well as the probability
density are obtained. In order to see explicitly the wave function’s squeezing property, we have given the
analytical forms of the variancesDq andDp. Dealing with the radiative recombination process, which occurs
at imperfections, we have derived the phonon number distribution. A calculation of Mandel’sQ parameter,
which accounts for the kind of the distribution, and of the Huang-Rhys factorS, are also presented. An
interesting result is obtained when we study the case of a simple driven harmonic oscillator, whoseQ param-
eter imposes the value 0.5 on the factorS, in order to have a Poissonian distribution. Any deviation from this
value yields sub- or super-Poissonian distributions which characterize the photoluminescence~PL! spectrum,
as regards the sharpness of the PL lines and the number of phonons involved in the recombination process.
With regard to the time dependence of the factorS and of the Hamiltonian representing the ion vibrations,
unexpected values~in comparison with the time-independent case! for theQ parameter can be found. This
behavior can affect the number of emitted phonons, defined by the kind of the phonon number distribution.
@S0163-1829~96!01236-2#

I. INTRODUCTION

It is well known that squeezed states are nonclassical
states, which were first introduced and studied in the field of
quantum optics with the ultimate aim to obtain a reduced
fluctuation in one field quadrature, at the expense of an in-
creased fluctuation in the other,1 leading to an increase in the
signal-to-noise ratio in suitable experiments ranging from
optical communication to the detection of gravitational
radiation.2,3

Among the theoretical schemes that have been proposed
to generate squeezed light is that of harmonic oscillator with
a time-dependent frequency.4–10Most of the techniques that
have been used are based on scattering experiments in non-
linear systems,1,4,6,7 which can be described approximately
by the Bogoliubov Hamiltonian.

Considerable attention has also been paid to generaliza-
tions of squeezed states, mainly to the displaced and
squeezed number states.11–15 Actually, as has been proven,
these states can be generated by displacing the oscillator and
changing its frequency.11 More specifically, considering a
time-dependent harmonic oscillator, prepared initially in the
nth number state~n51,2...! and driven by a transient, spa-
tially uniform external force, we finally obtain the corre-
sponding displaced squeezed number state. The casen50
coincides exactly with the displaced squeezed vacuum state
or simply squeezed state.1

An interesting quantity of a time-dependent harmonic os-
cillator is the set of time-dependent transition probabilities
among thenth number states. The associated transition am-
plitudes are defined as corresponding matrix elements of the
time evolution operators. Such amplitudes play an important
role in the time-dependent formulation of molecular spectro-

scopic phenomena such as Raman scattering and absorption
spectra.16,17

In the present paper we consider the case of polar doped
semiconductors, such as CdTe, whose electronic quality can
be assessed by photoluminescence~PL!,18,20,21 from the
strength and sharpness of the spectral components. Using the
adiabatic approximation, we can study the properties of the
~boson! phonon field according to Refs. 18 and 19.

Assuming that the Hamiltonian which represents ion vi-
brations has the form~in the harmonic approximation! of the
generalized parametric oscillator~in our analysis, we restrict
ourselves to one vibrational mode and a basis of two ions!
with SU~1,1! algebraic structure,22 we shall prove that the
phonon field prepared initially in thenth number state~n
51,2...! and driven by an external force, evolves to a dis-
placed squeezed number state, for appropriate values of the
time-dependent parameters which appear in the Hamiltonian
of the parametric oscillator.23 The limited spreadingDq of
the corresponding wave packets leads to the generation of
localized24 vibrational states. Localized phonon states are
known in the literature25,26 to arise due to the modifications
which occur in the vibrational spectrum of the lattice in pres-
ence of isolated defects@see Eqs.~28! and ~46!#.

A study of polar semiconductors leads to taking into ac-
count theFröhlich continuummodel of polarons.18,19,25,27

Presupposing a modification in the phonon dispersion spec-
trum, caused by the presence of time-dependent factors in the
generalized parametric oscillator form, we give an expres-
sion for a charge-carrier–phonon interaction Hamiltonian, in
thestaticapproximation.19 The effect of this interaction is to
displace the equilibrium position of the ions, and its form has
anh~4! algebraic structure.28

Thus the Hamiltonian we are dealing with has the form29
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H~ t !5H ion~ t !1Hel-ph~ t !, ~1!

with

H ion~ t !5v~ t !~a1a1 1
2 !1j~ t !a21j* ~ t !a12

~2!

and

Hel-ph~ t !5r ~ t !a1r * ~ t !a1. ~3!

It is worthwhile to stress that the use of the Fro¨hlich
model of polarons assumes that the dominant contribution to
the electron-phonon interaction is the polar interaction with
long-wavelength longitudinal-optical~LO! phonons. It is
also well known that the phonon number distribution among
distinct number states, corresponding to the ion vibrational
states before and after the electronic transitions at
imperfections,25 decides the shape of the emission~or ab-
sorption! line or band.

In the present work we are interested in radiative recom-
bination processes starting from an initial state where the
hole is bound to an acceptor impurity and the electron is
either a free conduction electron or a donor-bound electron.18

During electron-hole recombination, we assume that the pho-
non field evolves from an initial state described by a dis-
placed squeezed phonon field to a state where the electron-
hole recombination has taken place, i.e., a free LO-phonon
field in a number stateum&. In this regime, calculating the
phonon number distribution, we obtain a form which ac-
counts for the determination of the existing photolumines-
cence spectrum. Furthermore, based on the fact that the evo-
lution operator corresponding to the Hamiltonian~3! is just
the Weyl displacement operator multiplied by a phase
factor,1,11we can obtain the explicit form of the Huang-Rhys
factor,30 appearing in the phonon number distribution.

Continuing to examine the nonclassical effects, we pro-
ceed to a calculation of Mandel’sQ parameter,1,31 finding
the necessary condition to have sub-Poissonian, super-
Poissonian, or simply Poissonian distribution, for both time-
dependent and -independent harmonic oscillators. The above
condition leads to the interesting result that for the case of
the simple driven harmonic oscillator,18 where there is no
squeezing, the phonon number distribution is sub-Poissonian
for Huang-Rhys factor values less than 0.5, and super-
Poissonian for values larger than 0.5. This result determines
the PL spectrum of CdTe,18 as regards the number of
phonons involved in the recombination process and the
sharpness of the observed lines or bands.

The organization of the paper is as follows. In Sec. II we
briefly review the evolution operator method, which is based
on theSU(1,1)%h(4) algebraic structure of the Hamiltonian
~1! and the Wei-Norman theorem.28 We obtain the exact
wave function, as well as the probability density, assuming
that the phonon system is initially prepared in thenth num-
ber state. Also we prove that this wave function is a number
state with respect to the operatorN(t)5A1(t)A(t), where
the operatorA(t) is related to the usual operatora by a
Bogoliubov transformation plus a translation. By finding the
coefficients of this transformation, we imply that the wave
function we have obtained is a squeezed state.1,9 In Sec.
III A, by use of the Fro¨hlich continuum model of polarons,
we give the explicit form of the Hamiltonian that represents

the electron-phonon interaction in its modified version, due
to the time dependence of the Hamiltonian that represents the
lattice vibrations. Also in Sec. III B we cite the analytic form
of the Huang-Rhys factor, which, as is known, is a measure
of the charge-carrier–LO-phonon interaction for the time-
independent case.18,25,30Section IV is concerned with non-
classical effects such as squeezing and sub-Poissonian statis-
tics. In order to see explicitly the squeezing property of the
phonon wave functions, which have already been calculated,
we proceed to a computation of the variancesDq andDp.
Furthermore, we give the analytical form of Mandel’sQ pa-
rameter, finding the necessary condition which characterizes
the kind of distribution. We also study the special case of a
time-independent driven oscillator, obtaining for the Huang-
Rhys factor the value 0.5, in order to have a Poissonian dis-
tribution. Any value larger or less than 0.5 will lead to the
appearance of super- or sub-Poissonian distributions, respec-
tively. Finally we give the exact forms of the occupation
probabilities both for displaced squeezed number and
vacuum states. Section V is devoted to concluding remarks.

II. EVOLUTION OPERATOR METHOD—
EXACT WAVE FUNCTION

Let us consider the Hamiltonian of the driven generalized
parametric oscillator,28 which is given by Eq.~1! or

H~ t !5H ion~ t !1Hel-ph~ t !, ~4!

where

H ion~ t !5
1

2 FZ~ t !
p2

m
1vY~ t !~qp1pq!1X~ t !mv2q2G

~5!

is the Hamiltonian of the generalized parametric oscillator,22

and

Hel-ph~ t !5m~ t !q1n~ t !p ~6!

is the driving term, whereX(t), Y(t), Z(t) m(t), andn(t) are
in general nonsingular functions of time, andm is the re-
duced mass.

The relationship between Eqs.~1! and~4! is clearly dem-
onstrated by the following equations;

v~ t !5
\v

2
@X~ t !1Z~ t !#, ~7!

j~ t !5
\v

4
@X~ t !2Z~ t !22iY~ t !#, ~8!

r ~ t !5S \

2mv D 1/2m~ t !2 i S \mv

2 D 1/2n~ t !. ~9!

Taking advantage of knowing the ‘‘unperturbed’’ evolu-
tion operator@which corresponds toH ion(t)#, the explicit co-
ordinate representations of the generators of the Weyl group
and the one-dimensional Lorentz group, we express the evo-
lution operator corresponding toH(t) as28

U~ t !5U ion~ t !UI~ t !, ~10!

whereU ion(t) andUI(t) satisfy the equations
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i\
]U ion

]t
5H ion~ t !U ion~ t !, U ion~0!5I , ~11!

i\
]UI

]t
5HI~ t !UI~ t !, UI~0!5I , ~12!

where

HI~ t !5U ion
1 ~ t !Hel-ph~ t !U ion~ t !. ~13!

The ‘‘unperturbed’’ operatorU ion(t) admits the Wei-Norman
~WN! form

U ion~ t !5eL~ t !ea~ t !q2eb~ t !q~]/]q!ec~ t !~]2/]q2!, ~14!

where the WN characteristic functionsL(t), a(t), b(t), and
c(t) are given in analytic form in Ref. 22. Replacing~14! in
~13!, with the help of~6!, we obtain

HI~ t !5K~ t !q2 iN~ t !
]

]q
, ~15!

where the functionsK(t) andN(t) are given in Ref. 28.
Then, by Eq.~12! and, because of theh~4! structure of

HI(t), we obtain

UI~ t !5eh~ t !qef ~ t !~]/]q!eg~ t ! ~16!

where

h~ t !52
i

\ E
0

t

K~ t8!dt8, ~17!

f ~ t !52
1

\ E
0

t

N~ t8!dt8, ~18!

g~ t !5E
0

t

h~ t8! ḟ ~ t8!dt8, ~19!

Once the evolution operator is known, we can find the exact
wave function at any later time, supposing that we start with
a number state att50,11

uC~0!&5un&; ~20!

that is, an eigenstate of the number operatorN5a1a,

Nun&5nun&, ~21!

with

a5
1

2\ S Amvq1 i
p

Amv
D . ~22!

The wave function at any later time with the help of~10!,
~14!, ~16!, and~20! will be represented by

uC~ t !&5U~ t !uC~0!& ~23!

or

uC~ t !&5
1

~2nn! !1/2 Smv

p\ D 1/4eL̃~ t !ea~ t !q2e2h~ t ! f ~ t !e2@qeb~ t !1 f ~ t !#2/4c~ t !e@qeb~ t !1 f ~ t !12h~ t !c~ t !#2/4c~ t !@11~2mv/\!c~ t !#

3

F12
2mv

\
c~ t !Gn/2

F11
2mv

\
c~ t !G ~n11!/2 HnF Smv

\ D 1/2 qeb~ t !1 f ~ t !12h~ t !c~ t !

S 12
4m2v2

\2 c2~ t ! D 1/2 G , ~24!

with

L̃~ t !5L~ t !1g~ t !. ~25!

Now we can define an operatorA(t) as4,9,11

A~ t !5U~ t,0!aU1~ t,0!, ~26!

and it is easy to see that the wave function is a number state
with respect to the operatorN(t)5A1(t)A(t),

N~ t !uC~ t !&5nuC~ t !&. ~27!

Using ~10!, ~14!, ~16!, and~22!, it can be shown the operator
a is related to the operatorA(t) by a Bogoliubov transfor-
mation plus a translation

A~ t !5 l 1~ t !a1 l 2~ t !a
11b~ t !, ~28!

with

u l 1~ t !u22u l 2~ t !u251 ~29!

and

l 1~ t !5 1
2 ~eb~ t !1e2b~ t !!1e2b~ t !Smv

\
c~ t !22a~ t !c~ t ! D

2
\

mv
a~ t !e2b~ t !, ~30!

l 2~ t !5 1
2 ~eb~ t !2e2b~ t !!2e2b~ t !Smv

\
c~ t !12a~ t !c~ t ! D

2
\

mv
a~ t !e2b~ t !, ~31!
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b~ t !5Smv

2\ D 1/2f ~ t !2S \

2mv D 1/2h~ t !. ~32!

Also after some algebra we obtain the corresponding prob-
ability density, which has the following form:

uC~ t !u25
1

2nn! Smv

p\ D 1/2 eb~ t !

S 12
4m2v2c2~ t !

\2 D 1/2

3expH 2
mv

\

@qeb~ t !1 f ~ t !12h~ t !c~ t !#2

S 12
4m2v2

\2 c2~ t ! D J
3Hn

2F Smv

\ D 1/2 qeb~ t !1 f ~ t !12h~ t !c~ t !

S 12
4m2v2c2~ t !

\2 D 1/2 G ,
~33!

with the evident condition

E
2`

1`

uC~ t !u2dq51. ~34!

III. FRÖ LICH MODEL OF POLARONS

A. Electron-phonon interaction

According to Ref. 22, the classical equation of motion for
the generalized parametric oscillator Eq.~5! has the form

q̈1v2~ t !q50, ~35!

where

v2~ t !5v2~XZ2Y2!2vZ
d

dt SYZD 1
1

2 S Z̈Z2
3

2

Ż2

Z2D .
~36!

The frequencyv(t) can be encountered as a modified ver-
sion of the longitudinal-optical branch frequencyv,21 due to
the existence of the time-dependent factorsX(t), Y(t), and
Z(t). As can easily be seen for the case of a simple harmonic
oscillator, e.g.,X(t)5Z(t)51, Y(t)50 coincides exactly
with the usual frequencyv, e.g.,

v~ t !5v. ~37!

By the use of the Fro¨hlich continuum model,32 the Hamil-
tonian which represents the electron-phonon interaction in
the static approximation,19 taking into consideration Eq.
~36!, has the form

Hel-ph~ t !5R~ t !F~k,r !Ã~ t !1R* ~ t !F* ~k,r !Ã1~ t !,
~38!

with

R~ t !5
i

uku H e2\v2~ t !

2«0Vv F 1

«~`!
2

1

«~0!G J 1/2, ~39!

F~k,r !5~eik•R211eikr e2eik•rh!, ~40!

Ã~ t !5 l 1~ t !a1 l 2~ t !a
1. ~41!

Also, R, re , andrh denote the positions of the acceptor cen-
ter, the electron, and the hole, respectively.19V is the volume
of the lattice,«~`! and«~0! are the high frequency and static
dielectric constants,e is the charge of electron,uku denotes
the measure of the phonon wave vectork, and «0 is the
electrical permittivity of free space.

With the help of Eq.~41!, Eq. ~38! takes the form

Hel-ph~ t !5@ l 1~ t !R~ t !F~k,r !1 l 2* ~ t !R* ~ t !F* ~k,r !#a

1@ l 1* ~ t !R* ~ t !F* ~k,r !1 l 2~ t !R~ t !F~k,r !#a1.

~42!

B. Huang-Rhys factor

According to Eqs.~3!, ~9!, and ~38!, we can obtain the
following forms for the real functions appearing in Eq.~6!:

m~ t !5Smv

2\ D 1/2$@ l 1~ t !1 l 2~ t !#R~ t !F~k,r !

1@ l 1* ~ t !1 l 2* ~ t !#R* ~ t !F* ~k,r !%, ~43!

n~ t !5
i

~2\mv!1/2
$@ l 1~ t !2 l 2~ t !#R~ t !F~k,r !

1@ l 2* ~ t !2 l 1* ~ t !#R* ~ t !F* ~k,r !%, ~44!

wherem represents the reduced mass of the electron and
hole in the static approximation.19

Now, based on the fact that the evolution operator which
corresponds to the Hamiltonian~42! is the Weyl displace-
ment operator,11 according to Refs. 18 and 19 we can obtain
the Huang-Rhys factorS as follows:

S~ t !5ub~ t !u2, ~45!

whereb(t) is given by~32!, and the functionsh(t) and f (t)
by ~17! and ~18!, respectively.

IV. NONCLASSICAL EFFECTS

A. Squeezing effect

As is well known~see, for instance, Refs. 1, 4, 9, and 11!
relation~29! implies that the wave function represents a dis-
placed squeezed number state. To see its squeezing property
explicitly, we will compute the variance ofq andp. After a
lengthy calculation, we obtain the following results, with re-
spect to the wave functionuC(t)&:

Dq5~n1 1
2 !1/2S \

mv D 1/2u l 1~ t !2 l 2~ t !u ~46!

or

Dq5~n1 1
2 !1/2W~ t !, ~47!

with

W~ t !5S \

mv D 1/2e2b~ t !S 12
4m2v2c2~ t !

\2 D 1/2 ~48!

and

Dp5~n1 1
2 !1/2~\mv!1/2u l 1~ t !1 l 2~ t !u ~49!
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or

Dp5~2n11!1/2\eb~ t !F mv/\

S 11
2mvc~ t !

\ D
22a~ t !e22b~ t !G 1/2H 11F 2a~ t !

2
mv

\

e2b~ t !

S 11
2mvc~ t !

\ D GW2~ t !J 1/2

. ~50!

As can be checked,

DqDp>
\

2
~2n11!. ~51!

Thus, under appropriate values of the time-dependent pa-
rametersX(t), Y(t), andZ(t) of the generalized parametric
oscillator ~5!, squeezing in one of the quadrature variances
can be obtained.

B. Sub-Poissonian statistics

We calculate the following averages in the stateuC(t)&
@Eq. ~24!, with the help of Eq.~27!#:

^n&5^C~ t !ua1auC~ t !&5u l 1~ t !u2n1u l 2~ t !u2~n11!

1uG~ t !u2, ~52!

^n2&5^C~ t !u~a1a!2uC~ t !&

5u l 1~ t !u4n212u l 1~ t !u2u l 2~ t !u2~2n212n11!

12u l 1~ t !u2uG~ t !u2n1u l 2~ t !u4~n11!2

12~n11!uG~ t !u2u l 2~ t !u21~2n11!uL~ t !u2

1uG~ t !u4, ~53!

where

L~ t !5 l 1* ~ t !G~ t !2 l 2* ~ t !G* ~ t !, ~54!

G~ t !5 l 2* ~ t !b~ t !2 l 1~ t !b* ~ t !. ~55!

The function that allows one to verify the occurrence, or
not, of sub-Poissonian statistics of the phonon field~in ac-
cordance with the boson field of light!, is given by Mandel’s
well-knownQ parameter1,31

Q5
^~Dn!2&2^n&

^n&

5
2u l 1~ t !u2u l 2~ t !u2~n21n11!1uL~ t !u2~2n11!

u l 1~ t !u2n1u l 2~ t !u2~n11!1uG~ t !u2
21.

~56!

The distribution of the phonon field is sub-Poissonian~super-
Poissonian or simply Poissonian! if Q,0 ~Q.0 orQ50!.

Of importance is the case of the driven harmonic oscilla-
tor, e.g.,X(t)5Z(t)51, or Y(t)50. As can be seen, Man-
del’sQ parameter implies that

ubu2~2n11!>~, !n1ubu2. ~57!

Actually for ubu250.5 we have a Poissonian distribution,
and any value ofubu2 less or larger than 0.5 will lead to a sub-
or super-Poissonian distribution~although there is no squeez-
ing!. It is also worthwhile to emphasize that these distribu-
tions interpret the sharpness of the experimentally observed
lines of the~PL! spectrum in CdTe,18 and also determine the
number of phonons involved in the recombination process.

The phonon number distribution for a transition between
an initial stateuC(t)& @relation~24!# to a free stateum&, after
a lengthy calculation, takes the form

Pnm~ t !5u^muC~ t !&u25
1

2nn!2mm!

eb~ t !

S 12
4m2v2c2~ t !

\2 D 1/2
3expF2

mv

\

L2~ t !

S 12
4m2v2c2~ t !

\2 D G
3expF1

4
S s2~ t !

r~ t !
1

s*
2
~ t !

r* ~ t !
D G 1

Ar~ t !
uI ~ t !u2,

~58!

whereI (t) is given by the following relation:33

I ~ t !5 (
k150

m

(
k250

n S mk1
D S n

k2
D 2k11k2

3~21!k1S s~ t !

2r~ t !D k1F Smv

\ D 1/2@ f ~ t !12h~ t !c~ t !#2eb~ t !
s~ t !

2r~ t !

S 12
4m2v2c2~ t !

\2 D 1/2 G k2

n! S 12r~ t !

r~ t !2x2~ t !D ~m2n2k11k2!/4

3H 2F 1

r~ t !
@11x2~ t !#21G 1/2J ~m1n2k12k2!/2

Pum1n2k12k2u/2
um2n2k11k2u/2F x~ t !

Ar~ t !
@11x2~ t !2r~ t !#21/2G ~59!

@P(x) denotes the Legendre polynomials# and

8590 54S. BASKOUTAS, A. JANNUSSIS, AND P. YIANOULIS



x~ t !5
1

&

us~ t !u
ub~ t !u

, ~60!

r~ t !5
1

2
2

\

mv
a~ t !1

e2b~ t !

2S 11
2mvc~ t !

\ D , ~61!

s~ t !5
&eb~ t !b~ t !

11
2mvc~ t !

\

, ~62!

L~ t !52h~ t !c~ t !1 f ~ t !. ~63!

In addition, the phonon number distribution for the usual squeezed states~e.g.n50! has the form34

Pn,0~ t !5
1

2nn!

eb~ t !

S 12
4m2v2c2~ t !

\2 D 1/2 expF2
mv

\

L2~ t !

S 12
4m2v2c2~ t !

\2 D GexpF14 S s2~ t !

r~ t !
1

s*
2
~ t !

r* ~ t !
D G 1

ur~ t !u F12
1

r~ t !
Gn/2

3F12
1

r* ~ t !
Gn/2HnF s~ t !

2r~ t !S 12
1

r~ t ! D
1/2GHn* F s* ~ t !

2r* ~ t !S 12
1

r* ~ t ! D
1/2G . ~64!

In the case where we haveX(t)5Z(t)51, Y(t)50 ~e.g.,
the simple driven harmonic oscillator!, the distribution takes,
as expected, the form of a Poissonian,34

Pn,0~ t !5
1

n!
e2S~ t !Sn~ t !, ~65!

with

S~ t !5
us~ t !u2

2
5ub~ t !u2, ~66!

and Mandel’sQ parameter is equal to zero, as can easily be
seen from relations~56! and ~57!.

V. CONCLUSION

In the present work we have studied the possibility of
generating displaced squeezed number states of the phonon
field, using~in the harmonic approximation! a driven time-
dependent Hamiltonian with anSU(1,1)%h(4) algebraic
structure. Using the Fro¨hlich continuum model of polarons,
we have attributed the driving term of the above Hamiltonian
to the electron-phonon interaction.

Assuming that the phonon field is initially prepared in the
nth number state, we have obtained the exact form of the
evolved wave function, using an algebraic operator tech-
nique that has been developed in our previous papers. As it
can be proved, this wave function is a displaced squeezed
number state, for appropriate values of the time-dependent
parameters appearing in theSU~1,1! part of the total Hamil-
tonian.

We are dealing with a radiative recombination process
starting from an initial state where the hole is bound to an

acceptor impurity, and the electron is either a free conduc-
tion electron or a donor-bound electron. In this regime we
have calculated the exact phonon number distribution, for
transitions between an initial state described by a displaced
squeezed number state, to a state where the electron-hole
recombination has taken place, e.g., a free LO-phonon field
in a stateum&. Furthermore, based on the fact that the evo-
lution operator corresponding to the electron-phonon interac-
tion Hamiltonian~Frohlich-type interaction! in the static ap-
proximation is the Weyl displacement operator, we have
obtained the form of the Huang-Rhys factor~for one
electron-hole case!, which is time-dependentS(t).

In order to determine the shape of the PL spectrum lines,
we calculated Mandel’sQ parameter, finding the necessary
condition for observing sub-Poissonian, super-Poissonian, or
simply Poissonian phonon-number distributions. Specifi-
cally, studying the case of a simple driven time-independent
harmonic oscillator~although there is no squeezing!, the con-
dition Q50, which insures Poissonian distribution, imposes
the value 0.5 on the Huang-Rhys factorS. Any deviation
from this value leads to the appearance of phonon-number-
squeezed~S,0.5! or -enhanced~S.0.5! distributions. This
result determines the form of the observed PL spectrum18 for
the case of CdTe, as regards the sharpness of the PL lines
and the corresponding number of phonons involved in the
recombination process. It is therefore evident that our results
are in agreement with the experimental results for CdTe.
Actually the authors of Ref. 18, studying the band at 1.54 eV
which is not present in the spectrum of the undoped sample,
and the usual band at 1.45 eV which is present in doped and
undoped CdTe, deduced, by an overall fit of the measure-
ments using a Gauss function, the Huang-Rhys factor
S50.3060.02 for the band at 1.54 eV, andS51.360.1 for
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the broadband at 1.45 eV~see Fig. 4 in Ref. 18!.
In our analysis we predict the form of the bands, and

provide insight for the interpretation of the experimental data
in terms of sub-Poissonian and super-Poissonian phonon dis-
tributions. Giving the phonon number distribution for a ra-
diative recombination process, between an initial state de-
scribed by a simple squeezed state to a state where electron-
hole recombination has taken place, we point out that in the
case of a time-independent oscillator the distribution is al-
ways Poissonian for any value of the Huang-Rhys factorS.

As is easily understood from the above analysis, the ini-

tiation of time in the Hamiltonian describing the ion vibra-
tions leads to the generation of phonon-displaced squeezed
number states with limited spreading, for appropriate values
of the parametersX(t), Y(t), and Z(t) and to a time-
dependent Huang-Rhys factorS. The time dependence of
bothH ion(t) andS(t) can cause the existence of unexpected
values~compared to the time-independent case! for Mandel’s
Q parameter, affecting the zero-phonon, one-phonon, and
multiphonon processes, by means of a possible change in the
distribution shape, as is expected for the time-independent
case.
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