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Exact boundary critical exponents and tunneling effects in integrable models for quantum wires
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Using the principles of the conformal quantum-field theory and the finite size corrections of the energy of the
ground and various excited states, we calculate the boundary critical exponents of single- and multicomponent
Bethe-Ansatz soluble models. The boundary critical exponents are given in terms of the dressed-charge matrix
which has the same form as that of systems with periodic boundary conditions and is uniquely determined by
the Bethe-ansatz equations. A Luttinger liquid with open boundaries is the effective low-energy theory of these
models. As applications of the theory, the Friedel oscillations due to the boundaries and the tunneling conduc-
tance through a barrier are also calculated. The tunneling conductance is determined by a nonuniversal bound-
ary exponent which governs its power law dependence on temperature and frequency.
[S0163-18296)09635-X

[. INTRODUCTION calculate the critical exponents of integrable 1D quantum
models because their energy and momentum spectra are
Phase transitions take place in a different way on surfacelsnown exactly, and this strategy has been applied success-
and in the bulk of a sampfeThe exponents describing criti- fully for bulk properties’1°
cal phenomena at surfaces differ from those of the bulk, and An entirely parallel and equivalent development has taken
one may observe phenomena due to anisotropy and th@ace in the theory of correlated fermions in 1D, using
breaking of translational invariance caused by the boundanhosonization techniques and running under the name of
like oscillations in correlation functions which, in the bulk, “Luttinger liquid.” *'2 The main focus here was on non-
are monotonous, coordinate dependences, and in particulkermi liquid properties of strongly correlated fermions, an
Friedel oscillations, in local quantities, etc. There are manyexciting topic of current research. Fermi liquid theory fails in
approximate methods for calculating the critical properties ofLD, and the Luttinger liquid provides the universal low-
bulk and surface phenomena. energy theory for gapless 1D quantum systems. Its salient
Systems at a bulk critical point are not only scale invari-properties ardi) absence of fermionic quasiparticle excita-
ant but also conformally invariant, a consequence of thdions,(ii) anomalous dimensions of various operators leading
combined rotational and scale invariarfcen two space di- to nonuniversal power-law decay of correlation functions,
mensions or one space and one time dimenfdious includ-  and(iii ) charge-spin separation. In terms of critical phenom-
ing one-dimensionallD) quantum systermjsthe constraints ena, the system is at B=0 quantum critical point, is con-
imposed by conformal invariance are much stronger than ifiormally invariant, and the central charge of the associated
higher dimensions because the conformal group is infinitd/irasoro algebrés) is unity. The exponents of the correlation
dimensional, and these constraints strongly simplify the calfunctions (critical exponents are related to each other by
culation of correlation functions. The conformal field theory scaling relations and depend on a single renormalized cou-
is parametrized by a unique constant—the conformapling constanK per degree of freedom, playing the role of
anomaly or the central chargeof the corresponding Vira- the Landau parameters familiar from Fermi liquid theory.
soro algebrd. All critical exponents of theories witle<<1 For the Luttinger liquid, there are constitutive relations be-
are universalindependent of the interactipand can be cal- tween three velocities characterizing the low-energy sector
culated exactly. However, forc=1, the conformal dimen- of the spectrum of the Hamiltonian which determine the
sions continuously depend on the coupling of the fields andenormalized coupling constant and thus the critical expo-
there is no general theory to deduce the critical exponentsents. For integrable models, the velocities and coupling
exactly. Conformal field theory only predicts that the centralconstants have been determined from Bethe-arieatzthe)
charge and the conformal dimensions can be derived frorsolutions'® In some cases, conformal invariance has been
the finite size corrections to the energy and momentunused explicitly to determine the critical exponettsFor
spectrd 8 For c=1, it does not determine their actual nu- nonintegrable models, they can be obtained reliably by exact
merical values. Still, this constitutes a powerful method todiagonalization of the Hamiltonian.
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Recently, the problems of the one-dimensional system$where i is the wave functionare no longer space transla-
with open boundaries have drawn much attention. There argonal invariant but the time translational invariance is pre-
several issues of both experimental and theoretical relevanceerved. A two-point correlation function of(arimary) field
(i) As in higher-dimensional systems, the boundary criticalgt criticality then takes the general fottn
exponents are expected to be different from the bulk énes.
(i) Experimentally studied systems are finite, and the
progress in microfabrication of semiconductor structures has

provided us with quantum wires so small that the boundar}Equation(Z) applies to a 1D quantum system,represents

fnzeccgsbfoﬂ? St;erﬁogs ;?Ie&’iﬁi_'(l'g) rr?e(et;?sbrr:] alﬂsri?ielg ct:g?] b(‘g}he imaginary time, anel, , the spatial coordinatest is the
99 b q » IMp onformal dimension of the primary field in the buikjs the

relevant perturbations and effectively cut the systems int i velocity. Wh q the bound q
isolated strands of finite length. Specifically, a renormaliza- ermi velocity. E€rx, andx, are near the bounadary, an

tion group analysis has shown that, for effectively repulsive” >+ Gb Must behave as

interactions, the scattering potential due to an isolated impu-

rity scales to infinitity in the low-energy regime and thus the

problem is equivalent to an open boundary probtémn Go(7.X1,X2) ~ 25 - 3
attempt to test experimentally the predictions of this theory

has been published recentiySuch effects have also been 2x, is the boundary critical exponent. Equatit®) directly
invoked in the interpretation of electron spin diffust®and implies that lin_..®(y)~y~*. On the other hand, Cardy
photoemissiot?**experiments on quasi-1D organic conduc- aso showed that tha-point correlation function in a half
tors. .(iv) Fir_1a||y, some nu_merical methods such as theplane(with one open boundary at=0) is identical to the
denS|ty-matr|x_ renormallz_atlon gro&ﬂ),rely_on t_he_use of 2n-point correlation function in the whole plane, provided
open boundaries and their results could, in principle, be alfE)nIy the z-dependent part is taken into account in the latter.

fected by the chain ends. . . : !
Both conformal field theoR? and, very recently, the In this way, the two-point correlation function can also be
represented as

theory of Luttinger liquids® have been extended to systems
with boundaries. What is missing to date, however, is an _ — — _
exact derivation of the boundary critical exponents from the Gb(Z1.22,21,22) =[(21=21)(22~ 2) (21~ 25) (21~ )
Bethe-ansatz solution of integrable quantum systems bridg- — —2d
ing the gap between microscopiaften lattice¢ models con- X(21=2)(21=22) ] TFp(y), “)
taining both high- and low-energy physics, and the more hereFy(y) is an unknown scaling function. Here, we have
effective theories for the low-energy properties. This gap had/n! blY) | unxnown Ing function. » WE nav
been bridged successfully for the periodic systéfn&*It is Switched to a_notation in terms of complex variables
the purpose of this paper to present such an exact derivatich ~V7it1Xi, z=v7—ix;_and y is given by Y=§Zal
of boundary critical exponents. Moreover, in the course of ~22)(Z1~22)/(z1=21)(22—2;). For y—o=, Fyp(y)—y™*
the study, we shall see that the same strategy can be appli€irect comparison to Eq2) gives
to determine the exponents of nonintegrable systems by ex-
act numerical diagonalization provided they satisfy the basic Xp=4d+ a. (5)
assumption of conformal invariance.

In this paper, we apply the method of the conformal fieldIn the following text, we shall use E@2) and Eq.(4) alter-
theory to the Bethe-ansatz soluble models with open boundhatively.
aries. The layout of the present paper is the following. In the The conformal dimensions or critical exponents can be
following section we briefly summarize some important re-calculated from the finite size corrections of the energy spec-
sults of boundary conformal field theory and of Luttinger tra. To see this, consider the transformation
liquid theory on bounded systems, in order to make the pre-
sentation self-contained and provide the basic tools. These L L
are essentially the finite size corrections of the energy spec- (=—Inz, (=—Inz (6)
trum. In Sec. lll we give a detailed calculation of the bound- 77 ™
ary critical exponents of two paradigmatic single-component
Bethe-ansatz soluble models-potential Bose gas and the @Pplied to the upper half-plane=0 only. Such a conformal
antiferromagnetic Heisenberg chpiSection IV digresses to  transformation maps the system from the semi-infinite plane
two important physical applications: the Friedel oscillationonto a strip of widthL with open boundary conditiorfs.
of the density distribution around the boundaisnpurity) From the general transformation properties of the correlation
and the tunneling conductance through a barrier in a quarfunctions of a(primary) conformal field¢(z,z)
tum wire. In Sec. V, we generalize the result to the multi-
component case with the Hubbard model as an example. The o A ag_ A oL A &g_ A
summary in Sec. VI attempts to provide a broader perspec- <¢(21121)¢(22,Zz)>:( 1) (_1) (_2> (_2>

tive on our results. 9z1) \gz,) \9Z2) \ oz,

Gp(7,X1,X2) = (X1Xp) “9D{[ 0272+ X5+ X5]/X1X2}.  (2)

Il. CONFORMAL FIELD THEORY AND LUTTINGER X{h(Lr,L1) d(L2,00)), (7)
LIQUIDS IN BOUNDED SYSTEMS o o

whereA+A=d and ¢ andA — A=s give, respectively, the

conformal dimension and spin of the field, one deduces for

Y(x=0)=¢(x=L)=0 (1)  the correlation function on the strip

Systems with open boundaries
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7 m(z3—21) . m(Z,—2p) 2d
(H(21,21) P(22,2,)) aTn oL T
Z,,Z Z5,25)) = e — —
v 22t Sinf‘W(Zl_ZZ)"inr'W(Zl_ZZ)“in Tr(zl_ZZ)"in (2, 2p)
e TH e TR T
Sinr‘ﬂ'(zl_z—l)‘_. (23~ 2;)
2L T 2L
XFp (8

(21— 25) (21— 2)

sinh oL

Sinn

2L

There is also a spectral representation of the correlation fundghus the critical exponents. These parameters can be deter-

tion on the strip

<¢<z1,z_1>¢(z2,z_z)>L=; (6(x1,0)[n)(n| (X2,0)

X exf — (m,— ) (EP—ED)],
9

whereEg'L is the energy of the ground state alEEjL are the
energies of the excited statés) are the exact eigenstates of

mined from the energies of the low-lying excited states of
the Hamiltoniant>

This picture has been extended recently to systems with
open boundarie¥ Due to the boundary conditiond), the
right- and left-moving fermions commonly used in the Lut-
tinger model are not independent, and a single species mov-
ing, say, to the right¥ , ((x)]is sufficient, and it is periodic
on a length 2. The Fermi surface reduces to a single point
+kg but the wavevectork=m=/L>0 are quantized with
twice the density of the periodic system. We then can rewrite

the Hamiltonian under consideration which form a completethe fermionic Hamiltonian

set. SupposEﬁ (the energy of the first excited state with the
form factor({¢|1)#0) takes the forml(— ),

]

o

1_pE0_
EL EL L

Xp,+0 (10)

From the asymptotic form of the correlation functions Eq.

(3) and comparing Eq€8) and(9) we get Eq.(5). Thus the

Ho= —ivFES f_Lde\IfLS(x)ax\If+,s(x) (12)

in an equivalent form involving the bosonic density fluctua-
tions (particle-hole excitationsp . (x) and “charge excita-
tions” ANg corresponding to the addition of particles of spin

finite size asymptotics of the low-lying levels determines thes to the reference Fermi sdae., Akgs=ANg7/L)

boundary critical exponents.

In general, the correlation function can oscillate, so that
its asymptotics is not conformally invariant. In that case,

however, one can decompose the figif,z) into a sum of
conformal fieldse¢,(z,z) which then determine the power-
law asymptotics. Because of the reflection symmetry of the
open boundary systems, the figbdnust have definite parity.
We can expand odd and even parity fields as

¢<z,z_>=; bn(z,Z)sin(nkex),
(11)

¢><z,z_>=; én(2,Z)cog nkex)

respectivelyn is an odd(ever) integer for oddeven parity
fields.

For systems with periodic boundary conditions, the Lut-

tinger liquid phenomenolody?provides a framework com-

L TV
Ho=mvr 2 J dx:p s(X)p o)+ 52 (AN
S —L S

(13

The Fourier transfornp_. ¢(p) of the density operators do
not contain thgg=0 component which is represented explic-
ity by ANg=3i(c] ¢ sk (Ch skCr sid0) Where ()o
denotes the(infinite) expectation value in the reference
Fermi sea given b)kg Unlike the periodic case, “current
excitations” describing the difference of right- and left-
moving fermion numbers, cannot be defined in the bounded
system. The Hamiltonian including forward scattering can
then be diagonalized by a Bogoliubov tranformation as
in the periodic case, defining the renormalized velocities

of the bosonic charge and spin density fluctuations
p+(P)Lo(PI=[p+ 1(P)£p+, (P)]/V2, and coupling
constantK,. The renormalized velocity of the charge exci-
tations AN,,y)=AN;=AN, is given by v,/K,. The

pletely equivalent to conformal field theory but closer to thebosonization of this model is completed by an explicit rep-
language of conventional solid state physics. It is based oresentation of the Fermi operatdf . ((x) in terms of the
the exactly solvable Luttinger model, and all physical prop-bosonsp . ¢(p) (Ref. 15 which allows to calculate all cor-
erties can be described in terms of two parameters per degreelation functions of this model in terms of the, andK,

of freedom (=p,o for charge and spin a renormalized
sound velocityv, and an effective coupling constaht,

and thus defines its critical exponents.
v, andK, can now be found along the same lines as in

which determines the decay of all correlation functions andhe periodic system: (i) v, can be computed directly from
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the spectrum of low-lying excitationgji) to getK,, one BG Y
calculates the compressibility () = —2arctan;, (18
1 1°Eg(n) v, _ ,
—= e =, 14) _[sinh(\+2i7)
L dn® 2K ( XXZ(\)= — S0
K o D7 AN) 7+iln SN =21 7))

The first equality gives the definition as the second derivative o )

of the ground state energy with respect to particle den:sitghe numberd; are positive integers, and the parity effects
n=N/L and can be computed in the integrable model, andNown from periodic systems are absent in models with open
the second equality gives the Luttinger liquid expressiorPoundaries. The bare energy of each particle is

which can be solved foK,. K, is required to be unity by
spin-rotation invariance, but can be calculated in the same
way in more general cases from the susceptibility. Our de- XX7 ) . )
termination of boundary critical exponents below can also be €0 -(\)=h—2sinff27/cosi\ +i7)coshx —i 7).

€5 (N\)=\2=h,

viewed as exploring this strategy. (19
The phase ¢(A\)=0 for the Bose gas and
Il. BETHE-ANSATZ SOLUBLE MODELS @(Nj)=Po(\j) + P (2\;) for the XXZ chain. The eigenvalue
We now compute the exact boundary critical exponenté’f the Hamiltonian is equal to the sum of the bare energies of

for Bethe-ansatz soluble models with open boundaries. WEhe particles

first consider single-component models before turning to N
multicomponent systems. In both cases, the critical expo- E = A 20
nents can be calculated explicitly. Two typical single- - ,2’1 €o(h)- 20

component models are the one dimensiofiglotential Bose ) ) )

gas model and the Heisenberg antiferromagnetic chain. Thefrarefully checking the wave functions with the boundary

Hamiltonians are conditions Eq(1) we find that{ =} correspond to the same
state. This is not surprising because of the reflection symme-

L N ot ‘ try of the system, and corresponds to standing-wave-like so-
Hge= fo (oW 1o ¥ +c¥ W WY —h¥ 'W)dx, lutions. The Bethe-ansatz equatiti¥) thus only allows so-
lutions with \j# =\, for j#1 so that all\j=0. The system
c>0, h>0 (15  therefore has only one Fermi poikt . This is very different
from the case of the cyclic systems. A similar feature, how-
L-1 1 ever, occurs in Luttinger liquids in bounded syste(B&c.
Hyxz= le (a}‘o}‘+l+ alal + COSZntZUJ-ZJrl—Ea'jZ , II). The appearence of a single Fermi point identifies the

system as chiral, and 1D quantum systems with boundaries
therefore appear to be special cases of “chiral Luttinger lig-
0<2zy<m, 0<h<4(1-cos2y), (180 ids,” a notion that has appeared previously in the superfi-

whereh is the chemical potential for the Bose gas model ancFially quite unrelated area of edge states in the fractional

the magnetic field for the Heisenberg chain. The anisotropfiuantum Hall effect’ _

of the exchange integrals for the Heisenberg model is With open boundaries, the total momentum is no longer a

J,=cos(2y); critical behavior is obtained only for easy- 900d quantum number. However, the quantity

plane-type anisotropyJ,|<1, and our definition of], re-

stricts us to this rangey plays the role of a coupling con- p— ZE I 21)

stant, as ix for the Bose gasa™¥? are the Pauli matrices. L)

The open boundary conditioig$), for the Bose gas, translate

into ¥(0)=¥(L)=0 in terms of the boson operators is conserved. This follows from an argument of adiabatic

W (x), while they are contained in our representati@f) of ~ continuity similar to one originally given by Yang and

the Heisenberg chain because the sites 1 Nwmhly couple ~ Yang? We shall callP the “momentum” of the models. In

to a single neighbor. the ground state,; takes consecutive integer values from 1
These models are solved by means of the Bethe-afisatzto N (I;=0 is not allowed. We can then define a dressed

The N-particle wave function is parametrized bynumbers ~momentum

\; which satisfy the equations

N

1 N
Pu(Nj)=Po(\j)+ Z; [PONj=A)+D(Nj+N) ]+ £

L
2Lpo(>\j)=2w|j—2¢(>\j)—§j [DON—A)+ PN+,
an :WT"'. (22
wherep, is the bare momentum arnl is the bare scattering
phase: The Fermi momentunkz=7N/L=mn has the same value
) as in the periodic system.
BG() )=\ XXZ(\) = iln coshiA —i7) In the thermodynamic limi. —«, N—o keepingn fi-
Po » Po cosiiA+in))’ nite, the ground state solves the following integral equations:
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pH(N) A We consider first the particle-hole excitations. To con-
pp(N) = +J Kp(N, 1) pp(p)dp, (23)  struct the lowest excitation state, we must pyt=1y+1 in
0 (17) keeping the othel; unchanged. The change of the mo-
A mentum is thus
eb(k)=eo(>\)+fo Kp(N, u) €p(p)dp, (24) -
AP=—, (29
1 4 -
Kp(N )= 7 X[(D()\—/L)'F@()\‘FM)]. and the excitation energy is
The cutoff parameterA is defined by the requirement _mxﬂ, l_
e . . . AE, =—, x=1 (30
€,(A)=0; pp(N\) is the density ofx per unit length. Equa- : L

tion (22) becomes To obtain the second kind of excitatiof@harge excitations

1(A we define the dressed-charge function as
Po(N)=Po(N) + Efo [PN—p)+ PN+ ) ]pp(p)du. R

(25) Zb(k)=1+J0 Kp(N, ) Zp(p)dp. (3D

p,(\)=mpp(\) follows from a combination of(23) and ) _ .
(25), and p,(A)=kg ensures that the Fermi surface is theObV'Ousw'Zb()‘)_Z()‘) for A>0. This is a consequence of

same as in the finite system with the same electron densit)ﬂ.i) t_he _symmetr;Z(A) :_Z(_)‘) of the dre_ssed-(_:harge of the
We now compare equivalent quantities of the boundecPe”Od'C systems, andi) the fact that, using this symmetry,

and periodic systems and use the same symbols but withoffi€ €quation satisfied ¥(1) in the periodic system can be
the subscripb for the latter. Directly comparing Eqe23—  tansformed into Eq31) for the open system far>0. The

(25) with their periodic equivalenfswe find change of the free energy lyN additional particles 15

_ N h (AN)? 6h
pu(N)=2p(N), = — | —AN—— = -
AEp | =L|fo| n+ 3 ANL fo(n) 5L an’
ep(N) = €(N), (26) (32
wheref is the free energy density of the ground state. This
Po(M)=p(M), gives Jy censly oTihe 8
if n=n, (thusAp=A). There is no restriction on sigkj for ) )
the periodic systems but>0 for the bounded ones. In the A :”U(AN) k= (AN) 33)
vicinity of the Fermi surface, the excitation energy is BLT2LZ2(A) TP 2Z%(A)°
e(M)=v|pp(N) —kel, (277  For the general case, suppose a conformal fieldduce the
. o momentum shift relative to the ground state7a&l/L and
where the Fermi velocity is given by the change of the particle numbAN. The energy change
) , relative to the ground state is then
€'(A)  ep(A) 28) ,
V= =
p’(A)  mpp(A) G (E
AE, | 1 AI+222(A) +0 ik (39

It takes the same value of that of the system with the periodic
boundary condition as it must be for the Fermi velocity canThe boundary critical exponent takes the form
be determined by the leading term of the free energy which (AN)?
zgﬁglr?ﬂgo"trgi(tanpend on the boundary conditions in the thermo 2%5(AlLAN) = 2A1 + e (35

Unlike the cyclic systems, the systems with open bound- .
aries have only two kinds of elementary excitatioy:  WhereAl andAN are non-negative Integers. The above re-
Particle-hole(soundlike excitations at the Fermi poiritc.  1ation was suggested by Alcaraz al™ for integrable spin
Their finite size corrections give the boundary critical expo-chains from numerical simulations. o
nent of the current-current correlation function for the Bose FOf €xample, we consider the He|ser;berg chain in a zero
gas model and or the boundary critical exponent of §pe Magnetic field. In this casé A =o and Z*() = /2. For
component of the spin correlation function for the Heisen-N1, N2 neéar the boundary arte- <, the correlation functions
berg spin chain(ii) The change of the free energy induced {@ke the following asymptotic forms:
by the variation of the particle numbéermed “charge ex- 1
citations” above. Its finite size correction gives the bound- (a2 (1Yol (0))~ =,

" . . . n, n, 7

ary critical exponent of the single particle correlation func-
tion for the Bose gas model and the critical exponent of the I

transverse spin-spin correlation function of the Heisenberg Al=1, AN=0, 7=2x,=2; (36)
chain. These features are reproduced precisely in the Lut-

tinger liquid theory of systems with open boundary condi- -

iong. YOS P Y (00, (D07, (0)~ 7
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47 Notice that above we have used the bulk conformal dimen-
Al=0, AN=1, 7}L=2X$:?- (37 sions dj=m/4y for 4np>m, dj=1 for 4p<m and
d, =n/m. When 2p=, the coupling is isotropic and
On the other hand, far=0, n;=1 andn,=n>1, from Eq. n=n.=2, 6= 6, =2 as they should be for the spin
(2) we have SU(2) symmetry. The boundary critical exponents, mea-

n_1 suring the decay of correlations with time, are two times
) larger than those of the bulk. On the other hand, there are
n new exponent®) , for the decay of spatial correlations. In
periodic systems, the two sets are identical as a consequence
of conformal invariance. In bounded systems, the breaking

of translational invariance along by the boundary condi-

tions while maintaining it along, generates a new set of

T critical exponents.

=2 for 29<5 We now consider the finite size correction to the ground
state energy

(01(0)03(0))~

v

5 (39)

19—1+7T for 27>
= 47] or 2n@

and
- 0o+ (0 (-t N
<0']_( )(Tn( )>~ no. ) Eg,L:El e_0()\[]“_]) (40)
=
_37 39
0L_7' (39 Using the Euler-Maclaurin formula we ha&e

£ _Lfn et f 1 deg(X) 1 Jdey(X) 1
b,L = Ofo(h[x]) Sy v PRy X:O+0 T
m | e(A)  €)(0) } (1)
=Lfo(n)+f,— — - ol —|. 41
oo™ e 7pu(A) mnt0)] O @b
|
From Egs.(19) and (24) we know thate/(0)=0. Thus we N o N marX
have ()= 2 [WhR0[P=+ 2 sif——
m=1 Lm:]_ L
T sin(2kex
Eg,L_LfO(n)Nfb_ﬁ- (42) ~n—% for x<L. (44)

Here fy, is the boundary energy which was extensivelyFor the interacting systems, we expect the density distribu-
studied>?°~31Equation(42) agrees with the predictions of tjon to have a similar form
conformal field theory,and determines the central charge as

c=1. ASIN(2Kex— ¢)
(n(X))p=~n— X—7F¢ O<x<L, (49
IV. FRIEDEL OSCILLATION AND TUNNELING .
CONDUCTANCE where A and ¢> are two unknown constants and is the
_ o exponent dominating the decay.
A. Friedel oscillation For definiteness, we consider the following spinless ferm-
Since the systems under consideration are obviously nd®n model
translationally invariant, the density distribution is no longer N, -1
homogeneous. Therfore, the ground state will exhibit Friedel +
It : . =— C,i1+H.Cc)— ing
oscillations. For a 1D free fermion system of lengtiwith H =4 121 {(CrCrjratHC)=UN Ny )
open boundariegl), the single-particle wave functions take N
the form .
—h Nejs (46)
r=+ j=1
L 2  mmx
W)=\ sin—/, (43} wherer==+ labels two different chains which in the next

subsection, we will couple by a tunneling matrix element.

with m positive integers. For the ground state, the densityHere, we just consider one of the chaifﬁ;j (C,,;) are the
distribution in the box can be easily calculated as creation (annihilation operators of the spinless fermions;
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n,,jchle,,j andh here denotes the chemical potential. The , . P
Hamiltonian is equivalent to XX Z chain(16) via a Jordan- ([3(1), )D”rll (Cra(Cy o(t"))~(t—t") =7,
Wigner transformation witty = cos(2y). The dressed-charge - (53)
of this model is given by Eq31).

As pointed out in Ref. 22, thae-point correlation func- Where », is the boundary critical exponent of the single
tions of the open boundary systems are directly related to thgarticle correlation function. Substituting the above relation
2n-point correlation functions of the periodic boundary sys-into (52) we readily obtain, using33) and(37),
tems. Thus

Glw)~w’, 6=2(n —-1)= 2. (54

(n(X))p=(n(2)n(2)). 47 Z%(A)
The right hand side of Eq47) is to be understood in the This equation describes tunneling through an impurity be-
sense that only the-dependent part of the density-density tween two quantum wires. To compare again to Fabrizio and
correlation function{n(z;,z;)n(z,,2,)) is taken into ac- Gogolin, we also can consider tunneling between a normal
count, and that we have to set=z,. In addition, the oscil- metal and a quantum wire. The current-current correlation
lating term only originates from the current-current correla-function and the tunneling expone#itthen are given by
tion (n(z;,21)N(2,,2,)); (in another languag¥, this object , o
is designed as thekg-charge density wave correlation func- ([I(V), "))~ (t=t") "™ (55
tion) which has been calculated in Ref. 9 as and

Bai2ke(x1=%2) 4 Bai2kr(Xz—x1) 1
— , =79 —1=557—-—~—1,
(Zl_Zz)zz(A)(Zl_Zz)Zz(A) o= Z%(A)

(48) respectively. The spinless Luttinger ligifd has
whereB is a constant. Choosing tizedependent part in Eq.  #=K~1—1 which is again consistent with the identification

(N(z1,2))N(22,25) )3~ — (56)

(48) and puttingz,=z,, we obtain Eq(45) with K=Z?(A) suggested above via the Friedel oscillation expo-
nent. At finite but very low temperatur@s~0, the conduc-
y=Z%A). (490  tance behaves as
This result agrees with Ref. 15 where the Friedel oscillation G(T)=G,T, (57)

for the Luttinger model with open boundaries was calculated,

and determines the exact value pffrom the Bethe-ansatz WhereG is a constant.

equations through the dressed-charge which can be calcu- At U=0, H describes free fermions with a barrier. In this

lated easily. Specifically, repeating the Luttinger liquid case,n, =1 and G(T) is independent of temperature and

analysig® for spinless fermions, one finds=K thereby sug- finite. The system is marginal. Fd&#>0, 7, >1 and the

gesting the identificatiolK =Z2(A) between the Luttinger conductance tends to zeroBs-0. The fermion-barrier scat-

stiffness constanK and the Bethe-ansatz dressed-chargdering is relevant and the “Coulomb blockade” behavior

Z%(A). arises — a result consistent with the observations of Kane

and Fishett® For U<0, 7, <1 and the tunneling conduc-

B. Tunneling conductance tance diverges a§—0. This is a consequence of the diver-

N ) gent superconducting fluctuations found in that situation.
The boundary critical exponents are very important to

study the tunneling effect in quantum wires. A strong barrier
cuts the chain into two half-chains which, in first order, be-
have as two independent subsystems with an open boundary. Recently much attention has been focused on the open

V. MULTICOMPONENT INTEGRABLE MODELS

We add a tunneling term to the Hamiltoni&6) boundary problem for integrable models with multi-
component field$?=3* Typical models are the one-
T=-V[C! ,C_,+C! C, ], V<I1. (500  dimensional 5-potential Fermi gas modét, the Hubbard

chain®® and the supersymmetric—J model with open
boundaries? The above discussion can also be general-
ized to these models. In these cases, the reflection Bethe-

The tunneling current is thus

- i t T

J=-iv[C, ,C_,—CL ,C, 4] (5D ansatz equations take the general form
From linear response theory we know that the tunneling con- M Ng

PN
ductance up to ordev< is given by 2Lpg()\ja):2mja_ﬁzl ;1, [(I)aﬁ()\ja_)\lﬁ)
G(w)=if dte“"tf dt’e(t—t’)J' dt"o(t—t") +<I>aﬁ()\j”‘+)\(3)], (58
a__y B :
X([I(1),I(t")]). (52) where®,z(N'—\[) are the bare scattering phases and odd

functions of their argumentdyl is the number of the com-
Since the averagg is taken aflf =0, the current correlation ponents, and the prime after the sums means that when
function may be separated into a=f, j#|. The eigenvalue of the Hamiltonian is
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(59

M N,
=2 2 ().
a=1j=1

Also, >0 is supposed. In complete analogy to E@S)-
(25) and (31), dressed quantities are defined as

< @ X
pE(N) = E "Kupg (N NP pE(NFY NP,
(60)
ary a ary a 1 . A'B a B
PEN=PENT) +3 2 fo [®ap(A*=\F)
+®@ 5N+ M) ]pf(NPF)ANA, (61)

Kag(A*NP) el (NP)dNP,
(62)

Mora
en(NY)= 68‘()\"‘)+BZ1 fo g

SJAK (N NP)dN?,
(63

where K, g(N*\P)=(12m)[ @ ,5' (N*—NP) + D 5" (A
+\P)] is an even function. The relations

Z0p(NP)= 5,5+ E f

d
aPEN) = mpE (N =2mp, (), (64)
N =€,(\9), (65)
Z0 5(NP)=Z,5(\P), (66)

for A*>0, compare bounded and periodic systems at equ
density and generaliz&6). The finite size correction to the

energies of the excited states is then

1
E[(z—lAN)a]Zer wlto

o M
0 _
Eo —EDL=T 2 Va
a=1

1
il
(67)

where

ZCK,B:ZE!B(A,B)’ AN:{ANl,

ANy} are
M-dimensional vectors with integer components. The num-
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o L& (A
e, == [ o ogona

e S ot ! (68)

b 24 =, Vo,TO0 R
The Fermi velocitiew , are arbitrary in principle and quan-
titatively depend on details of the interactions in practice. As
a consequence, the system is described by a sulwh obn-
formal algebras, each with a central charge 1. Their contri-
butions to the boundary critical exponents

2x¢=[(Z7AN) )%+ 24l ,, (69)

are additive, and the total boundary critical exponent is thus

M M

2xp=2 >, XF=22, Al,+(Z7'AN)T(Z"1AN).
a=1 a=1

(70

The same structure is found in periodic systems.

As an example, we give some leading boundary critical
exponents of the Hubbard chain with open boundaries. The
bulk critical exponents of this model were determined by
Frahm and Korepin? The Hamiltonian reads

N—1 N
H=-— E z+ Ci-l-(rCi+l(r+4Ui:El niTnil

i=1 o==*

N hN
_Mz 2 ”m_zz (Njp—n;)),
=1 o== =1

where C;,, (Cm) is the electron annihilatiofficreation op-
erator;u denotes the chemical potential amds the external
magnetic field. The wave functions are parametrized by two
ets of parametekk} and{\}, the rapidities of the charges
nd spins, respectively. The following set of integral equa-
tions determine their baree{®) and dressede(®) energies
and distribution functionsgg°)

(71)

h

h
Eg(k)=—2C0$(+,LL—E, ES()\)ZE

eg(k)=eg(k)+JOASKl(sink,)\)eg()\)d)\,

ber AN, gives the change dfl,, the number of pseudopar-
ticles of type @ (pseudoparticles refers to the particlelike
excitations in the Bethe-ansatz and not necessarily to physi-
cal particle$, in the excited state with respect to the ground
state(i.e., the charge excitationsThe non-negative integers

. describe pseudoparticle pseudohole excitatiomsre
preusely, a change @ Z1pp(N]") in units of (7/L)] in the
vicinity kg [Fermi momentak‘“ of the pseudoparticles are

eﬁ()\):eg()\)+foAccoyKl()\,sim)eg(k)dk
AS
- fo Ko(h, ) ef( ), (72)

1 As
pg(k)=;+coﬂ<f K1(sink,\)pp(N)d\,
0

defined akf=pg(A,)=mn,]. The Fermi velocity is
e (M) . Ne o As .
Ve 2mp (Al) pp(N)= . K1(X,sink) pp(k)dk— . Kao(N, ) pp(p)du
as usual. (73

The finite size correction of the ground state energy isThe dressed-charge1), in the multicomponent problem,
given by takes a matrix structure, with elements



54 EXACT BOUNDARY CRITICAL EXPONENTS AND . ..

AS
22,00=1+ | “ZB00K L sinoa,
0
AC
z*gs(x):f cokZ2 (k)K 4 (sink,\)dk
0
Ag b
—fo Zo(m)Ka(p,N)dp,
AS
ZEC(k)=f Z2( MK (A, sirk)dX, (74)
0
AC
zgs(x):1+fo cokZy(k)K 1 (sink,\)dk

AS
—fo Z24 m)Ko( . \)dp,

with the kernel

1 nuU nuU
)= RO T P o )
n=1,2. (75

8499

Gol(X1.,X2,1)=(S(X1,1)S™(X2,0)), (80)
ST (x,1)=C () Cy (1),
AN,=0, ANg=1, Al.=Al.=0.

(4) The triplet pair correlator

G (X1, %2,t) =(Cy, +11 (1) Cy y (D CY 1 (0)CY . 11(0)),

(81
AN.=2, ANg=0, Al.=Al.=0.
(5) The singlet pair correlator
G (%1,%2,1)=(Cy, 1 (1) Cy (DCT (0)C1(0)), (
82

AN.=2, ANg=1, Al.=Al,=0.

As in the single-component case, the dressed-charge matrices
for open and periodic boundary conditions are identical Precise values for the critical exponents then follow imme-

zgﬁ:za,ﬁ. The Fermi velocities are given by
_ €5 (Ao) _ €5’ (Ao
mpp(Ac)’ mpp(As)’
and A ¢ are defined by *(A ) =0.
Below we list some correlation functions and thél, ,
Al s which must be used in Eq$69) and (70) in order to

determine the leading critical exponents:
(1) The field correlator

Gyw(X1,%2,8) =(Cy 1 (C]1(0)),

Ve Vs (76)

AN.=1, ANg=0, Al,=Als=0. 77

(2) The density-density correlator
Gnn(xlvXZat):<nxl(t)nx2(0)>r (78)

AN,=ANg=0, Al.,=1Al=0

or
Al,=0Al=1.
(3) The spin-spin correlators
Goo(X1,X2,1) = (S%(X1,1) §%(X2,0)), (79
S (x,1)= 3 [N =Ny ],
AN,=ANg=0, Al,=1, Al=0
or

Al.=0, Alg=1,

diately, via (69) and (70), once the dressed-charge matrix
(74) is calculated. This is a matter of routine, and due to the
equality of this matrix for open and periodic systeftts.
above, the published results for the periodic Hubbard
model* can be used directly to evaluate the boundary critical
expoenents.

VI. SUMMARY

We have derived explicitly the boundary critical expo-
nents of both single-component and multicomponent Bethe-
ansatz soluble models of interacting bosons and fermions.
Our results imply that the descendant fielgimrticle-hole
excitationg contribute the samdintege) amount to the
boundary and the bulk critical exponents. However, the con-
tribution from charge excitation@dditional particlesto the
boundary critical exponents is twice as big as to the bulk
exponents. The current excitations are completely depressed
for open boundaries and thus contribute nothing to the
boundary critical exponents. Apparently, this statement is
valid much beyond the the Bethe-ansatz soluble models and
applies in general to Luttinger liquids with open
boundarieg® The critical exponents are determined by the
dressed-charge matrix which we have shown to be indepen-
dent of the boundary conditions. Moreover, our method of
calculation relies only on the determination of energies
which can be performed accurately by numerical methods in
models which cannot be solved by Bethe-ansatz. Therefore,
one can determine, at least numerically, the boundary critical
exponents for all 1D quantum systems, provided they are
conformally invariant, by the method described in this paper.

Recently, we have learned that Affleck, Eggert, and So-
rensen have compared conformal field theory predicitions
with numerical results for th&=1/2 Heisenberg chain with
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