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Using the principles of the conformal quantum-field theory and the finite size corrections of the energy of the
ground and various excited states, we calculate the boundary critical exponents of single- and multicomponent
Bethe-Ansatz soluble models. The boundary critical exponents are given in terms of the dressed-charge matrix
which has the same form as that of systems with periodic boundary conditions and is uniquely determined by
the Bethe-ansatz equations. A Luttinger liquid with open boundaries is the effective low-energy theory of these
models. As applications of the theory, the Friedel oscillations due to the boundaries and the tunneling conduc-
tance through a barrier are also calculated. The tunneling conductance is determined by a nonuniversal bound-
ary exponent which governs its power law dependence on temperature and frequency.
@S0163-1829~96!09635-X#

I. INTRODUCTION

Phase transitions take place in a different way on surfaces
and in the bulk of a sample.1 The exponents describing criti-
cal phenomena at surfaces differ from those of the bulk, and
one may observe phenomena due to anisotropy and the
breaking of translational invariance caused by the boundary,
like oscillations in correlation functions which, in the bulk,
are monotonous, coordinate dependences, and in particular
Friedel oscillations, in local quantities, etc. There are many
approximate methods for calculating the critical properties of
bulk and surface phenomena.

Systems at a bulk critical point are not only scale invari-
ant but also conformally invariant, a consequence of the
combined rotational and scale invariance.2,3 In two space di-
mensions or one space and one time dimension@thus includ-
ing one-dimensional~1D! quantum systems#, the constraints
imposed by conformal invariance are much stronger than in
higher dimensions because the conformal group is infinite
dimensional, and these constraints strongly simplify the cal-
culation of correlation functions. The conformal field theory
is parametrized by a unique constant—the conformal
anomaly or the central chargec of the corresponding Vira-
soro algebra.4 All critical exponents of theories withc,1
are universal~independent of the interaction! and can be cal-
culated exactly.5 However, forc>1, the conformal dimen-
sions continuously depend on the coupling of the fields and
there is no general theory to deduce the critical exponents
exactly. Conformal field theory only predicts that the central
charge and the conformal dimensions can be derived from
the finite size corrections to the energy and momentum
spectra.6–8 For c>1, it does not determine their actual nu-
merical values. Still, this constitutes a powerful method to

calculate the critical exponents of integrable 1D quantum
models because their energy and momentum spectra are
known exactly, and this strategy has been applied success-
fully for bulk properties.9,10

An entirely parallel and equivalent development has taken
place in the theory of correlated fermions in 1D, using
bosonization techniques and running under the name of
‘‘Luttinger liquid.’’ 11,12 The main focus here was on non-
Fermi liquid properties of strongly correlated fermions, an
exciting topic of current research. Fermi liquid theory fails in
1D, and the Luttinger liquid provides the universal low-
energy theory for gapless 1D quantum systems. Its salient
properties are~i! absence of fermionic quasiparticle excita-
tions,~ii ! anomalous dimensions of various operators leading
to nonuniversal power-law decay of correlation functions,
and~iii ! charge-spin separation. In terms of critical phenom-
ena, the system is at aT50 quantum critical point, is con-
formally invariant, and the central charge of the associated
Virasoro algebra~s! is unity. The exponents of the correlation
functions ~critical exponents! are related to each other by
scaling relations and depend on a single renormalized cou-
pling constantK per degree of freedom, playing the role of
the Landau parameters familiar from Fermi liquid theory.
For the Luttinger liquid, there are constitutive relations be-
tween three velocities characterizing the low-energy sector
of the spectrum of the Hamiltonian which determine the
renormalized coupling constant and thus the critical expo-
nents. For integrable models, the velocities and coupling
constants have been determined from Bethe-ansatz~or other!
solutions.13 In some cases, conformal invariance has been
used explicitly to determine the critical exponents.14 For
nonintegrable models, they can be obtained reliably by exact
diagonalization of the Hamiltonian.
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Recently, the problems of the one-dimensional systems
with open boundaries have drawn much attention. There are
several issues of both experimental and theoretical relevance.
~i! As in higher-dimensional systems, the boundary critical
exponents are expected to be different from the bulk ones.1

~ii ! Experimentally studied systems are finite, and the
progress in microfabrication of semiconductor structures has
provided us with quantum wires so small that the boundary
effects could become relevant.15 ~iii ! Here but also in the
much bigger samples of quasi-1D metals, impurities can be
relevant perturbations and effectively cut the systems into
isolated strands of finite length. Specifically, a renormaliza-
tion group analysis has shown that, for effectively repulsive
interactions, the scattering potential due to an isolated impu-
rity scales to infinitity in the low-energy regime and thus the
problem is equivalent to an open boundary problem.16 An
attempt to test experimentally the predictions of this theory
has been published recently.17 Such effects have also been
invoked in the interpretation of electron spin diffusion18 and
photoemission19,20experiments on quasi-1D organic conduc-
tors. ~iv! Finally, some numerical methods such as the
density-matrix renormalization group,21 rely on the use of
open boundaries and their results could, in principle, be af-
fected by the chain ends.

Both conformal field theory22 and, very recently, the
theory of Luttinger liquids,15 have been extended to systems
with boundaries. What is missing to date, however, is an
exact derivation of the boundary critical exponents from the
Bethe-ansatz solution of integrable quantum systems bridg-
ing the gap between microscopic~often lattice! models con-
taining both high- and low-energy physics, and the more
effective theories for the low-energy properties. This gap has
been bridged successfully for the periodic systems.12–14 It is
the purpose of this paper to present such an exact derivation
of boundary critical exponents. Moreover, in the course of
the study, we shall see that the same strategy can be applied
to determine the exponents of nonintegrable systems by ex-
act numerical diagonalization provided they satisfy the basic
assumption of conformal invariance.

In this paper, we apply the method of the conformal field
theory to the Bethe-ansatz soluble models with open bound-
aries. The layout of the present paper is the following. In the
following section we briefly summarize some important re-
sults of boundary conformal field theory and of Luttinger
liquid theory on bounded systems, in order to make the pre-
sentation self-contained and provide the basic tools. These
are essentially the finite size corrections of the energy spec-
trum. In Sec. III we give a detailed calculation of the bound-
ary critical exponents of two paradigmatic single-component
Bethe-ansatz soluble models (d-potential Bose gas and the
antiferromagnetic Heisenberg chain!. Section IV digresses to
two important physical applications: the Friedel oscillation
of the density distribution around the boundary~impurity!
and the tunneling conductance through a barrier in a quan-
tum wire. In Sec. V, we generalize the result to the multi-
component case with the Hubbard model as an example. The
summary in Sec. VI attempts to provide a broader perspec-
tive on our results.

II. CONFORMAL FIELD THEORY AND LUTTINGER
LIQUIDS IN BOUNDED SYSTEMS

Systems with open boundaries

c~x50!5c~x5L !50 ~1!

~wherec is the wave function! are no longer space transla-
tional invariant but the time translational invariance is pre-
served. A two-point correlation function of a~primary! field
at criticality then takes the general form22

Gb~t,x1 ,x2!5~x1x2!
2dF$@v2t21x1

21x2
2#/x1x2%. ~2!

Equation~2! applies to a 1D quantum system,t represents
the imaginary time, andx1,2 the spatial coordinates;d is the
conformal dimension of the primary field in the bulk;v is the
Fermi velocity. Whenx1 andx2 are near the boundary, and
t→`, Gb must behave as

Gb~t,x1 ,x2!;
1

t2xb
. ~3!

2xb is the boundary critical exponent. Equation~3! directly
implies that limy→`F(y);y2xb. On the other hand, Cardy
also showed that then-point correlation function in a half
plane ~with one open boundary atx50) is identical to the
2n-point correlation function in the whole plane, provided
only thez-dependent part is taken into account in the latter.
In this way, the two-point correlation function can also be
represented as

Gb~z1 ,z2 ,z̄1 ,z̄2!5@~z12 z̄1!~z22 z̄2!/~z12z2!~ z̄12 z̄2!

3~z12 z̄2!~ z̄12z2!#
22dFb~y!, ~4!

whereFb(y) is an unknown scaling function. Here, we have
switched to a notation in terms of complex variables
zj5vt j1 ix j , z̄j5vt j2 ix j and y is given by y5(z1
2z2)( z̄12 z̄2)/(z12 z̄1)(z22 z̄2). For y→`, Fb(y)→y2a.
Direct comparison to Eq.~2! gives

xb54d1a. ~5!

In the following text, we shall use Eq.~2! and Eq.~4! alter-
natively.

The conformal dimensions or critical exponents can be
calculated from the finite size corrections of the energy spec-
tra. To see this, consider the transformation

z5
L

p
lnz, z̄5

L

p
lnz̄ ~6!

applied to the upper half-planex>0 only. Such a conformal
transformation maps the system from the semi-infinite plane
onto a strip of widthL with open boundary conditions.6

From the general transformation properties of the correlation
functions of a~primary! conformal fieldf(z,z̄)

^f~z1 ,z̄1!f~z2 ,z̄2!&5S ]z1
]z1

D DS ]z̄1

] z̄1
D D̄S ]z2

]z2
D DS ]z̄2

] z̄2
D D̄

3^f~z1 ,z̄1!f~z2 ,z̄2!&, ~7!

whereD1D̄5d andf andD2D̄5s give, respectively, the
conformal dimension and spin of the field, one deduces for
the correlation function on the strip
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^f~z1 ,z̄1!f~z2 ,z̄2!&L5F p

4L
sinh

p~z12 z̄1!

2L
sinh

p~z22 z̄2!

2L

sinh
p~z12z2!

2L
sinh

p~ z̄12 z̄2!

2L
sinh

p~z12 z̄2!

2L
sinh

p~ z̄12z2!

2L

G 2d

3FbS sinh
p~z12 z̄1!

2L
sinh

p~z22 z̄2!

2L

sinh
p~z12z2!

2L
sinh

p~ z̄12 z̄2!

2L

D . ~8!

There is also a spectral representation of the correlation func-
tion on the strip

^f~z1 ,z̄1!f~z2 ,z̄2!&L5(
n

^f~x1,0!un&^nuf~x2,0!&

3exp@2~t12t2!~EL
n2EL

0!#,

~9!

whereEb,L
0 is the energy of the ground state andEb,L

n are the
energies of the excited states;un& are the exact eigenstates of
the Hamiltonian under consideration which form a complete
set. SupposeEL

1 ~the energy of the first excited state with the
form factor ^fu1&Þ0) takes the form (L→`),

EL
12EL

05
pv
L
xb1oS 1L D . ~10!

From the asymptotic form of the correlation functions Eq.
~3! and comparing Eqs.~8! and~9! we get Eq.~5!. Thus the
finite size asymptotics of the low-lying levels determines the
boundary critical exponents.

In general, the correlation function can oscillate, so that
its asymptotics is not conformally invariant. In that case,
however, one can decompose the fieldf(z,z̄) into a sum of
conformal fieldsfn(z,z̄) which then determine the power-
law asymptotics.9 Because of the reflection symmetry of the
open boundary systems, the fieldf must have definite parity.
We can expand odd and even parity fields as

f~z,z̄!5(
n

fn~z,z̄!sin~nkFx!,

~11!

f~z,z̄!5(
n

fn~z,z̄!cos~nkFx!

respectively.n is an odd~even! integer for odd~even! parity
fields.

For systems with periodic boundary conditions, the Lut-
tinger liquid phenomenology11,12provides a framework com-
pletely equivalent to conformal field theory but closer to the
language of conventional solid state physics. It is based on
the exactly solvable Luttinger model, and all physical prop-
erties can be described in terms of two parameters per degree
of freedom (n5r,s for charge and spin!, a renormalized
sound velocityvn and an effective coupling constantKn

which determines the decay of all correlation functions and

thus the critical exponents. These parameters can be deter-
mined from the energies of the low-lying excited states of
the Hamiltonian.13

This picture has been extended recently to systems with
open boundaries.15 Due to the boundary conditions~1!, the
right- and left-moving fermions commonly used in the Lut-
tinger model are not independent, and a single species mov-
ing, say, to the right@C1,s(x)# is sufficient, and it is periodic
on a length 2L. The Fermi surface reduces to a single point
1kF but the wavevectorsk5mp/L.0 are quantized with
twice the density of the periodic system. We then can rewrite
the fermionic Hamiltonian

H052 ivF(
s
E

2L

L

dxC1,s
† ~x!]xC1,s~x! ~12!

in an equivalent form involving the bosonic density fluctua-
tions ~particle-hole excitations! r1,s(x) and ‘‘charge excita-
tions’’ DNs corresponding to the addition of particles of spin
s to the reference Fermi sea~i.e.,DkFs5DNsp/L)

H05pvF(
s
E

2L

L

dx:r1,s~x!r1,s~x!:1
pvF
2L (

s
~DNs!

2.

~13!

The Fourier transformr1,s(p) of the density operators do
not contain thep50 component which is represented explic-
itly by DNs5(k(c1,s,k

† c1,s,k2^c1,s,k
† c1,s,k&0) where ^&0

denotes the~infinite! expectation value in the reference
Fermi sea given bykF

0 Unlike the periodic case, ‘‘current
excitations’’ describing the difference of right- and left-
moving fermion numbers, cannot be defined in the bounded
system. The Hamiltonian including forward scattering can
then be diagonalized by a Bogoliubov tranformation as
in the periodic case, defining the renormalized velocitiesvn

of the bosonic charge and spin density fluctuations
r1(p)@s1(p)#5@r1,↑(p)6r1,↓(p)#/A2, and coupling
constantsKn . The renormalized velocity of the charge exci-
tations DNr(s)5DN↑6DN↓ is given by vn /Kn . The
bosonization of this model is completed by an explicit rep-
resentation of the Fermi operatorC1,s(x) in terms of the
bosonsr1,s(p) ~Ref. 15! which allows to calculate all cor-
relation functions of this model in terms of thevn andKn

and thus defines its critical exponents.
vn andKn can now be found along the same lines as in

the periodic systems:13 ~i! vn can be computed directly from
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the spectrum of low-lying excitations;~ii ! to get Kr , one
calculates the compressibilityk

1

k
5
1

L

]2E0~n!

]n2
5

pve
2Kr

. ~14!

The first equality gives the definition as the second derivative
of the ground state energy with respect to particle density
n5N/L and can be computed in the integrable model, and
the second equality gives the Luttinger liquid expression
which can be solved forKr . Ks is required to be unity by
spin-rotation invariance, but can be calculated in the same
way in more general cases from the susceptibility. Our de-
termination of boundary critical exponents below can also be
viewed as exploring this strategy.

III. BETHE-ANSATZ SOLUBLE MODELS

We now compute the exact boundary critical exponents
for Bethe-ansatz soluble models with open boundaries. We
first consider single-component models before turning to
multicomponent systems. In both cases, the critical expo-
nents can be calculated explicitly. Two typical single-
component models are the one dimensionald-potential Bose
gas model and the Heisenberg antiferromagnetic chain. Their
Hamiltonians are

HBG5E
0

L

~]xC
†]xC1cC†C†CC2hC†C!dx,

c.0, h.0 ~15!

HXXZ5 (
j51

L21 S s j
xs j11

x 1s j
ys j11

y 1cos2hs j
zs j11

z 2
1

2
s j
zD ,

0,2h,p, 0,h,4~12cos2h!, ~16!

whereh is the chemical potential for the Bose gas model and
the magnetic field for the Heisenberg chain. The anisotropy
of the exchange integrals for the Heisenberg model is
Jz5cos(2h); critical behavior is obtained only for easy-
plane-type anisotropyuJzu<1, and our definition ofJz re-
stricts us to this range.h plays the role of a coupling con-
stant, as isc for the Bose gas.sx,y,z are the Pauli matrices.
The open boundary conditions~1!, for the Bose gas, translate
into C(0)5C(L)50 in terms of the boson operators
C(x), while they are contained in our representation~16! of
the Heisenberg chain because the sites 1 andN only couple
to a single neighbor.

These models are solved by means of the Bethe-ansatz.23

TheN-particle wave function is parametrized byN numbers
l j which satisfy the equations

2Lp0~l j !52pI j22w~l j !2(
lÞ j

@F~l j2l l !1F~l j1l l !#,

~17!

wherep0 is the bare momentum andF is the bare scattering
phase:

p0
BG~l!5l, p0

XXZ~l!5 i lnS cosh~l2 ih!

cosh~l1 ih! D ,

FBG~l!522arctan
l

c
, ~18!

FXXZ~l!52p1 i lnS sinh~l12ih!

sinh~l22ih! D .
The numbersI j are positive integers, and the parity effects
known from periodic systems are absent in models with open
boundaries. The bare energy of each particle is

e0
BG~l!5l22h,

e0
XXZ~l!5h22sinh22h/cosh~l1 ih!cosh~l2 ih!.

~19!

The phase w(l j )50 for the Bose gas and
w(l j )5p0(l j )1F(2l j ) for theXXZ chain. The eigenvalue
of the Hamiltonian is equal to the sum of the bare energies of
the particles

EL5(
j51

N

e0~l j !. ~20!

Carefully checking the wave functions with the boundary
conditions Eq.~1! we find that$6l% correspond to the same
state. This is not surprising because of the reflection symme-
try of the system, and corresponds to standing-wave-like so-
lutions. The Bethe-ansatz equation~17! thus only allows so-
lutions withl jÞ6l l for jÞ l so that alll j>0. The system
therefore has only one Fermi pointkF . This is very different
from the case of the cyclic systems. A similar feature, how-
ever, occurs in Luttinger liquids in bounded systems~Sec.
II !. The appearence of a single Fermi point identifies the
system as chiral, and 1D quantum systems with boundaries
therefore appear to be special cases of ‘‘chiral Luttinger liq-
uids,’’ a notion that has appeared previously in the superfi-
cially quite unrelated area of edge states in the fractional
quantum Hall effect.24

With open boundaries, the total momentum is no longer a
good quantum number. However, the quantity

P5
p

L(
j51

N

uI j u ~21!

is conserved. This follows from an argument of adiabatic
continuity similar to one originally given by Yang and
Yang.25 We shall callP the ‘‘momentum’’ of the models. In
the ground state,I j takes consecutive integer values from 1
to N (I j50 is not allowed!. We can then define a dressed
momentum

pb~l j !5p0~l j !1
1

2L(lÞ j
@F~l j2l l !1F~l j1l l !#1

w~l j !

L

5
pI j
L

. ~22!

The Fermi momentumkF5pN/L5pn has the same value
as in the periodic system.

In the thermodynamic limitL→`, N→` keepingn fi-
nite, the ground state solves the following integral equations:
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rb~l!5
p08~l!

p
1E

0

L

Kb~l,m!rb~m!dm, ~23!

eb~l!5e0~l!1E
0

L

Kb~l,m!eb~m!dm, ~24!

Kb~l,m!5
1

2p

]

]l
@F~l2m!1F~l1m!#.

The cutoff parameterL is defined by the requirement
eb(L)50; rb(l) is the density ofl per unit length. Equa-
tion ~22! becomes

pb~l!5p0~l!1
1

2E0
L

@F~l2m!1F~l1m!#rb~m!dm.

~25!

pb8(l)5prb(l) follows from a combination of~23! and
~25!, and pb(L)5kF ensures that the Fermi surface is the
same as in the finite system with the same electron density.

We now compare equivalent quantities of the bounded
and periodic systems and use the same symbols but without
the subscriptb for the latter. Directly comparing Eqs.~23!–
~25! with their periodic equivalents9 we find

rb~l!52r~l!,

eb~l!5e~l!, ~26!

pb~l!5p~l!,

if n5nb ~thusLb5L). There is no restriction on sign(l) for
the periodic systems butl.0 for the bounded ones. In the
vicinity of the Fermi surface, the excitation energy is

e~l!5vupb~l!2kFu, ~27!

where the Fermi velocity is given by

v5
e8~L!

p8~L!
5

eb8~L!

prb~L!
. ~28!

It takes the same value of that of the system with the periodic
boundary condition as it must be for the Fermi velocity can
be determined by the leading term of the free energy which
should not depend on the boundary conditions in the thermo-
dynamic limit.

Unlike the cyclic systems, the systems with open bound-
aries have only two kinds of elementary excitations:~i!
Particle-hole~soundlike! excitations at the Fermi pointkF .
Their finite size corrections give the boundary critical expo-
nent of the current-current correlation function for the Bose
gas model and or the boundary critical exponent of theSz
component of the spin correlation function for the Heisen-
berg spin chain.~ii ! The change of the free energy induced
by the variation of the particle number~termed ‘‘charge ex-
citations’’ above!. Its finite size correction gives the bound-
ary critical exponent of the single particle correlation func-
tion for the Bose gas model and the critical exponent of the
transverse spin-spin correlation function of the Heisenberg
chain. These features are reproduced precisely in the Lut-
tinger liquid theory of systems with open boundary condi-
tions.

We consider first the particle-hole excitations. To con-
struct the lowest excitation state, we must putI N→I N11 in
~17! keeping the otherI j unchanged. The change of the mo-
mentum is thus

DP5
p

L
, ~29!

and the excitation energy is

DEb,L5
pvxb

i

L
, xb

i 51. ~30!

To obtain the second kind of excitations~charge excitations!,
we define the dressed-charge function as

Zb~l!511E
0

L

Kb~l,m!Zb~m!dm. ~31!

Obviously,Zb(l)5Z(l) for l.0. This is a consequence of
~i! the symmetryZ(l)5Z(2l) of the dressed-charge of the
periodic systems, and~ii ! the fact that, using this symmetry,
the equation satisfied byZ(l) in the periodic system can be
transformed into Eq.~31! for the open system forl.0. The
change of the free energy byDN additional particles is9

DEb,L5LF f 0S n1
DN

L D2DN
h

L
2 f 0~n!G5

~DN!2

2L

]h

]n
,

~32!

where f 0 is the free energy density of the ground state. This
gives

DEb,L5
pv~DN!2

2LZ2~L!
, xb

'5
~DN!2

2Z2~L!
. ~33!

For the general case, suppose a conformal fieldf induce the
momentum shift relative to the ground state aspDI /L and
the change of the particle numberDN. The energy change
relative to the ground state is then

DEb,L5
pv
L FDI1 ~DN!2

2Z2~L!G1oS 1L D . ~34!

The boundary critical exponent takes the form

2xb~DI ,DN!52DI1
~DN!2

Z2~L!
, ~35!

whereDI andDN are non-negative integers. The above re-
lation was suggested by Alcarazet al.26 for integrable spin
chains from numerical simulations.

For example, we consider the Heisenberg chain in a zero
magnetic field. In this case,27 L5` and 2Z2(`)5p/2h. For
n1, n2 near the boundary andt→`, the correlation functions
take the following asymptotic forms:

^sn1
z ~ t !sn2

z ~0!&;
1

th i
,

DI51, DN50, h i52xb
i 52; ~36!

^sn1
2 ~ t !sn2

1 ~0!&;
1

th'
,
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DI50, DN51, h'52xb
'5

4h

p
. ~37!

On the other hand, fort50, n151 andn25n@1, from Eq.
~2! we have

^s1
z~0!sn

z~0!&;
~21!n21

nu i
,

u i511
p

4h
for 2h.

p

2
~38!

u i52 for 2h<
p

2

and

^s1
2~0!sn

1~0!&;
~21!n21

nu'
,

u'5
3h

p
. ~39!

Notice that above we have used the bulk conformal dimen-
sions di5 p/4h for 4h.p, di51 for 4h<p and
d'5h/p. When 2h5p, the coupling is isotropic and
h i5h'52, u i5u'5 3

2 as they should be for the spin
SU~2! symmetry. The boundary critical exponentsh i ,' mea-
suring the decay of correlations with time, are two times
larger than those of the bulk. On the other hand, there are
new exponentsu i ,' for the decay of spatial correlations. In
periodic systems, the two sets are identical as a consequence
of conformal invariance. In bounded systems, the breaking
of translational invariance alongx by the boundary condi-
tions while maintaining it alongt, generates a new set of
critical exponents.

We now consider the finite size correction to the ground
state energy

Eb,L
0 5(

j51

N

e0~l@ j /L# !. ~40!

Using the Euler-Maclaurin formula we have28

Eb,L
0 5LE

0

n

e0~l@x# !dx1 f b2
1

24L

]e0~x!

]x Ux5n1
1

24L

]e0~x!

]x U
x50

1oS 1L D
5L f 0~n!1 f b2

p

24L F eb8~L!

prb~L!
2

eb8~0!

prb~0!
G1oS 1L D . ~41!

From Eqs.~19! and ~24! we know thateb8(0)50. Thus we
have

Eb,L
0 2L f 0~n!' f b2

pv
24L

. ~42!

Here f b is the boundary energy which was extensively
studied.23,29–31Equation~42! agrees with the predictions of
conformal field theory,8 and determines the central charge as
c51.

IV. FRIEDEL OSCILLATION AND TUNNELING
CONDUCTANCE

A. Friedel oscillation

Since the systems under consideration are obviously not
translationally invariant, the density distribution is no longer
homogeneous. Therfore, the ground state will exhibit Friedel
oscillations. For a 1D free fermion system of lengthL with
open boundaries~1!, the single-particle wave functions take
the form

Cm
L ~x!5A2

L
sin

mpx

L
, ~43!

with m positive integers. For the ground state, the density
distribution in the box can be easily calculated as

^n~x!&5 (
m51

N

uCm
L ~x!u25

2

L (
m51

N

sin2
mpx

L

'n2
sin~2kFx!

2px
for x!L. ~44!

For the interacting systems, we expect the density distribu-
tion to have a similar form

^n~x!&b'n2
Asin~2kFx2f!

xg , 0!x!L, ~45!

whereA and f are two unknown constants andg is the
exponent dominating the decay.

For definiteness, we consider the following spinless ferm-
ion model

H52 (
r56

(
j51

Nr21

$~Cr , j
† Cr , j111H.c.!2Unr , jnr , j11%

2h(
r56

(
j51

Nr

nr , j , ~46!

where r56 labels two different chains which in the next
subsection, we will couple by a tunneling matrix element.
Here, we just consider one of the chains.Cr , j

† (Cr , j ) are the
creation ~annihilation! operators of the spinless fermions;
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nr , j5Cr , j
† Cr , j andh here denotes the chemical potential. The

Hamiltonian is equivalent to anXXZ chain~16! via a Jordan-
Wigner transformation withU5cos(2h). The dressed-charge
of this model is given by Eq.~31!.

As pointed out in Ref. 22, then-point correlation func-
tions of the open boundary systems are directly related to the
2n-point correlation functions of the periodic boundary sys-
tems. Thus

^n~x!&b5^n~z!n~ z̄!&. ~47!

The right hand side of Eq.~47! is to be understood in the
sense that only thez-dependent part of the density-density
correlation function^n(z1 ,z̄1)n(z2 ,z̄2)& is taken into ac-
count, and that we have to setz25 z̄1. In addition, the oscil-
lating term only originates from the current-current correla-
tion ^n(z1 ,z̄1)n(z2 ,z̄2)&J ~in another language,12 this object
is designed as the 2kF-charge density wave correlation func-
tion! which has been calculated in Ref. 9 as

^n~z1 ,z̄1!n~z2 ,z̄2!&J'2
Bei2kF~x12x2!1B̄ei2kF~x22x1!

~z12z2!
Z2~L!~ z̄12 z̄2!

Z2~L!
,

~48!

whereB is a constant. Choosing thez-dependent part in Eq.
~48! and puttingz25 z̄1, we obtain Eq.~45! with

g5Z2~L!. ~49!

This result agrees with Ref. 15 where the Friedel oscillation
for the Luttinger model with open boundaries was calculated,
and determines the exact value ofg from the Bethe-ansatz
equations through the dressed-charge which can be calcu-
lated easily. Specifically, repeating the Luttinger liquid
analysis15 for spinless fermions, one findsg5K thereby sug-
gesting the identificationK5Z2(L) between the Luttinger
stiffness constantK and the Bethe-ansatz dressed-charge
Z2(L).

B. Tunneling conductance

The boundary critical exponents are very important to
study the tunneling effect in quantum wires. A strong barrier
cuts the chain into two half-chains which, in first order, be-
have as two independent subsystems with an open boundary.

We add a tunneling term to the Hamiltonian~46!

T52V@C1,1
† C2,11C2,1

† C1,1#, V!1. ~50!

The tunneling current is thus

J52 iV@C1,1
† C2,12C2,1

† C1,1#. ~51!

From linear response theory we know that the tunneling con-
ductance up to orderV2 is given by

G~v!5 i E dteivtE dt8u~ t2t8!E dt9u~ t2t9!

3^@J~ t !,J~ t9!#&. ~52!

Since the averagê& is taken atT50, the current correlation
function may be separated into

^@J~ t !,J~ t9!#&; )
r56

^Cr ,1~ t !Cr ,1
† ~ t9!&;~ t2t9!22h',

~53!

where h' is the boundary critical exponent of the single
particle correlation function. Substituting the above relation
into ~52! we readily obtain, using~33! and ~37!,

G~v!;vu, u52~h'21!5
2

Z2~L!
22. ~54!

This equation describes tunneling through an impurity be-
tween two quantum wires. To compare again to Fabrizio and
Gogolin, we also can consider tunneling between a normal
metal and a quantum wire. The current-current correlation
function and the tunneling exponentu then are given by

^@J~ t !,J~ t9!&;~ t2t9!2h'21 ~55!

and

u5h'215
1

Z2~L!
21, ~56!

respectively. The spinless Luttinger liquid15 has
u5K2121 which is again consistent with the identification
K5Z2(L) suggested above via the Friedel oscillation expo-
nent. At finite but very low temperaturesT;0, the conduc-
tance behaves as

G~T!5G0T
u, ~57!

whereG0 is a constant.
At U50,H describes free fermions with a barrier. In this

case,h'51 andG(T) is independent of temperature and
finite. The system is marginal. ForU.0, h'.1 and the
conductance tends to zero asT→0. The fermion-barrier scat-
tering is relevant and the ‘‘Coulomb blockade’’ behavior
arises — a result consistent with the observations of Kane
and Fisher.16 For U,0, h',1 and the tunneling conduc-
tance diverges asT→0. This is a consequence of the diver-
gent superconducting fluctuations found in that situation.

V. MULTICOMPONENT INTEGRABLE MODELS

Recently much attention has been focused on the open
boundary problem for integrable models with multi-
component fields.32–34 Typical models are the one-
dimensionald-potential Fermi gas model,35 the Hubbard
chain,36 and the supersymmetrict2J model with open
boundaries.32,33 The above discussion can also be general-
ized to these models. In these cases, the reflection Bethe-
ansatz equations take the general form

2Lp0
a~l j

a!52pI j
a2 (

b51

M

( 8
l51

Nb

@Fab~l j
a2l l

b!

1Fab~l j
a1l l

b!#, ~58!

whereFab(l j
a2l l

b) are the bare scattering phases and odd
functions of their arguments,M is the number of the com-
ponents, and the prime after the sums means that when
a5b, jÞ l . The eigenvalue of the Hamiltonian is
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E5 (
a51

M

(
j51

Na

e0
a~l j

a!. ~59!

Also, l j
a.0 is supposed. In complete analogy to Eqs.~23!–

~25! and ~31!, dressed quantities are defined as

rb
a~la!5

p0
a8~la!

p
1 (

b51

M E
0

Lb
Kab~la,lb!rb

b~lb!dlb,

~60!

pb
a~la!5p0

a~la!1
1

2(
b51

M E
0

Lb
@Fab~la2lb!

1Fab~la1lb!#rb
b~lb!dlb, ~61!

eb
a~la!5e0

a~la!1 (
b51

M E
0

Lb
Kab~la,lb!eb

b~lb!dlb,

~62!

Zab
b ~lb!5dab1 (

g51

M E
0

Lg
Zag
b ~lg!Kgb~lg,lb!dlg,

~63!

where Kab(l
a,lb)5(1/2p)@Fab8(la2lb)1Fab8(la

1lb)] is an even function. The relations

]

]la pb
a~la!5prb

a~la!52pra~la!, ~64!

eb
a~la!5ea~la!, ~65!

Zab
b ~lb!5Zab~lb!, ~66!

for la.0, compare bounded and periodic systems at equal
density and generalize~26!. The finite size correction to the
energies of the excited states is then

Eb,L2Eb,L
0 5

p

L (
a51

M

vaH 12 @~Z21DN!a#21DI aJ 1oS 1L D ,
~67!

where Zab5Zab(Lb), DN5$DN1 , . . . ,DNM% are
M -dimensional vectors with integer components. The num-
berDNa gives the change ofNa , the number of pseudopar-
ticles of typea ~pseudoparticles refers to the particlelike
excitations in the Bethe-ansatz and not necessarily to physi-
cal particles!, in the excited state with respect to the ground
state~i.e., the charge excitations!. The non-negative integers
DI a describe pseudoparticle-pseudohole excitations@more
precisely, a change of( j51

Na pb
a(l j

a) in units of (p/L)# in the
vicinity kF

a @Fermi momentakF
a of the pseudoparticles are

defined askF
a5pb

a(La)5pna]. The Fermi velocity is

va5
ea8~La!

2pra~La!

as usual.
The finite size correction of the ground state energy is

given by

Eb,L
0 5

L

p (
a51

M E
0

La
p0

a8~la!eb
a~la!dla

1 f b2
p

24L(
a51

M

va1oS 1L D . ~68!

The Fermi velocitiesva are arbitrary in principle and quan-
titatively depend on details of the interactions in practice. As
a consequence, the system is described by a sum ofM con-
formal algebras, each with a central charge 1. Their contri-
butions to the boundary critical exponents

2xb
a5@~Z21DN!a#212DI a , ~69!

are additive, and the total boundary critical exponent is thus

2xb52(
a51

M

xb
a52(

a51

M

DI a1~Z21DN!T~Z21DN!.

~70!

The same structure is found in periodic systems.
As an example, we give some leading boundary critical

exponents of the Hubbard chain with open boundaries. The
bulk critical exponents of this model were determined by
Frahm and Korepin.14 The Hamiltonian reads

H52 (
i51

N21

(
s56

Cis
† Ci11s14U(

i51

N

ni↑ni↓

2m(
i51

N

(
s56

nis2
h

2(i51

N

~ni↑2ni↓!, ~71!

whereCis (Cis
† ) is the electron annihilation~creation! op-

erator;m denotes the chemical potential andh is the external
magnetic field. The wave functions are parametrized by two
sets of parameters$k% and$l%, the rapidities of the charges
and spins, respectively. The following set of integral equa-
tions determine their bare (e0

c,s) and dressed (eb
c,s) energies

and distribution functions (rb
c,s)

e0
c~k!522cosk1m2

h

2
, e0

s~l!5
h

2
,

eb
c~k!5e0

c~k!1E
0

Ls
K1~sink,l!eb

s~l!dl,

eb
s~l!5e0

s~l!1E
0

Lc
coskK1~l,sink!eb

c~k!dk

2E
0

Ls
K2~l,m!eb

s~m!dm, ~72!

rb
c~k!5

1

p
1coskE

0

Ls
K1~sink,l!rb

s~l!dl,

rb
s~l!5E

0

Lc
K1~l,sink!rb

c~k!dk2E
0

Ls
K2~l,m!rb

s~m!dm.

~73!

The dressed-charge~31!, in the multicomponent problem,
takes a matrix structure, with elements
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Zcc
b ~k!511E

0

Ls
Zcs
b ~l!K1~l,sink!dl,

Zcs
b ~l!5E

0

Lc
coskZcc

b ~k!K1~sink,l!dk

2E
0

Ls
Zcs
b ~m!K2~m,l!dm,

Zsc
b ~k!5E

0

Ls
Zss
b ~l!K1~l,sink!dl, ~74!

Zss
b ~l!511E

0

Lc
coskZsc~k!K1~sink,l!dk

2E
0

Ls
Zss
b ~m!K2~m,l!dm,

with the kernel

Kn~l,m!5
1

p F nU

~nU!21~l2m!2
1

nU

~nU!21~l1m!2G ,
n51,2. ~75!

As in the single-component case, the dressed-charge matrices
for open and periodic boundary conditions are identical,
Za,b
b 5Za,b . The Fermi velocities are given by

vc5
eb
c8~Lc!

prb
c~Lc!

, vs5
eb
s8~Ls!

prb
s~Ls!

, ~76!

andLc,s are defined byeb
c,s(Lc,s)50.

Below we list some correlation functions and theDNc,s ,
DI c,s which must be used in Eqs.~69! and ~70! in order to
determine the leading critical exponents:

~1! The field correlator

GCC~x1 ,x2 ,t !5^Cx1↑~ t !Cx2↑
† ~0!&,

DNc51, DNs50, DI c5DI s50. ~77!

~2! The density-density correlator

Gnn~x1 ,x2 ,t !5^nx1~ t !nx2~0!&, ~78!

DNc5DNs50, DI c51,DI s50

or

DI c50,DI s51.

~3! The spin-spin correlators

Gss
z ~x1 ,x2 ,t !5^Sz~x1 ,t !S

z~x2,0!&, ~79!

Sz~x,t !5 1
2 @nx↑2nx↓#,

DNc5DNs50, DI c51, DI s50

or

DI c50, DI s51,

Gss
' ~x1 ,x2 ,t !5^S2~x1 ,t !S

1~x2,0!&, ~80!

S1~x,t !5Cx↑
† ~ t !Cx↓~ t !,

DNc50, DNs51, DI c5DI s50.

~4! The triplet pair correlator

Gp
~1!~x1 ,x2 ,t !5^Cx111↑~ t !Cx1↑~ t !Cx2↑

† ~0!Cx211↑
† ~0!&,

~81!

DNc52, DNs50, DI c5DI s50.

~5! The singlet pair correlator

Gp
~0!~x1 ,x2 ,t !5^Cx1↑~ t !Cx1↓~ t !Cx2↓

† ~0!Cx2↑
† ~0!&,

~82!

DNc52, DNs51, DI c5DI s50.

Precise values for the critical exponents then follow imme-
diately, via ~69! and ~70!, once the dressed-charge matrix
~74! is calculated. This is a matter of routine, and due to the
equality of this matrix for open and periodic systems~cf.
above!, the published results for the periodic Hubbard
model14 can be used directly to evaluate the boundary critical
expoenents.

VI. SUMMARY

We have derived explicitly the boundary critical expo-
nents of both single-component and multicomponent Bethe-
ansatz soluble models of interacting bosons and fermions.
Our results imply that the descendant fields~particle-hole
excitations! contribute the same~integer! amount to the
boundary and the bulk critical exponents. However, the con-
tribution from charge excitations~additional particles! to the
boundary critical exponents is twice as big as to the bulk
exponents. The current excitations are completely depressed
for open boundaries and thus contribute nothing to the
boundary critical exponents. Apparently, this statement is
valid much beyond the the Bethe-ansatz soluble models and
applies in general to Luttinger liquids with open
boundaries.15 The critical exponents are determined by the
dressed-charge matrix which we have shown to be indepen-
dent of the boundary conditions. Moreover, our method of
calculation relies only on the determination of energies
which can be performed accurately by numerical methods in
models which cannot be solved by Bethe-ansatz. Therefore,
one can determine, at least numerically, the boundary critical
exponents for all 1D quantum systems, provided they are
conformally invariant, by the method described in this paper.

Recently, we have learned that Affleck, Eggert, and So-
rensen have compared conformal field theory predicitions
with numerical results for theS51/2 Heisenberg chain with
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general boundary conditions37 and with Bethe-ansatz results
for anS51-impurity in aS51/2 Heisenberg chain.38 More-
over, Fujimoto and Kawakami have studied the boundary
critical exponents of the Kondo problem39 and produced a
similar solution of the boundary critical exponents of multi-
component fermion models.40
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